Volume 15 Issue 8
Sep.  2025
Turn off MathJax
Article Contents
Junyu Zhang, Jie Peng, Chaolun Yu, Yu Ning, Wenhui Lin, Mingxing Ni, Qiang Xie, Chuan Yang, Huiying Liang, Miao Lin. Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference[J]. Journal of Pharmaceutical Analysis, 2025, 15(8): 101265. doi: 10.1016/j.jpha.2025.101265
Citation: Junyu Zhang, Jie Peng, Chaolun Yu, Yu Ning, Wenhui Lin, Mingxing Ni, Qiang Xie, Chuan Yang, Huiying Liang, Miao Lin. Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference[J]. Journal of Pharmaceutical Analysis, 2025, 15(8): 101265. doi: 10.1016/j.jpha.2025.101265

Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference

doi: 10.1016/j.jpha.2025.101265
Funds:

We thank all participants and investigators of the UKB and the FinnGen study. This study is supported by the National Natural Science Foundation of China (Grant Nos.: 82204396, 82304491, and 82400511).

  • Received Date: Dec. 16, 2024
  • Accepted Date: Mar. 10, 2025
  • Rev Recd Date: Feb. 28, 2025
  • Publish Date: Mar. 14, 2025
  • Diabetic kidney disease (DKD) with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression. Therapeutic targets supported by causal genetic evidence are more likely to succeed in randomized clinical trials. In this study, we integrated large-scale plasma proteomics, genetic-driven causal inference, and experimental validation to identify prioritized targets for DKD using the UK Biobank (UKB) and FinnGen cohorts. Among 2844 diabetic patients (528 with DKD), we identified 37 targets significantly associated with incident DKD, supported by both observational and causal evidence. Of these, 22% (8/37) of the potential targets are currently under investigation for DKD or other diseases. Our prospective study confirmed that higher levels of three prioritized targets—insulin-like growth factor binding protein 4 (IGFBP4), family with sequence similarity 3 member C (FAM3C), and prostaglandin D2 synthase (PTGDS)—were associated with a 4.35, 3.51, and 3.57-fold increased likelihood of developing DKD, respectively. In addition, population-level protein-altering variants (PAVs) analysis and in vitro experiments cross-validated FAM3C and IGFBP4 as potential new target candidates for DKD, through the classic NLR family pyrin domain containing 3 (NLRP3)-caspase-1-gasdermin D (GSDMD) apoptotic axis. Our results demonstrate that integrating omics data mining with causal inference may be a promising strategy for prioritizing therapeutic targets.
  • loading
  • [1]
    GBD 2021 Diabetes Collaborators, Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021, Lancet 402 (2023) 203-234.
    [2]
    N.W.S. Chew, C.H. Ng, D.J.H. Tan, et al., The global burden of metabolic disease: Data from 2000 to 2019, Cell Metab. 35 (2023) 414-428.e3.
    [3]
    I.H. de Boer, K. Khunti, T. Sadusky, et al., Diabetes management in chronic kidney disease: A consensus report by the American diabetes association (ADA) and kidney disease: Improving global outcomes (KDIGO), Diabetes Care 45 (2022) 3075-3090.
    [4]
    I. Tomita, S. Kume, S. Sugahara, et al., SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition, Cell Metab. 32 (2020) 404-419.e6.
    [5]
    S.D. Wiviott, I. Raz, M.P. Bonaca, et al., Dapagliflozin and cardiovascular outcomes in type 2 diabetes, N. Engl. J. Med. 380 (2019) 347-357.
    [6]
    X. Liu, C. Xu, L. Xu, et al., Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway, Metabolism 111 (2020), 154334.
    [7]
    J.R. Lundgren, C. Janus, S.B.K. Jensen, et al., Healthy weight loss maintenance with exercise, liraglutide, or both combined, N. Engl. J. Med. 384 (2021) 1719-1730.
    [8]
    V. Perkovic, K.R. Tuttle, P. Rossing, et al., Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes, N. Engl. J. Med. 391 (2024) 109-121.
    [9]
    N. Sattar, M.M.Y. Lee, S.L. Kristensen, et al., Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials, Lancet Diabetes Endocrinol. 9 (2021) 653-662.
    [10]
    S.P. Marso, S.C. Bain, A. Consoli, et al., Semaglutide and cardiovascular outcomes in patients with type 2 diabetes, N. Engl. J. Med. 375 (2016) 1834-1844.
    [11]
    Y. Mori, A.K. Ajay, J.H. Chang, et al., KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease, Cell Metab. 33 (2021) 1042-1061.e7.
    [12]
    W. Jun, H. Makino, Innate immunity in diabetes and diabetic nephropathy, Nat. Rev. Nephrol. 12 (2016) 13-26.
    [13]
    K. Suhre, M.I. McCarthy, J.M. Schwenk, Genetics meets proteomics: Perspectives for large population-based studies, Nat. Rev. Genet. 22 (2021) 19-37.
    [14]
    M.V. Holmes, T.G. Richardson, B.A. Ference, et al., Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development, Nat. Rev. Cardiol. 18 (2021) 435-453.
