Volume 14 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Shuangmeng Jia, Jieshen Huang, Wuyan Lu, Yongen Miao, Kehua Huang, Chenzhang Shi, Shuaijun Li, Jiefeng Huang. Global hotspots and future directions for drugs to improve the skin flap survival: A bibliometric and visualized review[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100948. doi: 10.1016/j.jpha.2024.02.002
Citation: Shuangmeng Jia, Jieshen Huang, Wuyan Lu, Yongen Miao, Kehua Huang, Chenzhang Shi, Shuaijun Li, Jiefeng Huang. Global hotspots and future directions for drugs to improve the skin flap survival: A bibliometric and visualized review[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100948. doi: 10.1016/j.jpha.2024.02.002

Global hotspots and future directions for drugs to improve the skin flap survival: A bibliometric and visualized review

doi: 10.1016/j.jpha.2024.02.002
Funds:

This research was funded by the National Natural Science Foundation of China (Grant No.: 82070533).

  • Received Date: Sep. 09, 2023
  • Accepted Date: Feb. 01, 2024
  • Rev Recd Date: Jan. 05, 2024
  • Publish Date: Feb. 06, 2024
  • Skin flaps are frequently employed in plastic and reconstructive surgery to address tissue defects. However, their low survival rates remain a challenge, attributed to vascular crisis and necrosis. Despite numerous studies investigating drugs to alleviate flap necrosis, a comprehensive analysis of the research trend in this critical area is lacking. To gain a deeper understanding of the current status, research focal points, and future trends in drugs aimed at enhancing flap survival, a thorough retrospective analysis is imperative. This study aims to employ bibliometric methods to scrutinize the evolution, mechanisms, and forthcoming trends of drugs targeting flap survival improvement. Using VOSviewer software, we quantitatively and visually depict 1) annual temporal trends in the number of documents and citations; 2) national/regional publications and their collaborations; 3) institutional and authors’ contribution; 4) journal contribution and relevance; and 5) analysis of research hotspots and directions derived from keywords. Ultimately, we discussed the prospects and challenges of future advances and clinical translation of drugs designed to enhance skin flap survival. In conclusion, the field of pharmacology dedicated to improving skin flap survival is expanding, and this study aims to offer a fresh perspective to promote the advancement and clinical application of such drugs.

  • loading
  • [1]
    G.M. Huemer, T. Schoeller, K.M. Dunst, et al., Management of a traumatically avulsed skin-flap on the dorsum of the foot, Arch. Orthop. Trauma Surg. 124 (2004) 559-562.
    [2]
    G. Sakai, T. Suzuki, T. Hishikawa, et al., Primary reattachment of avulsed skin flaps with negative pressure wound therapy in degloving injuries of the lower extremity, Injury 48 (2017) 137-141.
    [3]
    F.X. Hu, X.X. Hu, X.L. Yang, et al., Treatment of large avulsion injury in perianal, sacral, and perineal regions by island flaps or skin graft combined with vacuum assisted closure, BMC Surg. 19 (2019), 65.
    [4]
    Y.N. Lin, Y.C. Wang, S.S. Lee, et al., The bridging effect of artificial dermis on reconstruction of skin avulsion injury, Int. J. Low. Extrem. Wounds (2023), 15347346231158175.
    [5]
    A. Girod, H. Boissonnet, T. Jouffroy, et al., Latissimus dorsi free flap reconstruction of anterior skull base defects, J. Craniomaxillofac Surg. 40 (2012) 177-179.
    [6]
    Z. Dai, Y. Sun, M. Mamat, et al., Application of pedicled skin flap in wound healing after resection of soft tissue malignant tumors in limbs and trunk, Chin. J. Clin. Oncol. 49 (2022) 179-183.
    [7]
    G. Maiwald, C. Muller, H. Furst, et al., Use of pedicled greater omentum-plasty as thoraco-abdominal defect repair following extensive tumor resection, Chirurg 70 (1999) 566-570.
