| Citation: | Lingqi Yu, Jun Yan, Yingqi Zhan, Anyao Li, Lidan Zhu, Jingyang Qian, Fanfan Zhou, Xiaoyan Lu, Xiaohui Fan. Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 926-941. doi: 10.1016/j.jpha.2023.05.004 |
|
A.M. Larson, J. Polson, R.J. Fontana, et al., Acetaminophen-induced acute liver failure: Results of a United States multicenter, prospective study, Hepatology 42 (2005) 1364-1372.
|
|
S.Chen, C. Yang, Drug-induced liver injury: Advances and confusions in treatment, J. Clin. Hepatol. 37 (2021) 2505-2509.
|
|
M. Li, Q. Luo, Y. Tao, et al., Pharmacotherapies for drug-induced liver injury: A current literature review, Front. Pharmacol. 12 (2022), 806249.
|
|
A.M. Larson, Acetaminophen hepatotoxicity, Clin. Liver Dis. 11 (2007) 525-548.
|
|
T. Lee, Y.S. Lee, S.Y. Yoon, et al., Characteristics of liver injury in drug-induced systemic hypersensitivity reactions, J. Am. Acad. Dermatol. 69 (2013) 407-415.
|
|
K. Dalhoff, H. Laursen, K. Bangert, et al., Autoprotection in acetaminophen intoxication in rats: The role of liver regeneration, Pharmacol. Toxicol. 88 (2001) 135-141.
|
|
K.N. Thakore, H.M. Mehendale, Role of hepatocellular regeneration in CCl4 autoprotection, Toxicol. Pathol. 19 (1991) 47-58.
|
|
R.S. Mangipudy, S. Chanda, H.M. Mehendale, Hepatocellular regeneration: Key to thioacetamide autoprotection, Pharmacol. Toxicol. 77 (1995) 182-188.
|
|
D.V. Sivarao, H.M. Mehendale, 2-Butoxyethanol autoprotection is due to resiliance of newly formed erythrocytes to hemolysis, Arch. Toxicol. 69 (1995) 526-532.
|
|
C.I. Ghanem, M.L. Ruiz, S.S.M. Villanueva, et al., Effect of repeated administration with subtoxic doses of acetaminophen to rats on enterohepatic recirculation of a subsequent toxic dose, Biochem. Pharmacol. 77 (2009) 1621-1628.
|
|
S. Torres, A. Baulies, N. Insausti-Urkia, et al., Endoplasmic reticulum stress-induced upregulation of STARD1 promotes acetaminophen-induced acute liver failure, Gastroenterology 157 (2019) 552-568.
|
|
J. Sun, Y. Wen, Y. Zhou, et al., p53 attenuates acetaminophen-induced hepatotoxicity by regulating drug-metabolizing enzymes and transporter expression, Cell Death Dis. 9 (2018), 536.
|
|
M.A. O’Connor, P. Koza-Taylor, S.N. Campion, et al., Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection), Toxicol. Appl. Pharmacol. 274 (2014) 156-167.
|
|
L.M. Aleksunes, S.N. Campion, M.J. Goedken, et al., Acquired resistance to acetaminophen hepatotoxicity is associated with induction of multidrug resistance-associated protein 4 (Mrp4) in proliferating hepatocytes, Toxicol. Sci. 104 (2008) 261-273.
|
|
S. Rudraiah, P.R. Rohrer, I. Gurevich, et al., Tolerance to acetaminophen hepatotoxicity in the mouse model of autoprotection is associated with induction of flavin-containing monooxygenase-3 (FMO3) in hepatocytes, Toxicol. Sci. 141 (2014) 263-277.
|
|
R. Eakins, J. Walsh, L. Randle, et al., Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome, Sci. Rep. 5 (2015), 16423.
|
|
M.J.T. Stubbington, O. Rozenblatt-Rosen, A. Regev, et al., Single-cell transcriptomics to explore the immune system in health and disease, Science 358 (2017) 58-63.
