Volume 15 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Fu'an Xie, Yujia Niu, Xiaobing Chen, Xu Kong, Guangting Yan, Aobo Zhuang, Xi Li, Lanlan Lian, Dongmei Qin, Quan Zhang, Ruyi Zhang, Kunrong Yang, Xiaogang Xia, Kun Chen, Mengmeng Xiao, Chunkang Yang, Ting Wu, Ye Shen, Chundong Yu, Chenghua Luo, Shu-Hai Lin, Wengang Li. Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101068. doi: 10.1016/j.jpha.2024.101068
Citation: Fu'an Xie, Yujia Niu, Xiaobing Chen, Xu Kong, Guangting Yan, Aobo Zhuang, Xi Li, Lanlan Lian, Dongmei Qin, Quan Zhang, Ruyi Zhang, Kunrong Yang, Xiaogang Xia, Kun Chen, Mengmeng Xiao, Chunkang Yang, Ting Wu, Ye Shen, Chundong Yu, Chenghua Luo, Shu-Hai Lin, Wengang Li. Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101068. doi: 10.1016/j.jpha.2024.101068

Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione

doi: 10.1016/j.jpha.2024.101068
Funds:

We thank Haiping Zheng at the Central laboratory, School of Medicine, Xiamen University, China for providing scientific and technical support. This work was supported by grants from the National Natural Science Foundation of China (Grant NOs.: 82272935, 91957120 and 21974114), the Postdoctoral Fellowship Program of CPSF (Program No.: GZC20240901), the Xiamen Medical Industry Combined Guidance Project, China (Project No.: 3502Z20244ZD2022), the Scientific Research Foundation for Advanced Talents, Xiang'an Hospital of Xiamen University, China (Grant No.: PM20180917008), the Fundamental Research Funds for the Central Universities, China (Grant No.: 20720210001) and Major Science and Technology Special Project of Fujian Province, China (Project No.: 2022YZ036012), Joint Laboratory of School of Medicine, Xiamen University-Shanghai Jiangxia Blood Technology Co., Ltd., China (Grant No.: XDHT2020010C), and Joint Research Center of School of Medicine, Xiamen University-Jiangsu Charity Biotech Co., Ltd., China (Grant No.: 20233160C0002).

  • Received Date: Mar. 19, 2024
  • Accepted Date: Aug. 03, 2024
  • Rev Recd Date: Jul. 18, 2024
  • Publish Date: Aug. 22, 2024
  • Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.

