Volume 15 Issue 3
Apr.  2025
Turn off MathJax
Article Contents
Xintong Lyu, Yangyang Yu, Yuanjun Jiang, Zhiyuan Li, Qiao Qiao. The role of mitochondria transfer in cancer biological behavior, the immune system and therapeutic resistance[J]. Journal of Pharmaceutical Analysis, 2025, 15(3): 101141. doi: 10.1016/j.jpha.2024.101141
Citation: Xintong Lyu, Yangyang Yu, Yuanjun Jiang, Zhiyuan Li, Qiao Qiao. The role of mitochondria transfer in cancer biological behavior, the immune system and therapeutic resistance[J]. Journal of Pharmaceutical Analysis, 2025, 15(3): 101141. doi: 10.1016/j.jpha.2024.101141

The role of mitochondria transfer in cancer biological behavior, the immune system and therapeutic resistance

doi: 10.1016/j.jpha.2024.101141
Funds:

This study was supported by the National Natural Science Foundation of China (Grant No.: 82272749) and the Natural Science Foundation of Liaoning Province, China (Grant No.: 2022-MS-190).

  • Received Date: Jun. 21, 2024
  • Accepted Date: Nov. 03, 2024
  • Rev Recd Date: Oct. 14, 2024
  • Publish Date: Nov. 08, 2024
  • Mitochondria play a crucial role as organelles, managing several physiological processes such as redox balance, cell metabolism, and energy synthesis. Initially, the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria. Recent scholarly works, however, suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer. This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms. Specifically, we review the role of mitochondria transfer in regulating cellular metabolism restoration, excess reactive oxygen species (ROS) generation, proliferation, invasion, metastasis, mitophagy activation, mitochondrial DNA (mtDNA) inheritance, immune system modulation and therapeutic resistance in cancer. Additionally, we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.

  • loading
  • [1]
    F.J. Bock, S.W.G. Tait, Mitochondria as multifaceted regulators of cell death, Nat. Rev. Mol. Cell Biol. 21 (2020) 85-100.
    [2]
    M. Giacomello, A. Pyakurel, C. Glytsou, et al., The cell biology of mitochondrial membrane dynamics, Nat. Rev. Mol. Cell Biol. 21 (2020) 204-224.
    [3]
    P. Mishra, D.C. Chan, Mitochondrial dynamics and inheritance during cell division, development and disease, Nat. Rev. Mol. Cell Biol. 15 (2014) 634-646.
    [4]
    S. Valdebenito, S. Malik, R. Luu, et al., Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions, Sci. Rep. 11 (2021), 14556.
    [5]
    T. Saha, C. Dash, R. Jayabalan, et al., Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells, Nat. Nanotechnol. 17 (2022) 98-106.
    [6]
    A.M. Roushandeh, K. Tomita, Y. Kuwahara, et al., Transfer of healthy fibroblast-derived mitochondria to HeLa ρ0 and SAS ρ0 cells recovers the proliferation capabilities of these cancer cells under conventional culture medium, but increase their sensitivity to cisplatin-induced apoptotic death, Mol. Biol. Rep. 47 (2020) 4401-4411.
    [7]
    C. Sun, X. Liu, B. Wang, et al., Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity, Theranostics 9 (2019) 3595-3607.
    [8]
    LF. Dong, J. Kovarova, M. Bajzikova, et al., Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells, Elife 6 (2017), e22187.
    [9]
    C. Salaud, A. Alvarez-Arenas, F. Geraldo, et al., Mitochondria transfer from tumor-activated stromal cells (TASC) to primary Glioblastoma cells, Biochem. Biophys. Res. Commun. 533 (2020) 139-147.
    [10]
    L. Ippolito, A. Morandi, M.L. Taddei, et al., Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer, Oncogene 38 (2019) 5339-5355.
    [11]
    C.U. Kidwell, J.R. Casalini, S. Pradeep, et al., Transferred mitochondria accumulate reactive oxygen species, promoting proliferation, Elife 12 (2023), e85494.
    [12]
    D.C. Watson, D. Bayik, S. Storevik, et al., GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity, Nat. Cancer 4 (2023) 648-664.
    [13]
    X. Wang, H.H. Gerdes, Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells, Cell Death Differ. 22 (2015) 1181-1191.
    [14]
    O. Warburg, On the origin of cancer cells, Science 123 (1956) 309-314.
    [15]
    N.N. Pavlova, C.B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metab. 23 (2016) 27-47.