|
|
S. Ben-Moshe, T. Veg, R. Manco, et al., The spatiotemporal program of zonal liver regeneration following acute injury, Cell Stem Cell 29 (2022) 973-989.e10.
|
|
C.M. Walesky, K.E. Kolb, C.L. Winston, et al., Functional compensation precedes recovery of tissue mass following acute liver injury, Nat. Commun. 11 (2020), 5785.
|
|
S. Hu, S. Liu, Y. Bian, et al., Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b, Cell Rep. Med. 3 (2022), 100754.
|
|
G. Yu, L.-G. Wang, Y. Han, et al., clusterProfiler: An R package for comparing biological themes among gene clusters, OMICS 16 (2012) 284-287.
|
|
X. Qiu, Q. Mao, Y. Tang, et al., Reversed graph embedding resolves complex single-cell trajectories, Nat. Meth. 14 (2017) 979-982.
|
|
R. Vento-Tormo, M. Efremova, R.A. Botting, et al., Single-cell reconstruction of the early maternal-fetal interface in humans, Nature 563 (2018) 347-353.
|
|
X. Xiong, H. Kuang, S. Ansari, et al., Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis, Mol. Cell 75 (2019) 644-660.e5.
|
|
C. Yang, W. Lim, H. Bae, et al., C-C motif chemokine ligand 2 induces proliferation and prevents lipopolysaccharide-induced inflammatory responses in bovine mammary epithelial cells, J. Dairy Sci. 101 (2018) 4527-4541.
|
|
T. Yoshimura, The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments, Cytokine 98 (2017) 71-78.
|
|
T. Yoshimura, The chemokine MCP-1 (CCL2) in the host interaction with cancer: A foe or ally?, Cell. Mol. Immunol. 15 (2018) 335-345.
|
|
M.H. Lehmann, L.E. Torres-Dominguez, P.J.R. Price, et al., CCL2 expression is mediated by type I IFN receptor and recruits NK and T cells to the lung during MVA infection, J. Leukoc. Biol. 99 (2016) 1057-1064.
|
|
B. Liu, R. Zhang, G. Tao, et al., Augmented Wnt signaling as a therapeutic tool to prevent ischemia/reperfusion injury in liver: Preclinical studies in a mouse model, Liver Transpl. 21 (2015) 1533-1542.
|
|
U. Apte, S. Singh, G. Zeng, et al., Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury, Am. J. Pathol. 175 (2009) 1056-1065.
|
|
M.K. Connolly, D. Ayo, A. Malhotra, et al., Dendritic cell depletion exacerbates acetaminophen hepatotoxicity, Hepatology 54 (2011) 959-968.
|
|
V.G. Pillarisetty, A.B. Shah, G. Miller, et al., Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition, J. Immunol. 172 (2004) 1009-1017.
|
|
R. Soysa, X. Wu, I.N. Crispe, Dendritic cells in hepatitis and liver transplantation, Liver Transpl. 23 (2017) 1433-1439.
|
|
G. Szabo, P. Mandrekar, A. Dolganiuc, Innate immune response and hepatic inflammation, Semin. Liver. Dis. 27 (2007) 339-350.
|
|
W.J. Sim, P.J. Ahl, J.E. Connolly, Metabolism is central to tolerogenic dendritic cell function, Mediators Inflamm. 2016 (2016), 2636701.
|
|
S. Sozzani, M. Rusnati, E. Riboldi, et al., Dendritic cell-endothelial cell cross-talk in angiogenesis, Trends Immunol. 28 (2007) 385-392.
|
|
Z. Liu, S. Govindarajan, S. Okamoto, et al., NK cells cause liver injury and facilitate the induction of T cell-mediated immunity to a viral liver infection, J. Immunol. 164 (2000) 6480-6486.
|
|
J.R. Ortaldo, H.A. Young, Expression of IFN-γ upon triggering of activating Ly49D NK receptors in vitro and in vivo: Costimulation with IL-12 or IL-18 overrides inhibitory receptors, J. Immunol. 170 (2003) 1763-1769.