  • loading
  • [1]
    W.A. Alrefai, R.K. Gill, Bile acid transporters: Structure, function, regulation and pathophysiological implications, Pharm. Res. 24 (2007) 1803-1823.
    [2]
    J.L. Thistle, Ursodeoxycholic acid treatment of gallstones, Semin Liver Dis. 3 (1983) 146-156.
    [3]
    A. Pares, L. Caballeria, J. Rodes, et al., Long-term effects of ursodeoxycholic acid in primary biliary cirrhosis: results of a double-blind controlled multicentric trial. UDCA-Cooperative Group from the Spanish Association for the Study of the Liver, J. Hepatol. 32 (2000) 561-566.
    [4]
    T. Brevini, M. Maes, G.J. Webb, et al., FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2, Nature. 615 (2023) 134-142.
    [5]
    L. Pang, X. Zhao, W. Liu, et al., Anticancer effect of ursodeoxycholic acid in human oral squamous carcinoma HSC-3 cells through the caspases, Nutrients 7 (2015) 3200-3218.
    [6]
    F. Wang, C. Qin, Y. Li, et al., Ursodeoxycholic acid induces autophagy via LC3B to suppress hepatocellular carcinoma in vivo and in vitro, Int. J. Clin. Exp. Pathol. 10 (2017) 11805-11813.
    [7]
    S.C. Lim, H.Q. Duong, J.E. Choi, et al., Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells, Carcinogenesis. 32 (2011) 723-731.
    [8]
    J.F. Goossens, C. Bailly, Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy, Pharmacol. Ther. 203 (2019), 107396.
    [9]
    M.H. Stipanuk, J.E. Dominy, Jr. Lee, et al., Mammalian cysteine metabolism: New insights into regulation of cysteine metabolism, J. Nutr. 136 (2006) 1652S-1659S.
    [10]
    A. Meister, Glutathione metabolism, Methods. Enzymol. 251 (1995) 3-7.
    [11]
    W.S. Yang, B.R. Stockwell, Ferroptosis: Death by lipid peroxidation, Trends Cell Biol. 26 (2016) 165-176.
    [12]
    C.S. Shin, P. Mishra, J.D. Watrous, et al., The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility, Nat. Commun. 8 (2017), 15074.
    [13]
    K. Otsubo, K. Nosaki, C.K. Imamura, et al., Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non-small-cell lung cancer, Cancer Sci. 108 (2017) 1843-1849.
    [14]
    K. Hu, K. Li, J. Lv, et al., Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma, J. Clin. Invest. 130 (2020) 1752-1766.
    [15]
    S. Dolma, S.L. Lessnick, W.C. Hahn, et al., Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells, Cancer Cell 3 (2003) 285-296.
    [16]
    M. Sato, K. Onuma, M. Domon, et al., Loss of the cystine/glutamate antiporter in melanoma abrogates tumor metastasis and markedly increases survival rates of mice, Int. J. Cancer 147 (2020) 3224-3235.
    [17]
    J.L. Roh, E.H. Kim, H. Jang, et al., Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition, Free. Radic. Biol. Med. 104 (2017) 1-9.
    [18]
    G. Gatta, J.M. van der Zwan, P.G. Casali, et al., Rare cancers are not so rare: The rare cancer burden in Europe, Eur. J. Cancer 47 (2011) 2493-2511.
    [19]
    C. Messiou, E. Moskovic, D. Vanel, et al., Primary retroperitoneal soft tissue sarcoma: Imaging appearances, pitfalls and diagnostic algorithm, Eur. J. Surg. Oncol. 43 (2017) 1191-1198.
    [20]
    I. Judson, J. Verweij, H. Gelderblom, et al., Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: A randomised controlled phase 3 trial, Lancet Oncol. 15 (2014) 415-423.
    [21]
    X. Garcia-Del-Muro, A. Lopez-Pousa, J. Maurel, et al., Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma: A Spanish Group for Research on Sarcomas study, J. Clin. Oncol. 29 (2011) 2528-2533.
    [22]
    C.M. Fletcher, The evolving classification of soft tissue tumours: An update based on the new 2013 WHO classification, Histopathology 64 (2014) 2-11.
    [23]
    Y. Shen, C. Lu, Z. Song, et al., Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation, Nat. Commun. 13 (2022), 3419.
    [24]
    R.E. Poupon, B. Balkau, E. Eschwege, et al., A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group, N. Engl. J. Med. 324 (1991) 1548-1554.
    [25]
    E. Ros, S. Navarro, C. Bru, et al., Ursodeoxycholic acid treatment of primary hepatolithiasis in Caroli’s syndrome, Lancet 342 (1993) 404-406.