    [15]
    G.H. Eldjarn, E. Ferkingstad, S.H. Lund, et al., Large-scale plasma proteomics comparisons through genetics and disease associations, Nature 622 (2023) 348-358.
    [16]
    C. Bycroft, C. Freeman, D. Petkova, et al., The UK Biobank resource with deep phenotyping and genomic data, Nature 562 (2018) 203-209.
    [17]
    M.I. Kurki, J. Karjalainen, P. Palta, et al., FinnGen provides genetic insights from a well-phenotyped isolated population, Nature 613 (2023) 508-518.
    [18]
    W. Li, UK Biobank pharma proteomics resource, Nat. Genet. 55 (2023), 1781.
    [19]
    B.B. Sun, J. Chiou, M. Traylor, et al., Plasma proteomic associations with genetics and health in the UK Biobank, Nature 622 (2023) 329-338.
    [20]
    A.S. Jannot, G. Ehret, T. Perneger, P < 5 × 10 (-8) has emerged as a standard of statistical significance for genome-wide association studies, J. Clin. Epidemiol. 68 (2015) 460-465.
    [21]
    F.P. Hartwig, N.M. Davies, G. Hemani, et al., Two-sample Mendelian randomization: Avoiding the downsides of a powerful, widely applicable but potentially fallible technique, Int. J. Epidemiol. 45 (2016) 1717-1726.
    [22]
    B. Xu, J. Sheng, Y. You, et al., Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy, Metabolism 103 (2020), 154013.
    [23]
    F. Barutta, A. Corbelli, R. Mastrocola, et al., Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy, Diabetes 59 (2010) 1046-1054.
    [24]
    K. Huang, P. Chandak, Q. Wang, et al., A foundation model for clinician-centered drug repurposing, Nat. Med. 30 (2024) 3601-3613.
    [25]
    E. Gobeil, J. Bourgault, P.L. Mitchell, et al., Genetic inhibition of angiopoietin-like protein-3, lipids, and cardiometabolic risk, Eur. Heart J. 45 (2024) 707-721.
    [26]
    J. Cheng, G. Novati, J. Pan, et al., Accurate proteome-wide missense variant effect prediction with AlphaMissense, Science 381 (2023), eadg7492.
    [27]
    J.T. Ramo, S.J. Jurgens, S. Kany, et al., Rare genetic variants in LDLR, APOB, and PCSK9 are associated with aortic stenosis, Circulation 150 (2024) 1767-1780.
    [28]
    J. Liu, L. Zhang, Y. Huang, et al., Epsin1-mediated exosomal sorting of Dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy, Mol. Ther. 31 (2023) 1451-1467.
    [29]
    D. Ochoa, A. Hercules, M. Carmona, et al., Open Targets Platform: Supporting systematic drug-target identification and prioritisation, Nucleic Acids Res. 49 (2021) D1302-D1310.
    [30]
    Y. Hu, W. Tang, W. Liu, et al., Astragaloside IV alleviates renal tubular epithelial-mesenchymal transition via CX3CL1-RAF/MEK/ERK signaling pathway in diabetic kidney disease, Drug Des. Devel. Ther. 16 (2022) 1605-1620.
    [31]
    Y. Segev, D. Landau, M. Marbach, et al., Renal hypertrophy in hyperglycemic non-obese diabetic mice is associated with persistent renal accumulation of insulin-like growth factor I, J. Am. Soc. Nephrol. 8 (1997) 436-444.
    [32]
    R. Hjortebjerg, L. Tarnow, A. Jorsal, et al., IGFBP-4 fragments as markers of cardiovascular mortality in type 1 diabetes patients with and without nephropathy, J. Clin. Endocrinol. Metab. 100 (2015) 3032-3040.
    [33]
    D. Kiepe, T. Ulinski, D.R. Powell, et al., Differential effects of insulin-like growth factor binding proteins-1, -2, -3, and-6 on cultured growth plate chondrocytes, Kidney Int. 62 (2002) 1591-1600.
    [34]
    A.C. Lay, L.J. Hale, H. Stowell-Connolly, et al., IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes, Diabetologia 64 (2021) 1690-1702.
    [35]
    Z. Chen, L. Ding, W. Yang, et al., Hepatic activation of the FAM3C-HSF1-CaM pathway attenuates hyperglycemia of obese diabetic mice, Diabetes 66 (2017) 1185-1197.
    [36]
    X. Zhang, W. Yang, J. Wang, et al., FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes, Metabolism 81 (2018) 71-82.
    [37]
    G. Ruozi, F. Bortolotti, A. Mura, et al., Cardioprotective factors against myocardial infarction selected in vivo from an AAV secretome library, Sci. Transl. Med. 14 (2022), eabo0699.
    [38]
    H. Kobayashi, H.C. Looker, E. Satake, et al., Neuroblastoma suppressor of tumorigenicity 1 is a circulating protein associated with progression to end-stage kidney disease in diabetes, Sci. Transl. Med. 14 (2022), eabj2109.
    [39]
    A. Ferrer-Martinez, A. Felipe, P. Barcelo, et al., Effects of cyclosporine A on Na, K-ATPase expression in the renal epithelial cell line NBL-1, Kidney Int. 50 (1996) 1483-1489.
    [40]
    R.L. Gurung, H. Zheng, H.W.L. Koh, et al., Plasma proteomics of diabetic kidney disease among Asians with younger-onset type 2 diabetes, J. Clin. Endocrinol. Metab. 110 (2025) e239-e248.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (292) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return