    [8]
    X. Zou, M. Cai, Analysis of local flaps in surgery of facial basal cell carcinoma, Chin. J. Dermatovenereol. 33 (2019) 481-484.
    [9]
    P.C. Fisher, J.M. Park, Penile torsion repair using dorsal dartos flap rotation, J. Urol. 171 (2004) 1903-1904.
    [10]
    C. Kimura, A. Oyama, S. Kouraba, Congenital ectopic nails reconstructed with local skin flaps, J. Dermatol. 24 (1997) 670-674.
    [11]
    M.E. Mavili, M. Akyurek, Congenital isolated absence of the nasal columella: Reconstruction with an internal nasal vestibular skin flap and bilateral labial mucosa flaps, Plast. Reconstr. Surg. 106 (2000) 393-399.
    [12]
    N. Ohsumi, N. Iida, Ear reconstruction with chondrocutaneous postauricular island flap, Plast. Reconstr. Surg. 96 (1995) 718-720.
    [13]
    A. Weinzierl, E. Ampofo, M.D. Menger, et al., Tissue-protective mechanisms of bioactive phytochemicals in flap surgery, Front. Pharmacol. 13 (2022), 864351.
    [14]
    K. Zhou, Y. Zhang, D. Lin, et al., Effects of muscone on random skin flap survival in rats, J. Reconstr. Microsurg. 32 (2016) 200-207.
    [15]
    Y. Li, Q. Jiang, L. van der Merwe, et al., Preclinical efficacy of stem cell therapy for skin flap: A systematic review and meta-analysis, Stem Cell Res. Ther. 12 (2021), 28.
    [16]
    E. Briand, O. Gerbault, M. Revol, et al., Abdominal wall: Flaps donor site. Theoretical basis, blood supply and practical consequences, Ann. Chir. Plast. Esthet. 44 (1999) 401-410.
    [17]
    Z. Kryger, F. Zhang, T. Dogan, et al., The effects of VEGF on survival of a random flap in the rat: Examination of various routes of administration, Br. J. Plast. Surg. 53 (2000) 234-239.
    [18]
    A. Mostafaie, H.R.M. Motlagh, K. Mansouri, Angiogenesis and the models to study angiogenesis, Yakhteh 11 (2010) 374-381.
    [19]
    C. Schurmann, O. Seitz, R. Sader, et al., Role of wound macrophages in skin flap loss or survival in an experimental diabetes model, Br. J. Surg. 97 (2010) 1437-1451.
    [20]
    H. Aydogan, A. Gurlek, H. Parlakpinar, et al., Beneficial effects of caffeic acid phenethyl ester (CAPE) on the ischaemia-reperfusion injury in rat skin flaps, J. Plast. Reconstr. Aesthetic Surg. 60 (2007) 563-568.
    [21]
    K. Zhou, Y. Zhang, D. Lin, et al., Effects of calcitriol on random skin flap survival in rats, Sci. Rep. 6 (2016), 18945.
    [22]
    J. Jiang, C. Dong, L. Zhai, et al., Paeoniflorin suppresses TBHP-induced oxidative stress and apoptosis in human umbilical vein endothelial cells via the Nrf2/HO-1 signaling pathway and improves skin flap survival, Front. Pharmacol. 12 (2021), 735530.
    [23]
    L. Zhang, G. Yu, Q. Yu, et al., Baicalin promotes random-pattern skin flap survival by inducing autophagy via AMPK-regulated TFEB nuclear transcription, Phytother. Res. 37 (2023) 3926-3938.
    [24]
    L.A. Hernandez, M.B. Grisham, B. Twohig, et al., Role of neutrophils in ischemia-reperfusion-induced microvascular injury, Am. J. Physiol. 253 (1987) H699-H703.
    [25]
    M. Siemionow, E. Arslan, Ischemia/reperfusion injury: A review in relation to free tissue transfers, Microsurgery 24 (2004) 468-475.