    [26]
    S.E. Jantti, M. Kivilompolo, L. Ohrnberg, et al., Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem. 406 (2014) 7799-7815.
    [27]
    J.D. Young, INCA: A computational platform for isotopically non-stationary metabolic flux analysis, Bioinformatics 30 (2014) 1333-1335.
    [28]
    A. Roda, G. Cappelleri, R. Aldini, et al., Quantitative aspects of the interaction of bile acids with human serum albumin, J. Lipid Res. 23 (1982) 490-495.
    [29]
    T.H. Murphy, M. Miyamoto, A. Sastre, et al., Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress, Neuron 2 (1989) 1547-1558.
    [30]
    W. Guo, K. Li, B. Sun, et al., Dysregulated glutamate transporter SLC1A1 oropels cystine uptake via Xc(-) for glutathione synthesis in lung cancer, Cancer Res. 81 (2021) 552-566.
    [31]
    S. Basu, T. Barnoud, C.P. Kung, et al., The African-specific S47 polymorphism of p53 alters chemosensitivity, Cell Cycle 15 (2016) 2557-2560.
    [32]
    Y. Zhang, R.V. Swanda, L. Nie, et al., mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation, Nat. Commun. 12 (2021), 1589.
    [33]
    A.P.A. Janssen, J.M.A. van Hengst, O.J.M. Bequignon, et al., Structure kinetics relationships and molecular dynamics show crucial role for heterocycle leaving group in irreversible diacylglycerol lipase inhibitors, J. Med. Chem. 62 (2019) 7910-7922.
    [34]
    M.Y. Cisse, S. Pyrdziak, N. Firmin, et al., Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma, Sci. Transl. Med. 12 (2020), eaay2163.
    [35]
    A.P. Dei Tos Liposarcomas: Diagnostic pitfalls and new insights, Histopathology 64 (2014) 38-52.
    [36]
    J. Lu, D. Wood, E. Ingley, et al., Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma, Mol. Biol. Rep. 48 (2021) 3637-3647.
    [37]
    F. Xie, Y. Niu, L. Lian, et al., Multi-omics joint analysis revealed the metabolic profile of retroperitoneal liposarcoma, Front. Med. 18 (2024) 375-393.
    [38]
    K. Thway, Well-differentiated liposarcoma and dedifferentiated liposarcoma: An updated review, Semin. Diagn. Pathol. 36 (2019) 112-121.
    [39]
    A. Laroche-Clary, V. Chaire, M.P. Algeo, et al., Combined targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas, J. Hematol. Oncol. 10 (2017), 123.
    [40]
    B.R. Stockwell, Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications, Cell 185 (2022) 2401-2421.
    [41]
    D. Shin, E.H. Kim, J. Lee, et al., Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer, Free Radic. Biol. Med. 129 (2018) 454-462.
    [42]
    A. Okazaki, P.A. Gameiro, D. Christodoulou, et al., Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers, J. Clin. Invest. 127 (2017) 1631-1645.
    [43]
    B. Jiang, J. Zhang, G. Zhao, et al., Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis, Mol. Cell 82 (2022) 1821-1835.e6.
    [44]
    B. Liu, Y. Chen, D.K. St Clair, ROS and p53: A versatile partnership, Free Radic. Biol. Med. 44 (2008) 1529-1535.
    [45]
    B. Vu, P. Wovkulich, G. Pizzolato, et al., Discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development, ACS Med. Chem. Lett. 4 (2013) 466-469.
    [46]
    C. Tovar, J. Rosinski, Z. Filipovic, et al., Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy, Proc. Natl. Acad. Sci. USA 103 (2006) 1888-1893.
    [47]
    G. Guney Eskiler, A. Deveci Ozkan. A. Haciefendi, et al., Mechanisms of abemaciclib, a CDK4/6 inhibitor, induced apoptotic cell death in prostate cancer cells in vitro, Transl. Oncol. 15 (2022), 101243.
    [48]
    X. Zhu, Z. Fu, K. Dutchak, et al., Cotargeting CDK4/6 and BRD4 promotes senescence and ferroptosis sensitivity in cancer, Cancer Res. 84 (2024) 1333-1351.
    [49]
    J. Zhu, M. Berisa, S. Schworer, et al., Transsulfuration activity can support cell growth upon extracellular cysteine limitation, Cell Metab. 30 (2019) 865-876.e5.
    [50]
    J. Shukla, K.S. Pitre, Analysis of cystine in human blood for monitoring of cases of burns, J. Pharm. Biomed. Anal. 27 (2002) 821-826.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (183) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return