|
|
L. Li, Z. Zeng, Z. Qi, et al., Natural killer cells-produced IFN-γ improves bone marrow-derived hepatocytes regeneration in murine liver failure model, Sci. Rep. 5 (2015), 13687.
|
|
C.-W. Cheng, C.C. Duwaerts, N. van Rooijen, et al., NK cells suppress experimental cholestatic liver injury by an interleukin-6-mediated, Kupffer cell-dependent mechanism, J. Hepatol. 54 (2011) 746-752.
|
|
G. Notas, T. Kisseleva, D. Brenner, NK and NKT cells in liver injury and fibrosis, Clin. Immunol. 130 (2009) 16-26.
|
|
B. Gao, S. Radaeva, W.I. Jeong, Activation of natural killer cells inhibits liver fibrosis: A novel strategy to treat liver fibrosis, Expert Rev. Gastroenterol. Hepatol. 1 (2007) 173-180.
|
|
Y.-Y. Sun, X.-F. Li, X.-M. Meng, et al., Macrophage phenotype in liver injury and repair, Scand. J. Immunol. 85 (2017) 166-174.
|
|
S. Tian, S.-Y. Chen, Macrophage polarization in kidney diseases, Macrophage (Houst), 2 (2015), e679.
|
|
M. Miyanishi, K. Tada, M. Koike, et al., Identification of Tim4 as a phosphatidylserine receptor, Nature 450 (2007) 435-439.
|
|
J. Yan, T. Horng, Lipid metabolism in regulation of macrophage functions, Trends Cell Biol. 30 (2020) 979-989.
|
|
W.N. Silva, P.H.D.M. Prazeres, A.E. Paiva, et al., Macrophage-derived GPNMB accelerates skin healing, Exp. Dermatol. 27 (2018) 630-635.
|
|
J. Tonkin, L. Temmerman, R.D. Sampson, et al., Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization, Mol. Ther. 23 (2015) 1189-1200.
|
|
G.J. Graham, M. Locati, Regulation of the immune and inflammatory responses by the ‘atypical’ chemokine receptor D6, J. Pathol. 229 (2013) 168-175.
|
|
M. Lux, A. Blaut, N. Eltrich, et al., The atypical chemokine receptor 2 limits progressive fibrosis after acute ischemic kidney injury, Am. J. Pathol. 189 (2019) 231-247.
|
|
M. Ohms, S. Moller, T. Laskay, An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro, Front. Immunol. 11 (2020), 532.
|
|
L.D. Sansores-Espana, S. Melgar-Rodriguez, R. Vernal, et al., Neutrophil N1 and N2 subsets and their possible association with periodontitis: A scoping review, Int. J. Mol. Sci. 23 (2022), 12068.
|
|
Y. Ma, A. Yabluchanskiy, R.P. Iyer, et al., Temporal neutrophil polarization following myocardial infarction, Cardiovasc. Res. 110 (2016) 51-61.
|
|
E. Wier, M. Asada, G. Wang, et al., Neutrophil extracellular traps impair regeneration, J. Cell. Mol. Med. 25 (2021) 10008-10019.
|
|
A.J. Paris, Y. Liu, J. Mei, et al., Neutrophils promote alveolar epithelial regeneration by enhancing type II pneumocyte proliferation in a model of acid-induced acute lung injury, Am. J. Physiol. Lung Cell. Mol. Physiol. 311 (2016) L1062-L1075.
|
|
Y. Weng, H. Wang, D. Wu, et al., A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL, Cell Res. 32 (2022) 814-830.
|
|
W.M. Anderson, A. Grundholm, B.H. Sells, Modification of ribosomal proteins during liver regeneration, Biochem. Biophys. Res. Commun. 62 (1975) 669-676.
|
|
A.J. Rizzo, T.E. Webb, Regulation of ribosome formation in regenerating rat liver, Eur. J. Biochem. 27 (1972) 136-144.