    [26]
    C.C. Wu, S.B. Bratton, Regulation of the intrinsic apoptosis pathway by reactive oxygen species, Antioxid. Redox Signal. 19 (2013) 546-558.
    [27]
    G. Maschio, Erythropoietin and systemic hypertension, Nephrol. Dial. Transplant 10 (1995) 74-79.
    [28]
    Y. Cho, B. Ahn, D. Kim, et al. Inventors; New protein inducing an angiopoietin-1 secretion, useful for treating angiogenesis-related diseases, e.g. pulmonary hypertension, skin flap survival, ocular diseases, diabetic retinopathy, or age-related macular degeneration, United States patent WO2005094872-A1; EP1740203-A1; KR2007011371-A; CN1950105-A; JP2007530667-W; US2008009441-A1; KR859822-B1; EP1740203-A4, 10 August 2023.
    [29]
    C. Kalka, H. Tehrani, B. Laudenberg, et al., VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease, Ann. Thorac. Surg. 70 (2000) 829-834.
    [30]
    N. Ishiguro, Y. Yabe, T. Shimizu, et al., Basic fibroblast growth factor has a beneficial effect on the viability of random skin flaps in rats, Ann. Plast. Surg. 32 (1994) 356-360.
    [31]
    T.C. Tsai, Y.T. Tung, Y.H. Kuo, et al., Anti-inflammatory effects of Antrodia camphorata, a herbal medicine, in a mouse skin ischemia model, J. Ethnopharmacol. 159 (2015) 113-121.
    [32]
    J. He, M. Fang, X. Ma, et al., Angiogenic and anti-inflammatory properties of azadirachtin A improve random skin flap survival in rats, Exp. Biol. Med. 245 (2020) 1672-1682.
    [33]
    J. Lin, R. Lin, S. Li, et al., Salvianolic acid B promotes the survival of random-pattern skin flaps in rats by inducing autophagy, Front. Pharmacol. 9 (2018), 1178.
    [34]
    N.F.R. Tang, H. Heryanto, B. Armynah, et al., Bibliometric analysis of the use of calcium alginate for wound dressing applications: A review, Int. J. Biol. Macromol. 228 (2023) 138-152.
    [35]
    Y. Yu, Y. Li, Z. Zhang, et al., A bibliometric analysis using VOSviewer of publications on COVID-19, Ann. Transl. Med. 8 (2020), 816.
    [36]
    T. Li, Z. Li, X. Qin, et al., Global analyses and latest research hot spots of adipose-derived stem cells in fat grafting: A bibliometric and visualized review, Aesthetic Plast. Surg. 47 (2023) 1192-1204.
    [37]
    Y. Dai, Y. Chen, Y. Hu, et al., Current knowledge and future perspectives on exosomes in the field of regenerative medicine: A bibliometric analysis, Regen. Med. 18 (2023) 123-136.
    [38]
    R.K. Farooq, S.U. Rehman, M. Ashiq, et al., Bibliometric analysis of coronavirus disease (COVID-19) literature published in Web of Science 2019-2020, J. Family Community Med. 28 (2021) 1-7.
    [39]
    R. Wang, Y. Wang, Y. Tian, et al., Literature measurement analysis of tigecycline against pneumonia, Chin. J. Clin. Pharmacol. 32 (2016) 1504-1506, 1511.
    [40]
    M. Darroudi, M. Gholami, M. Rezayi, et al., An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery, J. Nanobiotechnolgy 19 (2021), 399.
    [41]
    A.V. Sheahan, A.V. Biankin, C.R. Parish, et al., Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: A systematic review, Oncotarget 9 (2018) 21613-21627.
    [42]
    P. Xie, Study of international anticancer research trends via co-word and document co-citation visualization analysis, Scientometrics 105 (2015) 611-622.
    [43]
    H. Lai, G. Chen, W. Zhang, et al., Research trends on platelet-rich plasma in the treatment of wounds during 2002-2021: A 20-year bibliometric analysis, Int. Wound J. 20 (2023) 1882-1892.