    [16]
    L. Simone, D.L. Capobianco, F. Di Palma, et al., GFAP serves as a structural element of tunneling nanotubes between glioblastoma cells and could play a role in the intercellular transfer of mitochondria, Front. Cell Dev. Biol. 11 (2023), 1221671.
    [17]
    J. Nakhle, K. Khattar, T. Ozkan, et al., Mitochondria transfer from mesenchymal stem cells confers chemoresistance to glioblastoma stem cells through metabolic rewiring, Cancer Res. Commun. 3 (2023) 1041-1056.
    [18]
    J.L. Spees, S.D. Olson, M.J. Whitney, et al., Mitochondrial transfer between cells can rescue aerobic respiration, Proc. Natl. Acad. Sci. USA 103 (2006) 1283-1288.
    [19]
    D. Sacks, B. Baxter, B.C.V. Campbell, et al., Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke: From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO), J. Vasc. Interv. Radiol. 29 (2018) 441-453.
    [20]
    M. Kheirandish-Rostami, M.H. Roudkenar, A. Jahanian-Najafabadi, et al., Mitochondrial characteristics contribute to proliferation and migration potency of MDA-MB-231 cancer cells and their response to cisplatin treatment, Life Sci. 244 (2020), 117339.
    [21]
    P.E. Porporato, N. Filigheddu, J.M.B. Pedro, et al., Mitochondrial metabolism and cancer, Cell Res. 28 (2018) 265-280.
    [22]
    P. Sharma, H. Sampath, Mitochondrial DNA integrity: Role in health and disease, Cells 8 (2019), 100.
    [23]
    B. Halliwell, Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life, Plant Physiol. 141 (2006) 312-322.
    [24]
    X. Jiang, X. Wang, Cytochrome C-mediated apoptosis, Annu. Rev. Biochem. 73 (2004) 87-106.
    [25]
    A. Fu, Y. Hou, Z. Yu, et al., Healthy mitochondria inhibit the metastatic melanoma in lungs, Int. J. Biol. Sci. 15 (2019) 2707-2718.
    [26]
    W. Zhou, Z. Zhao, Z. Yu, et al., Mitochondrial transplantation therapy inhibits the proliferation of malignant hepatocellular carcinoma and its mechanism, Mitochondrion 65 (2022) 11-22.
    [27]
    J.C. Chang, H.S. Chang, Y.C. Wu, et al., Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer, J. Exp. Clin. Cancer Res. 38 (2019), 30.
    [28]
    J. Wang, X. Liu, Y. Qiu, et al., Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells, J. Hematol. Oncol. 11 (2018), 11.
    [29]
    Y. Takashi, K. Tomita, Y. Kuwahara, et al., Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis, Free Radic. Biol. Med. 161 (2020) 60-70.
    [30]
    B. Nzigou Mombo, S. Gerbal-Chaloin, A. Bokus, et al., MitoCeption: Transferring isolated human MSC mitochondria to glioblastoma stem cells, J. Vis. Exp. (2017), 55245.
    [31]
    W. Zhang, H. Zhou, H. Li, et al., Cancer cells reprogram to metastatic state through the acquisition of platelet mitochondria, Cell Rep. 42 (2023), 113147.
    [32]
    X. Chang, Y. Li, C. Cai, et al., Mitochondrial quality control mechanisms as molecular targets in diabetic heart, Metabolism 137 (2022), 155313.
    [33]
    X. Chang, S. Toan, R. Li, et al., Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance, EBioMedicine 84 (2022), 104260.
    [34]
    T. Jiang, T. Liu, X. Deng, et al., Adiponectin ameliorates lung ischemia-reperfusion injury through SIRT1-PINK1 signaling-mediated mitophagy in type 2 diabetic rats, Respir. Res. 22 (2021), 258.
    [35]
    A. Picca, J. Faitg, J. Auwerx, et al., Mitophagy in human health, ageing and disease, Nat. Metab. 5 (2023) 2047-2061.
    [36]
    T. Hao, J. Yu, Z. Wu, et al., Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion, Nat. Commun. 14 (2023), 4105.
    [37]
    R.J. Youle, A.M. van der Bliek, Mitochondrial fission, fusion, and stress, Science 337 (2012) 1062-1065.
    [38]
    J. Zhao, J. Zhang, M. Yu, et al., Mitochondrial dynamics regulates migration and invasion of breast cancer cells, Oncogene 32 (2013) 4814-4824.
    [39]
    S. Srinivasan, M. Guha, A. Kashina, et al., Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection, Biochim. Biophys. Acta Bioenerg. 1858 (2017) 602-614.
    [40]
    T.G. Biel, V. Ashutosh Rao, Mitochondrial dysfunction activates lysosomal-dependent mitophagy selectively in cancer cells, Oncotarget 9 (2017) 995-1011.
