Citation: | Qi Jia, Yinyin Zhou, Li Song, Ximeng Shi, Xuan Jiang, Ruizhi Tao, Aiyun Wang, Yuanyuan Wu, Zhonghong Wei, Yinan Zhang, Xiaoman Li, Yin Lu. Baicalin reduces chronic stress-induced breast cancer metastasis via directly targeting β2-adrenergic receptor[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100934. doi: 10.1016/j.jpha.2024.01.002 |
Recent studies have shown that stress can substantially facilitate breast cancer metastasis, which can be reduced by nonselective β1/β2-adrenergic receptor (β1/β2-AR) blocker. However, several side effects were identified. Thus, it is extremely warranted to explore more effective and better-tolerated β2-AR blocker. Currently, we demonstrated that baicalin (BA), a major bioactive component of Scutellaria baicalensis Georgi, could significantly attenuate stress hormones especially epinephrine (Epi)-induced breast cancer cell migration and invasion in vitro. Mechanistically, we identified that β2-AR was a direct target of BA via the drug affinity responsive target stability (DARTS) combined with mass spectrum assay, and BA photoaffinity probe with pull-down assay, which was further confirmed by a couple of biophysical and biochemical assays. Furthermore, we demonstrated that BA could directly bind to the Phe-193 and Phe-289 of β2-AR, subsequently inhibit cyclic adenosine monophosphate-protein kinase A-focal adhesion kinase (cAMP-PKA-FAK) pathway, and thus impede epithelial-mesenchymal transition (EMT), thereby hindering the metastatic progression of the chronic stress coupled with syngeneic and xenograft in vivo orthotopic and tail vein mouse model. These findings firstly identify BA as a potential β2-AR inhibitor in the treatment of stress-induced breast cancer metastasis.
[1] |
H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209-249.
|
[2] |
R.L. Siegel, K.D. Miller, H.E. Fuchs, et al., Cancer statistics, 2021, CA Cancer J. Clin. 71 (2021) 7-33.
|
[3] |
Y. Cai, Z. Shao, K. Yu, Determining the optimal (neo)adjuvant regimen for human epidermal growth factor receptor 2-positive breast cancer regarding survival outcome: A network meta-analysis, Front. Immunol. 13 (2022), 919369.
|
[4] |
Y. Liang, H. Zhang, X. Song, et al., Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets, Semin. Cancer Biol. 60 (2020) 14-27.
|
[5] |
B. Mravec, M. Tibensky, L. Horvathova, Stress and cancer. Part I: Mechanisms mediating the effect of stressors on cancer, J. Neuroimmunol. 346 (2020), 577311.
|
[6] |
A. Eckerling, I. Ricon-Becker, L. Sorski, et al., Stress and cancer: Mechanisms, significance and future directions, Nat. Rev. Cancer 21 (2021) 767-785.
|
[7] |
T.I. Barron, R.M. Connolly, L. Sharp, et al., Beta blockers and breast cancer mortality: A population- based study, J. Clin. Oncol. 29 (2011) 2635-2644.
|
[8] |
R. Gosain, E. Gage-Bouchard, C. Ambrosone, et al., Stress reduction strategies in breast cancer: Review of pharmacologic and non-pharmacologic based strategies. Semin. Immunopathol. 42 (2020)719-734.
|
[9] |
B.W. Renz, R. Takahashi, T. Tanaka, et al., β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer, Cancer Cell 34 (2018) 863-867.
|
[10] |
Y. Cheng, X. Gao, X. Li, et al., Depression promotes prostate cancer invasion and metastasis via a sympathetic-cAMP-FAK signaling pathway, Oncogene 37 (2018) 2953-2966.
|
[11] |
J.G. Hiller, S.W. Cole, E.M. Crone, et al., Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: A phase II randomized trial, Clin. Cancer Res. 26 (2020) 1803-1811.
|
[12] |
B. Mravec, M. Tibensky, L. Horvathova, Stress and cancer. Part II: Therapeutic implications for oncology, J. Neuroimmunol. 346 (2020), 577312.
|
[13] |
L. Shaashua, M. Shabat-Simon, R. Haldar, et al., Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial, Clin. Cancer Res. 23 (2017) 4651-4661.