    [44]
    L. Serpico, S. Dello Iacono, A. Cammarano, et al., Recent advances in stimuli-responsive hydrogel-based wound dressing, Gels 9 (2023), 451.
    [45]
    Y. Chen, M. Lin, D. Zhuang, Wastewater treatment and emerging contaminants: Bibliometric analysis, Chemosphere 297 (2022), 133932.
    [46]
    R. Lin, J. Lin, S. Li, et al., Effects of the traditional Chinese medicine baicalein on the viability of random pattern skin flaps in rats, Drug Des. Devel. Ther. 12 (2018) 2267-2276.
    [47]
    J. Chen, Z. Jiang, X. Liu, et al., Berberine promotes the viability of random skin flaps via the PI3K/Akt/eNOS signaling pathway, Phytother. Res. 37 (2023) 424-437.
    [48]
    X. Feng, D. Huang, D. Lin, et al., Effects of asiaticoside treatment on the survival of random skin flaps in rats, J. Invest. Surg. 34 (2021) 107-117.
    [49]
    L. Xu, D. Lin, B. Cao, et al., Effects of traditional Chinese medicine, Dilong injection, on random skin flap survival in rats, J. Invest. Surg. 31 (2018) 38-43.
    [50]
    F. Fang, K.C. Chung, An evolutionary perspective on the history of flap reconstruction in the upper extremity, Hand Clin. 30 (2014) 109-122.
    [51]
    J. Jernbeck, C.J. Dalsgaard, Calcitonin gene-related peptide treatment of flaps with compromised circulation in humans, Plast. Reconstr. Surg. 91 (1993) 236-244.
    [52]
    D.A. Lepore, K.R. Knight, S. Bhattacharya, et al., Drug mixture which improves survival of ischemic rabbit epigastric skin flaps, Microsurgery 15 (1994) 685-692.
    [53]
    G. Jurell, C.E. Jonsson, Increased survival of experimental skin flaps in rats following treatment with antiadrenergic drugs, Scand. J. Plast. Reconstr. Surg. 10 (1976) 169-172.
    [54]
    G. Jurell, P. Hjemdahl, B.B. Fredholm, On the mechanism by which antiadrenergic drugs increase survival of critical skin flaps, Plast. Reconstr. Surg. 72 (1983) 518-525.
    [55]
    J. Jiang, J. Jin, J. Lou, et al., Positive effect of andrographolide induced autophagy on random-pattern skin flaps survival, Front. Pharmacol. 12 (2021), 653035.
    [56]
    C. Qi, Y. Lin, D. Lin, The effect of Shu Xue Tong treatment on random skin flap survival via the VEGF-Notch/Dll4 signaling pathway, J. Invest. Surg. 33 (2020) 615-620.
    [57]
    Z. Habibi, M. Hoormand, M. Banimohammad, et al., The novel role of Crocus sativus L. in enhancing skin flap survival by affecting apoptosis independent of mTOR: A data-virtualized study, Aesthetic Plast. Surg. 46 (2022) 3047-3062.
    [58]
    H. Tekin, G. Tekin, G. Bulut, et al., Investigating the effect of Korean red ginseng on the viability of random-pattern skin flaps in rats, Ann. Plast. Surg. 79 (2017) e1-e6.
    [59]
    J. Zeng, L. Yang, J. Zhang, et al., Fuyuan Huoxue Decoction promotes skin flap survival via the P38MAPK/IKK/NF-κB pathway in rats, Nat. Prod. Commun. 2023. https://doi.org/10.1177/1934578X231188557.
    [60]
    Y. Li, Y. Zhu, F. Hu, et al., Procyanidin B2 regulates the Sirt1/Nrf2 signaling pathway to improve random-pattern skin flap survival, Phytother. Res. 37 (2023) 3913-3925.