    [41]
    R. Lampinen, I. Belaya, L. Saveleva, et al., Neuron-astrocyte transmitophagy is altered in Alzheimer’s disease, Neurobiol. Dis. 170 (2022), 105753.
    [42]
    D.G. Phinney, M. Di Giuseppe, J. Njah, et al., Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs, Nat. Commun. 6 (2015), 8472.
    [43]
    M. Kim, M. Mahmood, E. Reznik, et al., Mitochondrial DNA is a major source of driver mutations in cancer, Trends Cancer 8 (2022) 1046-1059.
    [44]
    C.Y. Chung, G.E. Valdebenito, A.R. Chacko, et al., Rewiring cell signalling pathways in pathogenic mtDNA mutations, Trends Cell Biol. 32 (2022) 391-405.
    [45]
    A.S. Tan, J.W. Baty, LF. Dong, et al., Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA, Cell Metab. 21 (2015) 81-94.
    [46]
    O.M. Russell, G.S. Gorman, R.N. Lightowlers, et al., Mitochondrial diseases: Hope for the future, Cell 181 (2020) 168-188.
    [47]
    N. Keshavan, S. Rahman, Natural history of mitochondrial disorders: A systematic review, Essays Biochem. 62 (2018) 423-442.
    [48]
    A. Suomalainen, B.J. Battersby, Mitochondrial diseases: The contribution of organelle stress responses to pathology, Nat. Rev. Mol. Cell Biol. 19 (2018) 77-92.
    [49]
    K. Tomita, Y. Kuwahara, K. Igarashi, et al., Mitochondrial dysfunction in diseases, longevity, and treatment resistance: Tuning mitochondria function as a therapeutic strategy, Genes (Basel) 12 (2021), 1348.
    [50]
    A. Boveris, B. Chance, The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochem. J. 134 (1973) 707-716.
    [51]
    N. Zamzami, P. Marchetti, M. Castedo, et al., Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo, J. Exp. Med. 181 (1995) 1661-1672.
    [52]
    M. Ott, V. Gogvadze, S. Orrenius, et al., Mitochondria, oxidative stress and cell death, Apoptosis 12 (2007) 913-922.
    [53]
    D.C. Wallace, Mitochondria and cancer, Nat. Rev. Cancer 12 (2012) 685-698.
    [54]
    J. St-Pierre, J.A. Buckingham, S.J. Roebuck, et al., Topology of superoxide production from different sites in the mitochondrial electron transport chain, J. Biol. Chem. 277 (2002) 44784-44790.
    [55]
    Y. Yuan, W. Wang, H. Li, et al., Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma, BMC Cancer 15 (2015), 346.
    [56]
    C. Calabrese, L. Iommarini, I. Kurelac, et al., Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells, Cancer Metab. 1 (2013), 11.
    [57]
    S. Dasgupta, M.O. Hoque, S. Upadhyay, et al., Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer, Cancer Res. 68 (2008) 700-706.
    [58]
    J.A. Petros, A.K. Baumann, E. Ruiz-Pesini, et al., mtDNA mutations increase tumorigenicity in prostate cancer, Proc. Natl. Acad. Sci. USA 102 (2005) 719-724.
    [59]
    Y. Yuan, Y.S. Ju, Y. Kim, et al., Comprehensive molecular characterization of mitochondrial genomes in human cancers, Nat. Genet. 52 (2020) 342-352.
    [60]
    Y. Shidara, K. Yamagata, T. Kanamori, et al., Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis, Cancer Res. 65 (2005) 1655-1663.
    [61]
    M. Philip, A. Schietinger, CD8+ T cell differentiation and dysfunction in cancer, Nat. Rev. Immunol. 22 (2022) 209-223.
    [62]
    K.E. Hellstrom, I. Hellstrom, From the hellstrom paradox toward cancer cure, Prog. Mol. Biol. Transl. Sci. 164 (2019) 1-24.
    [63]
    P. Luz-Crawford, J. Hernandez, F. Djouad, et al., Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer, Stem Cell Res. Ther. 10 (2019), 232.
    [64]
    J. Zheng, P.L. Chan, Y. Liu, et al., ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner, PLoS One 8 (2013), e82203.
    [65]
    J.S. Do, D. Zwick, J.D. Kenyon, et al., Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability, Sci. Rep. 11 (2021), 10676.
    [66]
    K. Piekarska, Z. Urban-Wojciuk, M. Kurkowiak, et al., Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity, Nat. Commun. 13 (2022), 856.
