Citation: | Li Jia, Liming Wang, Xiaoxiao Zhang, Qingrui Zhang, Peng Lei, Yanxu Chang, Lifeng Han, Xin Chai, Wenzhi Yang, Yuefei Wang, Miaomiao Jiang. Investigation of oligomeric proanthocyanidins extracted from Rhodiolae Crenulatae Radix et Rhizomes using deep eutectic solvents and identified via data-dependent acquisition mass-spectroscopy[J]. Journal of Pharmaceutical Analysis, 2024, 14(11): 101002. doi: 10.1016/j.jpha.2024.101002 |
[1] |
D. Ma, L. Wang, Y. Jin, et al., Chemical characteristics of Rhodiola crenulata and its mechanism in acute mountain sickness using UHPLC-Q-TOF-MS/MS combined with network pharmacology analysis, J. Ethnopharmacol. 294 (2022), 115345.
|
[2] |
X. Bai, X. Deng, G. Wu, et al., Rhodiola and salidroside in the treatment of metabolic disorders, Mini Rev. Med. Chem. 19 (2019) 1611-1626.
|
[3] |
W. Pu, M. Zhang, R. Bai, et al., Anti-inflammatory effects of Rhodiola rosea L.: A review, Biomed. Pharmacother. 121 (2020), 109552.
|
[4] |
H.I. Chen, H.C. Ou, C.Y. Chen, et al., Neuroprotective effect of Rhodiola crenulata in D-galactose-induced aging model, Am. J. Chin. Med. 48 (2020) 373-390.
|
[5] |
D.N. Olennikov, N.K. Chirikova, A.G. Vasilieva, et al., LC-MS profile, gastrointestinal and gut microbiota stability and antioxidant activity of Rhodiola rosea herb metabolites: A comparative study with subterranean organs, Antioxidants 9 (2020), 526.
|
[6] |
S. Toro-Uribe, M. Herrero, E.A. Decker, et al., Preparative separation of procyanidins from cocoa polyphenolic extract: Comparative study of different fractionation techniques, Molecules 25 (2020), 2842.
|
[7] |
J.F. Hammerstone, S.A. Lazarus, A.E. Mitchell, et al., Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry, J. Agric. Food Chem. 47 (1999) 490-496.
|
[8] |
N. Hellenbrand, J. Sendker, M. Lechtenberg, et al., Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn (Crataegus spp.), Fitoterapia 104 (2015) 14-22.
|
[9] |
T. Song, P. Wang, C. Li, et al., Salidroside simultaneously reduces de novo lipogenesis and cholesterol biosynthesis to attenuate atherosclerosis in mice, Biomed. Pharmacother. 134 (2021), 111137.
|
[10] |
H. Chen, J. Zhu, Y. Le, et al., Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway, Phytomedicine 99 (2022), 153964.
|
[11] |
L. Rong, Z. Li, X. Leng, et al., Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway, Biomed. Pharmacother. 122 (2020), 109726.
|
[12] |
S. Zhao, L. Zhang, C. Yang, et al., Procyanidins and Alzheimer’s disease, Mol. Neurobiol. 56 (2019) 5556-5567.
|
[13] |
E.A. Rue, M.D. Rush, R.B. van Breemen, Procyanidins: A comprehensive review encompassing structure elucidation via mass spectrometry, Phytochem. Rev. 17 (2018) 1-16.
|
[14] |
Z. Chen, J. Tan, J. Qin, et al., Effects of lotus seedpod oligomeric procyanidins on the inhibition of AGEs formation and sensory quality of tough biscuits, Front. Nutr. 9 (2022), 1031550.
|
[15] |
Y. Sui, J. Shi, S. Cai, et al., Metabolites of procyanidins from Litchi chinensis pericarp with xanthine oxidase inhibitory effect and antioxidant activity, Front. Nutr. 8 (2021), 676346.
|
[16] |
D. Ferreira, D. Slade, Oligomeric proanthocyanidins: Naturally occurring O-heterocycles, Nat. Prod. Rep. 19 (2002) 517-541.
|
[17] |
A. Tuominen, M. Karonen, Variability between organs of proanthocyanidins in Geranium sylvaticum analyzed by off-line 2-dimensional HPLC-MS, Phytochemistry 150 (2018) 106-117.
|
[18] |
J.A. Kennedy, G.P. Jones, Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol, J. Agric. Food Chem. 49 (2001) 1740-1746.
|
[19] |
T. Mohana, A.V. Navin, S. Jamuna, et al., Inhibition of differentiation of monocyte to macrophages in atherosclerosis by oligomeric proanthocyanidins – In-vivo and in-vitro study, Food Chem. Toxicol. 82 (2015) 96-105.
|
[20] |
N. Hellenbrand, M. Lechtenberg, F. Petereit, et al., Isolation and quantification of oligomeric and polymeric procyanidins in the aerial parts of St. John’s wort (Hypericum perforatum), Planta Med. 81 (2015) 1175-1181.