    [61]
    Z. Xu, L. Wu, Y. Sun, et al., Tanshinone IIA pretreatment protects free flaps against hypoxic injury by upregulating stem cell-related biomarkers in epithelial skin cells, BMC Complement. Altern. Med. 14 (2014), 331.
    [62]
    J.J. de Lima Silva, S.B. Guimaraes, E.R. da Silveira, et al., Effects of Copaifera langsdorffii Desf. on ischemia-reperfusion of randomized skin flaps in rats, Aesthetic Plast. Surg. 33 (2009) 104-109.
    [63]
    W. Fu, X. Jiao, The effect of mannitol and anisodamin on the prevention of free radical injury to post-ischaemia flaps: An experimental study, Br. J. Plast. Surg. 48 (1995) 218-221.
    [64]
    M. Bekerecioglu, M. Tercan, I. Ozyazgan, The effect of Gingko biloba extract (Egb 761) as a free radical scavenger on the survival of skin flaps in rats. A comparative study, Scand. J. Plast. Reconstr. Surg. Hand Surg. 32 (1998) 135-139.
    [65]
    F. Zhou, X. Zhang, L. Jiang, et al., Pseudoginsenoside F11 enhances the viability of random-pattern skin flaps by promoting TFEB nuclear translocation through AMPK-mTOR signal pathway, Front. Pharmacol. 12 (2021), 667524.
    [66]
    R. Jiang, C. Dong, Z. Chen, et al., Catalpol enhances random-pattern skin flap survival by activating SIRT1-mediated enhancement of autophagy, Oxid. Med. Cell. Longev. 2022 (2022), 5668226.
    [67]
    W.M. El Shaer, A.E.E. Ahmed, W.M. Sakr, et al., Effect of perivascular injection of botulinum toxin type A versus lidocaine in survival of random pattern flaps in a rat model, Plast. Reconstr. Surg. 143 (2019) 527e-533e.
    [68]
    M. Hihara, N. Kakudo, N. Morimoto, et al., Improved viability of murine skin flaps using a gelatin hydrogel sheet impregnated with bFGF, J. Artif. Organs 23 (2020) 348-357.
    [69]
    A.M. Fichter, L.M. Ritschl, L.K. Robitzky, et al., Impact of different antithrombotics on the microcirculation and viability of perforator-based ischaemic skin flaps in a small animal model, Sci. Rep. 6 (2016), 35833.
    [70]
    B. Liu, Q. Xu, J. Wang, et al., Recombinant human growth hormone treatment of mice suppresses inflammation and apoptosis caused by skin flap ischemia-reperfusion injury, J. Cell. Biochem. 120 (2019) 18162-18171.
    [71]
    X. Zhu, X. Hu, J. Lou, et al., Liraglutide, a TFEB-mediated autophagy agonist, promotes the viability of random-pattern skin flaps, Oxid. Med. Cell. Longev. 2021 (2021), 6610603.
    [72]
    P. Xu, M. Xing, H. Huang, et al., Calcium silicate-human serum albumin composite hydrogel decreases random pattern skin flap necrosis by attenuating vascular endothelial cell apoptosis and inflammation, Chem. Eng. J. 423 (2021), 130285.
    [73]
    M.S. Lee, S. Kumar, W.G. La, et al., Effect of dual growth factor delivery using poly(lactic-co-glycolic acid) mesh on neovascularization in a mouse skin flap model, Macromol. Res. 24 (2016) 385-391.
    [74]
    A. Shalom, T. Friedman, M. Westreich, Effect of aspirin and heparin on random skin flap survival in rats, Dermatol. Surg. 34 (2008) 785-790;discussion790.
    [75]
    R. Bade, H.F. Chan, J. Reynisson, Characteristics of known drug space. Natural products, their derivatives and synthetic drugs, Eur. J. Med. Chem. 45 (2010) 5646-5652.
    [76]
    J.Y. Trosset, P. Carbonell, Synthetic biology for pharmaceutical drug discovery, Drug Des. Devel. Ther. 9 (2015) 6285-6302.
