Citation: | Jiajun Chen, Tian Li, Dehua Huang, Wenxia Gong, Junsheng Tian, Xiaoxia Gao, Xuemei Qin, Guanhua Du, Yuzhi Zhou. Integrating UHPLC-MS/MS quantitative analysis and exogenous purine supplementation to elucidate the antidepressant mechanism of Chaigui granules by regulating purine metabolism[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1562-1576. doi: 10.1016/j.jpha.2023.08.008 |
[1] |
G.2.D.A.I. Collaborators, Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019, Lancet 396 (2020) 1204-1222.
|
[2] |
X. Wang, R. Wang, Q. Ding, et al., Hypochlorous acid-activated multifunctional fluorescence platform for depression therapy and antidepressant efficacy evaluation, Anal. Chem. 94 (2022) 9811-9818.
|
[3] |
Y. Zhu, F. Wang, J. Han, et al., Untargeted and targeted mass spectrometry reveal the effects of theanine on the central and peripheral metabolomics of chronic unpredictable mild stress-induced depression in juvenile rats, J. Pharm. Anal. 13 (2023) 73-87.
|
[4] |
S. Yao, M. Xu, Y. Wang, et al., Astrocytic lactate dehydrogenase A regulates neuronal excitability and depressive-like behaviors through lactate homeostasis in mice, Nat. Commun. 14 (2023), 729.
|
[5] |
K. Fan, Y. Li, H. Wang, et al., Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior, Cell 179 (2019) 864-879.e19.
|
[6] |
B. Huang, Y. Wu, C. Li, et al., Molecular basis and mechanism of action of Albizia julibrissin in depression treatment and clinical application of its formulae, Chin. Herb. Med. 15 (2023) 201–213.
|
[7] |
D. Huang, L. Wang, Y. Wu, et al., Metabolomics based on peripheral blood mononuclear cells to dissect the mechanisms of Chaigui Granules for treating depression, ACS Omega 7 (2022) 8466-8482.
|
[8] |
J. Tian, P. Qin, T. Xu, et al., Chaigui Granule exerts anti-depressant effects by regulating the synthesis of estradiol and the downstream of CYP19A1-E2-ERKs signaling pathway in CUMS-induced depressed rats, Front. Pharmacol. 13 (2022), 1005438.
|
[9] |
G. Burnstock, Purinergic nerves, Pharmacol. Rev. 24 (1972) 509-581.
|
[10] |
G. Burnstock, Purinergic signalling and disorders of the central nervous system, Nat. Rev. Drug Discov. 7 (2008) 575-590.
|
[11] |
Z. Huang, N. Xie, P. Illes, et al., From purines to purinergic signalling: molecular functions and human diseases, Signal Transduct. Target. Ther. 6 (2021), 162.
|
[12] |
A. Szopa, K. Socala, A. Serefko, et al., Purinergic transmission in depressive disorders, Pharmacol. Ther. 224 (2021), 107821.
|
[13] |
X. Zhou, L. Liu, X. Lan, et al., Polyunsaturated fatty acids metabolism, purine metabolism and inosine as potential independent diagnostic biomarkers for major depressive disorder in children and adolescents, Mol. Psychiatry 24 (2019) 1478-1488.
|
[14] |
Z. Lu, S. Li, N. Aa, et al., Quantitative analysis of 20 purine and pyrimidine metabolites by HILIC-MS/MS in the serum and hippocampus of depressed mice, J. Pharm. Biomed. Anal. 219 (2022), 114886.
|
[15] |
J.M. Deussing, E. Arzt, P2X7 receptor: a potential therapeutic target for depression? Trends Mol. Med. 24 (2018) 736-747.
|
[16] |
F. Bartoli, M. Clerici, G. Carra, Purinergic system and suicidal behavior: exploring the link between adenosine A2A receptors and depressive/impulsive features, Mol. Psychiatry 25 (2020) 512-513.
|
[17] |
V. Lazarevic, Y. Yang, I. Flais, et al., Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine A1 receptors, Mol. Psychiatry 26 (2021) 7425-7435.
|
[18] |
J.C. Rech, A. Bhattacharya, M.A. Letavic, et al., The evolution of P2X7 antagonists with a focus on CNS indications, Bioorg. Med. Chem. Lett. 26 (2016) 3838-3845.
|
[19] |
M.A. Letavic, B.M. Savall, B.D. Allison, et al., 4-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-based P2X7 receptor antagonists: optimization of pharmacokinetic properties leading to the identification of a clinical candidate, J. Med. Chem. 60 (2017) 4559-4572.
