Citation: | Xin Han, Yan Ning, Xinyue Dou, Yiwen Wang, Qiyuan Shan, Kao Shi, Zeping Wang, Chuan Ding, Min Hao, Kuilong Wang, Mengyun Peng, Haodan Kuang, Qiao Yang, Xianan Sang, Gang Cao. Cornus officinalis with high pressure wine steaming enhanced anti-hepatic fibrosis: Possible through SIRT3-AMPK axis[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100927. doi: 10.1016/j.jpha.2023.12.017 |
[1] |
W. Fan, T. Liu, W. Chen, et al., ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice, Gastroenterology 157 (2019) 1352-1367.e13.
|
[2] |
X. Han, Y. Wu, Q. Yang, et al., Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis, Pharmacol. Ther. 222 (2021), 107791.
|
[3] |
S.L. Friedman, M. Pinzani, Hepatic fibrosis 2022: Unmet needs and a blueprint for the future, Hepatology 75 (2022) 473-488.
|
[4] |
M. Chen, Y. Xie, S. Gong, et al., Traditional Chinese medicine in the treatment of nonalcoholic steatohepatitis, Pharmacol. Res. 172 (2021), 105849.
|
[5] |
X. Li, D. Zhou, X. Chi, et al., Entecavir combining Chinese herbal medicine for HBeAg-positive chronic hepatitis B patients: A randomized, controlled trial, Hepatol. Int. 14 (2020) 985-996.
|
[6] |
L. Zhang, G. Wang, W. Hou, et al., Contemporary clinical research of traditional Chinese medicines for chronic hepatitis B in China: An analytical review, Hepatology 51 (2010) 690-698.
|
[7] |
Y. Xing, W. Zhong, D. Peng, et al., Chinese herbal formula Ruangan Granule enhances the efficacy of entecavir to reverse advanced liver fibrosis/early cirrhosis in patients with chronic HBV infection: A multicenter, randomized clinical trial, Pharmacol. Res. 190 (2023), 106737.
|
[8] |
X. Gao, Y. Liu, Z. An, et al., Active components and pharmacological effects of Cornus officinalis: Literature review, Front. Pharmacol. 12 (2021), 633447.
|
[9] |
Y.H. Sung, H.K. Chang, S.E. Kim, et al., Anti-inflammatory and analgesic effects of the aqueous extract of corni fructus in murine RAW 264.7 macrophage cells, J. Med. Food 12 (2009) 788-795.
|
[10] |
L. Cao, Y. Wu, W. Li, et al., Cornus officinalis vinegar reduces body weight and attenuates hepatic steatosis in mouse model of nonalcoholic fatty liver disease, J. Food Sci. 87 (2022) 3248-3259.
|
[11] |
J. Huang, Y. Zhang, L. Dong, et al., Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis sieb. et zucc, J. Ethnopharmacol. 213 (2018) 280-301.
|
[12] |
X. Luo, X. Bao, X. Weng, et al., The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway, Life Sci. 291 (2022), 120064.
|
[13] |
K. Feng, Z. Chen, P. Liu, et al., Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model, J. Cell. Physiol. 234 (2019) 18192-18205.
|
[14] |
H. Yu, S. Yao, C. Zhou, et al., Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling, J. Ethnopharmacol. 266 (2021), 113447.
|
[15] |
L. An, M. Zhang, Y. Lin, et al., Morroniside, a novel GATA3 binding molecule, inhibits hepatic stellate cells activation by enhancing lysosomal acid lipase expression, Phytomed. 103 (2022), 154199.
|
[16] |
T. Kisseleva, The origin of fibrogenic myofibroblasts in fibrotic liver, Hepatol. Baltim. Md 65 (2017) 1039-1043.
|
[17] |
N. Arroyo, L. Villamayor, I. Diaz, et al., GATA4 induces liver fibrosis regression by deactivating hepatic stellate cells, JCI Insight 6 (2021), e150059.
|
[18] |
T. Kisseleva, M. Cong, Y. Paik, et al., Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 9448-9453.
|
[19] |
X. Han, C. Ding, Y. Ning, et al., Optimizing processing technology of Cornus officinalis: Based on anti-fibrotic activity, Front. Nutr. 9 (2022), 807071.