|
[21] |
K. Schotz, M. Noldner, Mass spectroscopic characterisation of oligomeric proanthocyanidins derived from an extract of Pelargonium sidoides roots (EPs 7630) and pharmacological screening in CNS models, Phytomedicine 14 (2007) 32-39.
|
[22] |
W. Tao, H. Pan, H. Jiang, et al., Extraction and identification of proanthocyanidins from the leaves of persimmon and loquat, Food Chem. 372 (2022), 130780.
|
[23] |
J. Cao, L. Chen, M. Li, et al., Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity, J. Pharm. Biomed. Anal. 158 (2018) 317-326.
|
[24] |
A.R. Jesus, L. Meneses, A.R.C. Duarte, et al., Natural deep eutectic systems, an emerging class of cryoprotectant agents, Cryobiology 101 (2021) 95-104.
|
[25] |
A.P. Abbott, K.J. Edler, A.J. Page, Deep eutectic solvents-The vital link between ionic liquids and ionic solutions, J. Chem. Phys. 155 (2021), 150401.
|
[26] |
J.M. Hartley, S. Scott, Z. Dilruba, et al., Iodine speciation in deep eutectic solvents, Phys. Chem. Chem. Phys. 24 (2022) 24105-24115.
|
[27] |
M. Zhang, X. Zhang, Y. Liu, et al., Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents, Environ. Sci. Pollut. Res. Int. 28 (2021) 35537-35563.
|
[28] |
J.K.U. Ling, K. Hadinoto, Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review, Int. J. Mol. Sci. 23 (2022), 3381.
|
[29] |
L.E. Meyer, M.B. Andersen, S. Kara, A deep eutectic solvent thermomorphic Multiphasic system for biocatalytic applications, Angew. Chem. Int. Ed. Engl. 61 (2022), e202203823.
|
[30] |
F. Wang, J. Zhang, P. Yin, et al., Rapid identification of polyphenols in Kudiezi injection with a practical technique of mass defect filter based on high-performance liquid chromatography coupled with linear ion trap/orbitrap mass spectrometry, Anal. Methods 6 (2014) 3515-3523.
|
[31] |
L.-Z. Lin, J. Sun, P. Chen, et al., UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products, J. Agric. Food Chem. 62 (2014) 9387-9400.
|
[32] |
Y. Dai, E. Rozema, R. Verpoorte, et al., Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents, J. Chromatogr. A 1434 (2016) 50-56.
|
[33] |
Y. Dai, G.J. Witkamp, R. Verpoorte, et al., Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L, Anal. Chem. 85 (2013) 6272-6278.
|
[34] |
Z. Yang, Natural deep eutectic solvents and their applications in biotechnology, Adv. Biochem. Eng. 168 (2019) 31-59.
|
[35] |
M. Ruesgas-Ramon, M.C. Figueroa-Espinoza, E. Durand, Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities, J. Agric. Food Chem. 65 (2017) 3591-3601.
|
[36] |
M.H. Zainal-Abidin, M. Hayyan, A. Hayyan, et al., New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review, Anal. Chim. Acta 979 (2017) 1-23.
|
[37] |
N. Guo, P. Kou, Y. Jiang, et al., Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction, Food Chem. 296 (2019) 78-85.
|
[38] |
N. Symma, A. Hensel, Advanced analysis of oligomeric proanthocyanidins: Latest approaches in liquid chromatography and mass spectrometry based analysis, Phytochem. Rev. 21 (2022) 809-833.
|
[39] |
L. Jia, H. Wang, X. Xu, et al., An off-line three-dimensional liquid chromatography/Q-Orbitrap mass spectrometry approach enabling the discovery of 1561 potentially unknown ginsenosides from the flower buds of Panax ginseng, Panax quinquefolius and Panax notoginseng, J. Chromatogr. A 1675 (2022), 463177.
|
[40] |
S. Rozas, C. Benito, R. Alcalde, et al., Insights on the water effect on deep eutectic solvents properties and structuring: The archetypical case of choline chloride + ethylene glycol, J. Mol. Liq. 344 (2021), 117717.
|
[41] |
A. Shishov, S. Gagarionova, A. Bulatov, Deep eutectic mixture membrane-based microextraction: HPLC-FLD determination of phenols in smoked food samples, Food Chem. 314 (2020), 126097.
|
[42] |
A.P. Neilson, S.F. O’Keefe, B.W. Bolling, High-molecular-weight proanthocyanidins in foods: Overcoming analytical challenges in pursuit of novel dietary bioactive components, Annu. Rev. Food Sci. Technol. 7 (2016) 43-64.
|
[43] |
A. Rauf, M. Imran, T. Abu-Izneid, et al., Proanthocyanidins: A comprehensive review, Biomed. Pharmacother. 116 (2019), 108999.
|
[44] |
Y. Takahata, M. Ohnishi-Kameyama, S. Furuta, et al., Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity, J. Agric. Food Chem. 49 (2001) 5843-5847.
|
[45] |
M. Bensa, V. Glavnik, I. Vovk, Flavan-3-ols and proanthocyanidins in Japanese, Bohemian and giant knotweed, Plants 10 (2021), 402.
|