|
[14] |
M.B. Hopson, S. Lee, M. Accordino, et al., Phase II study of propranolol feasibility with neoadjuvant chemotherapy in patients with newly diagnosed breast cancer, Breast Cancer Res. Treat. 188 (2021) 427-432.
|
[15] |
D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83 (2020) 770-803.
|
[16] |
C. Qian, C. Yang, Y. Tang, et al., Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy, Pharmacol. Res. 182 (2022), 106333.
|
[17] |
X. Li, Q. Jia, Y. Zhou, et al., Tanshinone IIA attenuates the stemness of breast cancer cells via targeting the miR-125b/STARD13 axis, Exp. Hematol. Oncol. 11 (2022), 2.
|
[18] |
J. Wang, S. Wang, S. Liu, et al., Molecular mechanism of Bupleuri Radix and Scutellariae Radix drug pair for depression based on integrative pharmacology platform of traditional Chinese medicine, China J. Chin. Mater. Med. 43 (2018) 1323-1330.
|
[19] |
T. Zhao, H. Tang, L. Xie, et al., Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology, J Pharm. Pharmacol. 71 (2019) 1353-1369.
|
[20] |
S. Singh, A. Meena, S. Luqman, Baicalin mediated regulation of key signaling pathways in cancer, Pharmacol. Res. 164 (2021), 105387.
|
[21] |
Z. Xiao, Z. Cao, J. Yang, et al., Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression, Biochem. Pharmacol. 190 (2021), 114594.
|
[22] |
K. Liu, L. Guo, Y. Guo, et al., AEG-1 3’-untranslated region functions as a ceRNA in inducing epithelial-mesenchymal transition of human non-small cell lung cancer by regulating miR-30a activity, Eur. J. Cell Biol. 94 (2015) 22-31.
|
[23] |
C. Zhang, M. Cui, Y. Cui, et al., A Semi-Quantitative Drug Affinity Responsive Target Stability (DARTS) assay for studying Rapamycin/mTOR interaction, J. Vis. Exp. (2019), 150.
|
[24] |
J.R. Wisniewski, A. Zougman, N. Nagaraj, et al., Universal sample preparation method for proteome analysis, Nat. Meth. 6 (2009) 359-362.
|
[25] |
E. Weerapana, A.E. Speers, B.F. Cravatt, Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)-a general method for mapping sites of probe modification in proteomes, Nat. Protoc. 2 (2007) 1414-1425.
|
[26] |
R. Jafari, H. Almqvist, H. Axelsson, et al., The cellular thermal shift assay for evaluating drug target interactions in cells, Nat. Protoc. 9 (2014) 2100-2122.
|
[27] |
P. Kleiner, W. Heydenreuter, M. Stahl, et al., A whole proteome inventory of background photocrosslinker binding, Angew. Chem. Int. Ed. Engl. 56 (2017) 1396-1401.
|
[28] |
K. Hayakawa, M. Yodo, S. Ohsuki, et al., Novel bicycloannulation via tandem vinylation and intramolecular Diels-Alder reaction of five-membered heterocycles: A new approach to construction of psoralen and azapsoralen, J. Am. Chem. Soc. 106 (1984) 6735-6740.
|
[29] |
M. Walko, E. Hewitt, S.E. Radford, et al., Design and synthesis of cysteine-specific labels for photo-crosslinking studies, RSC Adv. 9 (2019) 7610-7614.
|
[30] |
K. Cheng, J.S. Lee, P. Hao, et al., Tetrazole-based probes for integrated phenotypic screening, affinity-based proteome profiling, and sensitive detection of a cancer biomarker, Angew. Chem. Int. Ed. Engl. 56 (2017) 15044-15048.
|
[31] |
L. Liao, X. Song, L. Wang, et al., Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) E5986-e5994.
|
[32] |
X. Zheng, Y. Pan, G. Yang, et al., Kaempferol impairs aerobic glycolysis against melanoma metastasis via inhibiting the mitochondrial binding of HK2 and VDAC1, Eur. J. Pharmacol. 931 (2022), 175226.
|
[33] |
B. Zhang, S. Ma, I. Rachmin, et al., Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells, Nature 577 (2020) 676-681.
