| Citation: | Junyu Zhang, Jie Peng, Chaolun Yu, Yu Ning, Wenhui Lin, Mingxing Ni, Qiang Xie, Chuan Yang, Huiying Liang, Miao Lin. Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference[J]. Journal of Pharmaceutical Analysis, 2025, 15(8): 101265. doi: 10.1016/j.jpha.2025.101265 |
| [1] |
GBD 2021 Diabetes Collaborators, Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021, Lancet 402 (2023) 203-234.
|
| [2] |
N.W.S. Chew, C.H. Ng, D.J.H. Tan, et al., The global burden of metabolic disease: Data from 2000 to 2019, Cell Metab. 35 (2023) 414-428.e3.
|
| [3] |
I.H. de Boer, K. Khunti, T. Sadusky, et al., Diabetes management in chronic kidney disease: A consensus report by the American diabetes association (ADA) and kidney disease: Improving global outcomes (KDIGO), Diabetes Care 45 (2022) 3075-3090.
|
| [4] |
I. Tomita, S. Kume, S. Sugahara, et al., SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition, Cell Metab. 32 (2020) 404-419.e6.
|
| [5] |
S.D. Wiviott, I. Raz, M.P. Bonaca, et al., Dapagliflozin and cardiovascular outcomes in type 2 diabetes, N. Engl. J. Med. 380 (2019) 347-357.
|
| [6] |
X. Liu, C. Xu, L. Xu, et al., Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway, Metabolism 111 (2020), 154334.
|
| [7] |
J.R. Lundgren, C. Janus, S.B.K. Jensen, et al., Healthy weight loss maintenance with exercise, liraglutide, or both combined, N. Engl. J. Med. 384 (2021) 1719-1730.
|
| [8] |
V. Perkovic, K.R. Tuttle, P. Rossing, et al., Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes, N. Engl. J. Med. 391 (2024) 109-121.
|
| [9] |
N. Sattar, M.M.Y. Lee, S.L. Kristensen, et al., Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials, Lancet Diabetes Endocrinol. 9 (2021) 653-662.
|
| [10] |
S.P. Marso, S.C. Bain, A. Consoli, et al., Semaglutide and cardiovascular outcomes in patients with type 2 diabetes, N. Engl. J. Med. 375 (2016) 1834-1844.
|
| [11] |
Y. Mori, A.K. Ajay, J.H. Chang, et al., KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease, Cell Metab. 33 (2021) 1042-1061.e7.
|
| [12] |
W. Jun, H. Makino, Innate immunity in diabetes and diabetic nephropathy, Nat. Rev. Nephrol. 12 (2016) 13-26.
|
| [13] |
K. Suhre, M.I. McCarthy, J.M. Schwenk, Genetics meets proteomics: Perspectives for large population-based studies, Nat. Rev. Genet. 22 (2021) 19-37.
|
| [14] |
M.V. Holmes, T.G. Richardson, B.A. Ference, et al., Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development, Nat. Rev. Cardiol. 18 (2021) 435-453.
|
| [15] |
G.H. Eldjarn, E. Ferkingstad, S.H. Lund, et al., Large-scale plasma proteomics comparisons through genetics and disease associations, Nature 622 (2023) 348-358.
|
| [16] |
C. Bycroft, C. Freeman, D. Petkova, et al., The UK Biobank resource with deep phenotyping and genomic data, Nature 562 (2018) 203-209.
|
| [17] |
M.I. Kurki, J. Karjalainen, P. Palta, et al., FinnGen provides genetic insights from a well-phenotyped isolated population, Nature 613 (2023) 508-518.
|
| [18] |
W. Li, UK Biobank pharma proteomics resource, Nat. Genet. 55 (2023), 1781.
|
| [19] |
B.B. Sun, J. Chiou, M. Traylor, et al., Plasma proteomic associations with genetics and health in the UK Biobank, Nature 622 (2023) 329-338.
|
| [20] |
A.S. Jannot, G. Ehret, T. Perneger, P < 5 × 10 (-8) has emerged as a standard of statistical significance for genome-wide association studies, J. Clin. Epidemiol. 68 (2015) 460-465.
|
| [21] |
F.P. Hartwig, N.M. Davies, G. Hemani, et al., Two-sample Mendelian randomization: Avoiding the downsides of a powerful, widely applicable but potentially fallible technique, Int. J. Epidemiol. 45 (2016) 1717-1726.