    [67]
    U.H. Beier, A. Angelin, T. Akimova, Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival, FASEB J. 29 (2015) 2315-2326.
    [68]
    A.C. Court, A. Le-Gatt, P. Luz-Crawford, et al., Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response, EMBO Rep. 21 (2020), e48052.
    [69]
    M.V. Jackson, A.D. Krasnodembskaya, Analysis of mitochondrial transfer in direct co-cultures of human monocyte-derived macrophages (MDM) and mesenchymal stem cells (MSC), Bio. Protoc. 7 (2017), e2255.
    [70]
    M.V. Jackson, T.J. Morrison, D.F. Doherty, et al., Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS, Stem Cells 34 (2016) 2210-2223.
    [71]
    M. Osswald, E. Jung, F. Sahm, et al., Brain tumour cells interconnect to a functional and resistant network, Nature 528 (2015) 93-98.
    [72]
    S. Desir, E.L. Dickson, R.I. Vogel, et al., Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells, Oncotarget 7 (2016) 43150-43161.
    [73]
    S. Dalva-Aydemir, R. Bajpai, M. Martinez, et al., Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin, Clin. Cancer Res. 21 (2015) 1161-1171.
    [74]
    T. Farge, E. Saland, F. de Toni, et al., Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism, Cancer Discov. 7 (2017) 716-735.
    [75]
    R. Burt, A. Dey, S. Aref, et al., Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress, Blood 134 (2019) 1415-1429.
    [76]
    P. Sansone, C. Savini, I. Kurelac, et al., Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer, Proc. Natl. Acad. Sci. USA 114 (2017) E9066-E9075.
    [77]
    A. Cruz-Gregorio, A.K. Aranda-Rivera, I. Amador-Martinez, et al., Mitochondrial transplantation strategies in multifaceted induction of cancer cell death, Life Sci. 332 (2023), 122098.
    [78]
    X. Liu, Y. Zhang, X. Yang, et al., Mitochondrial transplantation inhibits cholangiocarcinoma cells growth by balancing oxidative stress tolerance through PTEN/PI3K/AKT signaling pathway, Tissue Cell 85 (2023), 102243.
    [79]
    Z. Yu, Y. Hou, W. Zhou, et al., The effect of mitochondrial transplantation therapy from different gender on inhibiting cell proliferation of malignant melanoma, Int. J. Biol. Sci. 17 (2021) 2021-2033.
    [80]
    J.C. Chang, H.S. Chang, Y.C. Wu, et al., Antitumor actions of intratumoral delivery of membrane-fused mitochondria in a mouse model of triple-negative breast cancers, Onco. Targets Ther. 13 (2020) 5241-5255.
    [81]
    R. Moschoi, V. Imbert, M. Nebout, et al., Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy, Blood 128 (2016) 253-264.
    [82]
    S. Wang, B. Liu, J. Huang, et al., Cell-in-cell promotes lung cancer malignancy by enhancing glucose metabolism through mitochondria transfer, Exp. Cell Res. 429 (2023), 113665.
    [83]
    J. Pasquier, B.S. Guerrouahen, H. Al Thawadi, et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, J. Transl. Med. 11 (2013), 94.
    [84]
    D. Diaz-Carballo, J. Klein, A.H. Acikelli, et al., Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells, Oncotarget 8 (2017) 95945-95964.
    [85]
    S.H. Kim, M.J. Kim, M. Lim, et al., Enhancement of the anticancer ability of natural killer cells through allogeneic mitochondrial transfer, Cancers (Basel) 15 (2023), 3225.
    [86]
    F. Baharvand, M. Habibi Roudkenar, Z. Pourmohammadi-Bejarpasi, et al., Safety and efficacy of platelet-derived mitochondrial transplantation in ischaemic heart disease, Int. J. Cardiol. 410 (2024), 132227.
    [87]
    A.M. Roushandeh, Y. Kuwahara, M.H. Roudkenar, Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases, Cytotechnology 71 (2019) 647-663.
    [88]
    A. Guariento, I.P. Doulamis, T. Duignan, et al., Mitochondrial transplantation for myocardial protection in ex-situ-perfused hearts donated after circulatory death, J. Heart Lung Transplant. 39 (2020) 1279-1288.
    [89]
    L.X. Zampieri, C. Silva-Almeida, J.D. Rondeau, et al., Mitochondrial transfer in cancer: A comprehensive review, Int. J. Mol. Sci. 22 (2021), 3245.
    [90]
    A. Mohammadalipour, S.P. Dumbali, P.L. Wenzel, Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy, Front. Cell Dev. Biol. 8 (2020), 603292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (145) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return