|
[34] |
Target identification using drug affinity responsive target stability (DARTS), Sci. Bus. eXchange 3 (2010), 71.
|
[35] |
A.K. Sood, G.N. Armaiz-Pena, J. Halder, et al., Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis, J. Clin. Invest. 120 (2010) 1515-1523.
|
[36] |
A.G. Beristain, S.D. Molyneux, P.A. Joshi, et al., PKA signaling drives mammary tumorigenesis through Src, Oncogene 34 (2015) 1160-1173.
|
[37] |
E.K. Sloan, S.J. Priceman, B.F. Cox, et al., The sympathetic nervous system induces a metastatic switch in primary breast cancer, Cancer Res. 70 (2010) 7042-7052.
|
[38] |
P. Du, H. Zeng, Y. Xiao, et al., Chronic stress promotes EMT-mediated metastasis through activation of STAT3 signaling pathway by miR-337-3p in breast cancer, Cell Death Dis. 11 (2020), 761.
|
[39] |
M.A. Pereira, A. Araujo, M. Simoes, et al., Influence of psychological factors in breast and lung cancer risk-A systematic review, Front. Psychol. 12 (2022), 769394.
|
[40] |
M.J. Schoemaker, M.E. Jones, L.B. Wright, et al., Psychological stress, adverse life events and breast cancer incidence: A cohort investigation in 106, 000 women in the United Kingdom, Breast Cancer Res. 18 (2016), 72.
|
[41] |
E. Rosenne, L. Sorski, L. Shaashua, et al., In vivo suppression of NK cell cytotoxicity by stress and surgery: Glucocorticoids have a minor role compared to catecholamines and prostaglandins, Brain Behav. Immun. 37 (2014) 207-219.
|
[42] |
S. Gandhi, M.R. Pandey, K. Attwood, et al., Phase I clinical trial of combination propranolol and pembrolizumab in locally advanced and metastatic melanoma: Safety, tolerability, and preliminary evidence of antitumor activity, Clin. Cancer Res. 27 (2021) 87-95.
|
[43] |
C.A. Changou, H.S. Shiah, L.T. Chen, et al., A phase II clinical trial on the combination therapy of PHY906 plus capecitabine in hepatocellular carcinoma, Oncol. 26 (2021) e367-e373.
|
[44] |
S.H. Liu, Y.C. Cheng, Old formula, new Rx: The journey of PHY906 as cancer adjuvant therapy, J. Ethnopharmacol. 140 (2012) 614-623.
|
[45] |
L. Huang, S. Jia, X. Sun, et al., Baicalin relieves neuropathic pain by regulating α2-adrenoceptor levels in rats following spinal nerve injury, Exp. Ther. Med. 20 (2020) 2684-2690.
|
[46] |
R. Cai, Y.P. Zhou, Y.H. Li, et al., Baicalin blocks colon cancer cell cycle and inhibits cell proliferation through miR-139-3p upregulation by targeting CDK16, Am. J. Chin. Med. 51 (2023) 189-203.
|
[47] |
Z. Wang, L. Ma, M. Su, et al., Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling, Cell Death Dis. 9 (2018), 217.
|
[48] |
K. Zhang, M. He, F. Wang, et al., Revealing antidepressant mechanisms of baicalin in hypothalamus through systems approaches in corticosterone- induced depressed mice, Neurosci. 13 (2019), 834.
|
[49] |
H. Yang, L. Xia, J. Chen, et al., Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity, Nat. Med. 25 (2019) 1428-1441.
|
[50] |
R. Deng, H.L. Zhang, J.H. Huang, et al., MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis, Autophagy 17 (2021) 3011-3029.
|
[51] |
T. Huang, Y. Wang, M. Huang, et al., LINC00470 accelerates the proliferation and metastasis of melanoma through promoting APEX1 expression, Cell Death Dis. 12 (2021), 410.
|
[52] |
J. Chen, C.B. Yuan, B. Yang, et al., Baicalin inhibits EMT through PDK1/AKT signaling in human nonsmall cell lung cancer, J. Oncol. 2021 (2021), 4391581.
|
[53] |
M. Li, A. Shi, H. Pang, et al., Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects, J. Ethnopharmacol. 156 (2014) 210-215.
|