|
| [22] |
B. Xu, J. Sheng, Y. You, et al., Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy, Metabolism 103 (2020), 154013.
|
| [23] |
F. Barutta, A. Corbelli, R. Mastrocola, et al., Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy, Diabetes 59 (2010) 1046-1054.
|
| [24] |
K. Huang, P. Chandak, Q. Wang, et al., A foundation model for clinician-centered drug repurposing, Nat. Med. 30 (2024) 3601-3613.
|
| [25] |
E. Gobeil, J. Bourgault, P.L. Mitchell, et al., Genetic inhibition of angiopoietin-like protein-3, lipids, and cardiometabolic risk, Eur. Heart J. 45 (2024) 707-721.
|
| [26] |
J. Cheng, G. Novati, J. Pan, et al., Accurate proteome-wide missense variant effect prediction with AlphaMissense, Science 381 (2023), eadg7492.
|
| [27] |
J.T. Ramo, S.J. Jurgens, S. Kany, et al., Rare genetic variants in LDLR, APOB, and PCSK9 are associated with aortic stenosis, Circulation 150 (2024) 1767-1780.
|
| [28] |
J. Liu, L. Zhang, Y. Huang, et al., Epsin1-mediated exosomal sorting of Dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy, Mol. Ther. 31 (2023) 1451-1467.
|
| [29] |
D. Ochoa, A. Hercules, M. Carmona, et al., Open Targets Platform: Supporting systematic drug-target identification and prioritisation, Nucleic Acids Res. 49 (2021) D1302-D1310.
|
| [30] |
Y. Hu, W. Tang, W. Liu, et al., Astragaloside IV alleviates renal tubular epithelial-mesenchymal transition via CX3CL1-RAF/MEK/ERK signaling pathway in diabetic kidney disease, Drug Des. Devel. Ther. 16 (2022) 1605-1620.
|
| [31] |
Y. Segev, D. Landau, M. Marbach, et al., Renal hypertrophy in hyperglycemic non-obese diabetic mice is associated with persistent renal accumulation of insulin-like growth factor I, J. Am. Soc. Nephrol. 8 (1997) 436-444.
|
| [32] |
R. Hjortebjerg, L. Tarnow, A. Jorsal, et al., IGFBP-4 fragments as markers of cardiovascular mortality in type 1 diabetes patients with and without nephropathy, J. Clin. Endocrinol. Metab. 100 (2015) 3032-3040.
|
| [33] |
D. Kiepe, T. Ulinski, D.R. Powell, et al., Differential effects of insulin-like growth factor binding proteins-1, -2, -3, and-6 on cultured growth plate chondrocytes, Kidney Int. 62 (2002) 1591-1600.
|
| [34] |
A.C. Lay, L.J. Hale, H. Stowell-Connolly, et al., IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes, Diabetologia 64 (2021) 1690-1702.
|
| [35] |
Z. Chen, L. Ding, W. Yang, et al., Hepatic activation of the FAM3C-HSF1-CaM pathway attenuates hyperglycemia of obese diabetic mice, Diabetes 66 (2017) 1185-1197.
|
| [36] |
X. Zhang, W. Yang, J. Wang, et al., FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes, Metabolism 81 (2018) 71-82.
|
| [37] |
G. Ruozi, F. Bortolotti, A. Mura, et al., Cardioprotective factors against myocardial infarction selected in vivo from an AAV secretome library, Sci. Transl. Med. 14 (2022), eabo0699.
|
| [38] |
H. Kobayashi, H.C. Looker, E. Satake, et al., Neuroblastoma suppressor of tumorigenicity 1 is a circulating protein associated with progression to end-stage kidney disease in diabetes, Sci. Transl. Med. 14 (2022), eabj2109.
|
| [39] |
A. Ferrer-Martinez, A. Felipe, P. Barcelo, et al., Effects of cyclosporine A on Na, K-ATPase expression in the renal epithelial cell line NBL-1, Kidney Int. 50 (1996) 1483-1489.
|
| [40] |
R.L. Gurung, H. Zheng, H.W.L. Koh, et al., Plasma proteomics of diabetic kidney disease among Asians with younger-onset type 2 diabetes, J. Clin. Endocrinol. Metab. 110 (2025) e239-e248.
|