    [77]
    P. Neligan, C.Y. Pang, T. Nakatsuka, et al., Pharmacologic action of isoxsuprine in cutaneous and myocutaneous flaps, Plast. Reconstr. Surg. 75 (1985) 363-374.
    [78]
    J.A. Choi, K.C. Lee, M.S. Kim, et al., Comparison of prostaglandin E1 and sildenafil citrate administration on skin flap survival in rats, Arch. Craniofac. Surg. 16 (2015) 73-79.
    [79]
    H. Sen, M. Oruc, V.M. Isik, et al., The effect of omeprazole usage on the viability of random pattern skin flaps in rats, Ann. Plast. Surg. 78 (2017) e5-e9.
    [80]
    J.W. Park, G.H. Mun, Comparative analysis of the effect of antihypertensive drugs on the survival of perforator flaps in a rat model, Microsurgery 38 (2018) 310-317.
    [81]
    B. Demir, M.S. Engin, M.K. Keles, et al., Comparison of the effects of different vasoactive and antiplatelet drugs on perforator flap viability. An experimental study, Hand Surg. Rehabil. 35 (2016) 55-59.
    [82]
    A. Quirinia, A. Viidik, Diclofenac and indomethacin influence the healing of normal and ischaemic incisional wounds in skin, Scand. J. Plast. Reconstr. Surg. Hand Surg. 31 (1997) 213-219.
    [83]
    L. Petrovics, T. Nagy, P. Hardi, et al., The effect of trimetazidine in reducing the ischemia-reperfusion injury in rat epigastric skin flaps, Clin. Hemorheol. Microcirc. 69 (2018) 405-415.
    [84]
    K. Odake, M. Tsujii, T. Iino, et al., Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model, Free. Radic. Biol. Med. 177 (2021) 238-246.
    [85]
    A. Sagi, R. Bibi, M. Ferder, et al., Prophylactic use of chlorpromazine to improve survival of random skin flaps in pigs, Eur. J. Plast. Surg. 20 (1997) 80-83.
    [86]
    J.C.A. Figueiredo, A.G. Zampar, C. Destro, et al., Influence of sildenafil and buflomedil on survival of randomized flaps in rats: An experimental study, Rev. Bras. Cir. Plast. (Impr.) 26 (2011) 390-393.
    [87]
    M.J. Im, W.H. Shen, C.J. Pak, et al., Effect of allopurinol on the survival of hyperemic island skin flaps, Plast. Reconstr. Surg. 73 (1984) 276-278.
    [88]
    M. Iranpour, A. Khodarahmi, N. Khodarahmi, et al., Montelukast for medical delay in flap surgery, World J. Plast. Surg. 9 (2020) 48-54.
    [89]
    S. Ichioka, T. Nakatsuka, Y. Sato, et al., Amrinone, a selective phosphodiesterase III inhibitor, improves microcirculation and flap survival: A comparative study with prostaglandin E1, J. Surg. Res. 75 (1998) 42-48.
    [90]
    R.J. Carpenter, M.F. Angel, R.F. Morgan, Dimethyl sulfoxide increases the survival of primarily ischemic island skin flaps, Otolaryngol. Head Neck Surg. 110 (1994) 228-231.
    [91]
    P.T. Arkoumanis, T. Theodosopoulos, G. Gkiokas, et al., Single dose of sildenafil and atorvastatin increase skin survivability, but only atorvastatin increase nitric oxide in rat ischeamia reperfusion model, Chirurgia (Bucur) 115 (2020) 783-791.
    [92]
    J. Li, H. Chen, J. Lou, et al., Exenatide improves random-pattern skin flap survival via TFE3 mediated autophagy augment, J. Cell. Physiol. 236 (2021) 3641-3659.
    [93]
    I. Saito, T. Hasegawa, T. Ueha, et al., Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps, J. Plast. Reconstr. Aesthet. Surg. 71 (2018) 1644-1651.