|
[20] |
C.C. Chrovian, A. Soyode-Johnson, A.A. Peterson, et al., A dipolar cycloaddition reaction to access 6-methyl-4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridines enables the discovery synthesis and preclinical profiling of a P2X7 antagonist clinical candidate, J. Med. Chem. 61 (2018) 207-223.
|
[21] |
R.O. Godinho, T. Duarte, E.S.A. Pacini, New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway, Front. Pharmacol. 6 (2015), 58.
|
[22] |
D.E. Ribeiro, A.L. Roncalho, T. Glaser, et al., P2X7 receptor signaling in stress and depression, Int. J. Mol. Sci. 20 (2019), 2778.
|
[23] |
F. Gao, S. Yang, J. Wang, et al., cAMP-PKA cascade: an outdated topic for depression? Biomed. Pharmacother. 150 (2022), 113030.
|
[24] |
M. Tang, T. Liu, P. Jiang, et al., The interaction between autophagy and neuroinflammation in major depressive disorder: from pathophysiology to therapeutic implications, Pharmacol. Res. 168 (2021), 105586.
|
[25] |
Z. Yan, B. Rein, Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications, Mol. Psychiatry 27 (2022) 445-465.
|
[26] |
D.A. Pizzagalli, A.C. Roberts, Correction: prefrontal cortex and depression, Neuropsychopharmacology 47 (2022), 609.
|
[27] |
C. Chen, Q. Yin, J. Tian, et al., Studies on the potential link between antidepressant effect of Xiaoyao San and its pharmacological activity of hepatoprotection based on multi-platform metabolomics, J. Ethnopharmacol. 249 (2020), 112432.
|
[28] |
C. Chen, W. Gong, J. Tian, et al., Radix Paeoniae Alba attenuates Radix Bupleuri-induced hepatotoxicity by modulating gut microbiota to alleviate the inhibition of saikosaponins on glutathione synthetase, J. Pharm. Anal. 13 (2023) 640-659.
|
[29] |
X. Zhu, Q. Ma, F. Yang, et al., Xiaoyaosan ameliorates chronic restraint stress-induced depression-like phenotype by suppressing A2AR signaling in the rat Striatum, Front. Pharmacol. 13 (2022), 897436.
|
[30] |
J. Lu, B. Jia, L. Yang, et al., Ultra-high performance liquid chromatography with ultraviolet and tandem mass spectrometry for simultaneous determination of metabolites in purine pathway of rat plasma, J. Chromatogr. B 1036-1037 (2016) 84-92.
|
[31] |
J. Chen, T. Li, X. Qin, et al., Integration of non-targeted metabolomics and targeted quantitative analysis to elucidate the synergistic antidepressant effect of Bupleurum chinense DC - Paeonia lactiflora pall herb pair by regulating purine metabolism, Front. Pharmacol. 13 (2022), 900459.
|
[32] |
M.P. Kaster, A.O. Rosa, M.M. Rosso, et al., Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors, Neurosci. Lett. 355 (2004) 21-24.
|
[33] |
M.P. Kaster, J. Budni, M. Gazal, et al., The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A 2A receptors, Purinergic Signal. 9 (2013) 481-486.
|
[34] |
A. Camargo, L.E.B. Bettio, P.B. Rosa, et al., The antidepressant-like effect of guanosine involves the modulation of adenosine A1 and A2A receptors, Purinergic Signal. 19 (2023) 387-399.
|
[35] |
L. Dias, C.R. Lopes, F.Q. Goncalves, et al., Crosstalk between ATP-P2X7 and adenosine A2A receptors controlling neuroinflammation in rats subject to repeated restraint stress, Front. Cell. Neurosci. 15 (2021), 639322.
|
[36] |
W.N. Marsden, Synaptic plasticity in depression: molecular, cellular and functional correlates, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 43 (2013) 168-184.
|
[37] |
J. Rao, Y. Qiao, R. Xie, et al., Fecal microbiota transplantation ameliorates stress-induced depression-like behaviors associated with the inhibition of glial and NLRP3 inflammasome in rat brain, J. Psychiatr. Res. 137 () 147-157.
|
[38] |
R. Troubat, S. Leman, K. Pinchaud, et al., Brain immune cells characterization in UCMS exposed P2X7 knock-out mouse, Brain Behav. Immun. 94 (2021) 159-174.
|