|
[20] |
C. Ju, L. Zhu, W. Wang, et al., Cornus officinalis prior and post-processing: Regulatory effects on intestinal flora of diabetic nephropathy rats, Front. Pharmacol. 13 (2022), 1039711.
|
[21] |
L. Huang, S. Hu, M. Shao, et al., Combined Cornus officinalis and Paeonia lactiflora pall therapy alleviates rheumatoid arthritis by regulating synovial apoptosis via AMPK-mediated mitochondrial fission, Front. Pharmacol. 12 (2021), 639009.
|
[22] |
G.R. Steinberg, D.G. Hardie, New insights into activation and function of the AMPK, Nat. Rev. Mol. Cell Biol. 24 (2023) 255-272.
|
[23] |
P. Zhao, X. Sun, C. Chaggan, et al., An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis, Science 367 (2020) 652-660.
|
[24] |
X. Sun, Y. Wang, H. Zeng, et al., SIRT3 protects bovine mammary epithelial cells from heat stress damage by activating the AMPK signaling pathway, Cell Death Discov. 7 (2021), 304.
|
[25] |
A. Vassilopoulos, J.D. Pennington, T. Andresson, et al., SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress, Antioxid. Redox Signal. 21 (2014) 551-564.
|
[26] |
H. Guo, Y. Ouyang, H. Yin, et al., Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder, Redox Biol. 49 (2022), 102227.
|
[27] |
L. Xie, K. Wen, Q. Li, et al., CD38 deficiency protects mice from high fat diet-induced nonalcoholic fatty liver disease through activating NAD+/sirtuins signaling pathways-mediated inhibition of lipid accumulation and oxidative stress in hepatocytes, Int. J. Biol. Sci. 17 (2021) 4305-4315.
|
[28] |
B.H. Ahn, H.S. Kim, S. Song, et al., A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 14447-14452.
|
[29] |
C. Chen, J. Gu, J. Wang, et al., Physcion 8-O-β-glucopyranoside ameliorates liver fibrosis through inflammation inhibition by regulating SIRT3-mediated NF-κB P65 nuclear expression, Int. Immunopharmacol. 90 (2021), 107206.
|
[30] |
T. Zhang, J. Liu, S. Shen, et al., SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity, Cell Death Differ. 27 (2020) 329-344.
|
[31] |
H. Dong, X. Han, M. Hao, et al., Nanodrug rescues liver fibrosis via synergistic therapy with H2O2 depletion and Saikosaponin b1 sustained release, Commun. Biol. 6 (2023), 184.
|
[32] |
L. Huang, Q. Shan, Q. Lyu, et al., MCnebula: Critical chemical classes for the classification and boost identification by visualization for untargeted LC-MS/MS data analysis, Anal. Chem. 95 (2023) 9940-9948.
|
[33] |
R. Huang, F. Guo, Y. Li, et al., Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis, Phytomed. 92 (2021), 153739.
|
[34] |
X. Lu, W. Xuan, J. Li, et al., AMPK protects against alcohol-induced liver injury through UQCRC2 to up-regulate mitophagy, Autophagy 17 (2021) 3622-3643.
|
[35] |
T. Lan, Y. Yu, J. Zhang, et al., Cordycepin ameliorates nonalcoholic steatohepatitis by activation of the AMP-activated protein kinase signaling pathway, Hepatology 74 (2021) 686-703.
|
[36] |
T. Xin, C. Lu, SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury, Aging 12 (2020) 16224-16237.
|
[37] |
C. Chen, J. Chen, Y. Wang, et al., Ganoderma lucidum polysaccharide inhibits HSC activation and liver fibrosis via targeting inflammation, apoptosis, cell cycle, and ECM-receptor interaction mediated by TGF-β/Smad signaling, Phytomedicine 110 (2023), 154626.
|
[38] |
G. Szabo, J. Petrasek, Inflammasome activation and function in liver disease, Nat. Rev. Gastroenterol. Hepatol. 12 (2015) 387-400.
|
[39] |
Y. Yan, S. Mukherjee, K.G. Harikumar, et al., Structure of an AMPK complex in an inactive, ATP-bound state, Science 373 (2021) 413-419.
|
[40] |
Y. Deng, M. Xie, Q. Li, et al., Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF, Circ. Res. 128 (2021) 232-245.
|