    [94]
    T. Kalogeris, Y. Bao, R.J. Korthuis, Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning, Redox Biol. 2 (2014) 702-714.
    [95]
    J.B. Lucas, The physiology and biomechanics of skin flaps, Facial Plast. Surg. Clin. North Am. 25 (2017) 303-311.
    [96]
    J. Lin, J. Zhou, W. Xu, et al., Qianliening capsule inhibits benign prostatic hyperplasia angiogenesis via the HIF-1α signaling pathway, Exp. Ther. Med. 8 (2014) 118-124.
    [97]
    Y. Xie, M. Mansouri, A. Rizk, et al., Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins, Sci. Rep. 9 (2019), 13342.
    [98]
    T.K. Kim, E.J. Oh, J.Y. Chung, et al., The effects of botulinum toxin A on the survival of a random cutaneous flap, J. Plast. Reconstr. Aesthet. Surg. 62 (2009) 906-913.
    [99]
    M. Mack, Inflammation and fibrosis, Matrix Biol. 68-69 (2018) 106-121.
    [100]
    J.H. Lee, H.J. You, T.Y. Lee, et al., Current status of experimental animal skin flap models: Ischemic preconditioning and molecular factors, Int. J. Mol. Sci. 23 (2022), 5234.
    [101]
    M. Buemi, M. Vaccaro, A. Sturiale, et al., Recombinant human erythropoietin influences revascularization and healing in a rat model of random ischaemic flaps, Acta Derm. Venereol. 82 (2002) 411-417.
    [102]
    H. Jaeschke, Reperfusion injury after warm ischemia or cold storage of the liver: Role of apoptotic cell death, Transplant. Proc. 34 (2002) 2656-2658.
    [103]
    H. Ren, X. Meng, J. Yin, et al., Ganoderma lucidum polysaccharide peptide attenuates skin flap ischemia-reperfusion injury in a thioredoxin-dependent manner, Plast. Reconstr. Surg. 142 (2018) 23e-33e.
    [104]
    Y. Fuchs, H. Steller, Live to die another way: Modes of programmed cell death and the signals emanating from dying cells, Nat. Rev. Mol. Cell Biol. 16 (2015) 329-344.
    [105]
    M. Valko, D. Leibfritz, J. Moncol, et al., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol. 39 (2007) 44-84.
    [106]
    H. Sies, Oxidative stress: A concept in redox biology and medicine, Redox Biol. 4 (2015) 180-183.
    [107]
    M.A. Price, R.M. Pearl, Multiagent pharmacotherapy to enhance skin flap survival: Lack of additive effect of nitroglycerin and allopurinol, Ann. Plast. Surg. 33 (1994) 52-56.
    [108]
    N. Raben, R. Puertollano, TFEB and TFE3: Linking lysosomes to cellular adaptation to stress, Annu. Rev. Cell Dev. Biol. 32 (2016) 255-278.
    [109]
    Y. Li, Y. Chen, AMPK and autophagy. Z.-H. Qin, Autophagy: Biology and Diseases, Vol. 1206, Springer, Singapore, 2019, pp. 85-108.
    [110]
    X. Fan, J. Wang, J. Hou, et al., Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway, J. Transl. Med. 13 (2015), 92.
    [111]
    G.G. Ustun, S. Ozturk, U. Kocer, Standardization of the rat dorsal random pattern (McFarlane) flap model and evaluation of the pharmacological agents aiming to salvage partial flap necrosis: A systematic review and a meta-analysis, Ann. Plast. Surg. 87 (2021) e145-e152.
    [112]
    K.A. Eley, J.D. Young, S.R. Watt-Smith, Epinephrine, norepinephrine, dobutamine, and dopexamine effects on free flap skin blood flow, Plast. Reconstr. Surg. 130 (2012) 564-570.
    [113]
    P. Wang, L. Gu, Z. Qin, et al., Efficacy and safety of topical nitroglycerin in the prevention of mastectomy flap necrosis: A systematic review and meta-analysis, Sci. Rep. 10 (2020), 6753.
    [114]
    J. Chen, Q. Lv, M. Yu, et al., Randomized clinical trial of Chinese herbal medications to reduce wound complications after mastectomy for breast carcinoma, Br. J. Surg. 97 (2010) 1798-1804.
    [115]
    K.L. McKinley, M.T. Longaker, S. Naik, Emerging frontiers in regenerative medicine, Science 380 (2023) 796-798.
    [116]
    X. Sun, R. Zheng, L. Cheng, et al., Two-dimensional electrospun nanofibrous membranes for promoting random skin flap survival, RSC Adv. 6 (2016) 9360-9369.
    [117]
    M.G. Ulusoy, A. Uysal, U. Kocer, et al., Improved flap viability with site-specific delivery of sildenafil citrate using fibrin glue, Ann. Plast. Surg. 55 (2005) 292-296.
    [118]
    X. Mao, L. Liu, L. Cheng, et al., Adhesive nanoparticles with inflammation regulation for promoting skin flap regeneration, J. Control. Release 297 (2019) 91-101.
    [119]
    X. Liu, J. Wang, X. Xu, et al., SDF-1 functionalized hydrogel microcarriers for skin flap repair, ACS Biomater. Sci. Eng. 8 (2022) 3576-3588.
    [120]
    X. Mao, R. Cheng, H. Zhang, et al., Erratum: Self-healing and injectable hydrogel for matching skin flap regeneration, Adv. Sci. Weinh. 6 (2019), 1901124.
    [121]
    P.C. Mills, S.E. Cross, Transdermal drug delivery: Basic principles for the veterinarian, Vet. J. 172 (2006) 218-233.
    [122]
    M. Azam, H. Ghufran, H. Butt, et al., Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds, Burns Trauma 9 (2021), tkab021.
    [123]
    W. Srifa, N. Kosaric, A. Amorin, et al., Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice, Nat. Commun. 11 (2020), 2470.
    [124]
    A.D. Ariyanti, J. Zhang, O. Marcelina, et al., Salidroside-pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia, Stem Cells Transl. Med. 8 (2019) 404-414.
    [125]
    D. Atisha, A.K. Alderman, A systematic review of abdominal wall function following abdominal flaps for postmastectomy breast reconstruction, Ann. Plast. Surg. 63 (2009) 222-230.
    [126]
    H. Brem, M. Tomic-Canic, Cellular and molecular basis of wound healing in diabetes, J. Clin. Invest. 117 (2007) 1219-1222.
    [127]
    R.D. Galiano, O.M. Tepper, C.R. Pelo, et al., Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells, Am. J. Pathol. 164 (2004) 1935-1947.
    [128]
    K. Maruyama, A. Jun, M. Ii, et al., Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing, Am. J. Pathol. 170 (2007) 1178-1191.
    [129]
    V. Falanga, Wound healing and its impairment in the diabetic foot, Lancet 366 (2005) 1736-1743.
    [130]
    T. Isken, I. Serdaroglu, E. Ozgentas, The effects of the pentoxifylline on survival of the skin flaps in streptozotocin-diabetic rats, Ann. Plast. Surg. 62 (2009) 446-450.
    [131]
    D. Bagdas, B. Cam Etoz, S. Inan Ozturkoglu, et al., Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats, Biol. Pharm. Bull. 37 (2014) 361-370.
    [132]
    Y. Harder, M. Amon, M. Georgi, et al., Aging is associated with an increased susceptibility to ischaemic necrosis due to microvascular perfusion failure but not a reduction in ischaemic tolerance, Clin. Sci. 112 (2007) 429-440.
    [133]
    S. Roy, E. Aksamitiene, S. Hota, et al., Aging effects on pedicled fasciocutaneous flap survival in rats, Head Neck 38 (2016) E1152-E1162.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (225) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return