|
|
Y. Hu, H. Zhang, J. Li, et al., Gut-derived lymphocyte recruitment to liver and induce liver injury in non-alcoholic fatty liver disease mouse model, J. Gastroenterol. Hepatol. 31 (2016) 676-684.
|
|
H. Okamura, S. Kashiwamura, H. Tsutsui, et al., Regulation of interferon-γ production by IL-12 and IL-18, Curr. Opin. Immunol. 10 (1998) 259-264.
|
|
E. Santoni-Rugiu, P. Jelnes, S.S. Thorgeirsson, et al., Progenitor cells in liver regeneration: Molecular responses controlling their activation and expansion, APMIS 113 (2005) 876-902.
|
|
A.P. Holt, Z. Stamataki, D.H. Adams, Attenuated liver fibrosis in the absence of B cells, Hepatology 43 (2006) 868-871.
|
|
L.D. DeLeve, Liver sinusoidal endothelial cells and liver regeneration, J. Clin. Invest. 123 (2013) 1861-1866.
|
|
G. Soria, A. Ben-Baruch, The inflammatory chemokines CCL2 and CCL5 in breast cancer, Cancer Lett. 267 (2008) 271-285.
|
|
J.-L. Duan, Z.-Y. Zhou, B. Ruan, et al., Notch-regulated c-kit-positive liver sinusoidal endothelial cells contribute to liver zonation and regeneration, Cell. Mol. Gastroenterol. Hepatol. 13 (2022) 1741-1756.
|
|
B.-Z. Qian, J. Li, H. Zhang, et al., CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature 475 (2011) 222-225.
|
|
C.D. Conrady, M. Zheng, N.A. Mandal, et al., IFN-α-driven CCL2 production recruits inflammatory monocytes to infection site in mice, Mucosal Immunol. 6 (2013) 45-55.
|
|
A.S. Rocha, V. Vidal, M. Mertz, et al., The angiocrine factor rspondin3 is a key determinant of liver zonation, Cell Rep. 13 (2015) 1757-1764.
|
|
O. Kazanskaya, B. Ohkawara, M. Heroult, et al., The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development, Development 135 (2008) 3655-3664.
|
|
B. Scholz, C. Korn, J. Wojtarowicz, et al., Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca2+/NFAT signaling, Dev. Cell 36 (2016) 79-93.
|
|
R. Ogasawara, D. Hashimoto, S. Kimura, et al., Intestinal lymphatic endothelial cells produce R-spondin3, Sci. Rep. 8 (2018), 10719.
|
|
L.A.J O’Neill, E.J. Pearce, Immunometabolism governs dendritic cell and macrophage function, J. Exp. Med. 213 (2016) 15-23.
|
|
O. Morante-Palacios, F. Fondelli, E. Ballestar, et al., Tolerogenic dendritic cells in autoimmunity and inflammatory diseases, Trends Immunol. 42 (2021) 59-75.
|
|
S.K. Wculek, S.C. Khouili, E. Priego, et al., Metabolic control of dendritic cell functions: digesting information, Front. Immunol. 10 (2019), 775.
|
|
J. Kroll, J. Waltenberger, Regulation of the endothelial function and angiogenesis by vascular endothelial growth factor-A (VEGF-A), Z. Kardiol. 89 (2000) 206-218.
|
|
H. Shimizu, N. Mitsuhashi, M. Ohtsuka, et al., Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats, World J. Gastroenterol. 11 (2005) 7254-7260.
|
|
T. Sato, O.N. El-Assal, T. Ono, et al., Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver, J. Hepatol. 34 (2001) 690-698.
|
|
H.J. Wild, Conflict-centered group discussion in the industrial outpatient clinic, Z. Arztl. Fortbild (Jena). 67 (1973) 390-393.
|
|
J. Bi, X. Zheng, Y. Chen, et al., TIGIT safeguards liver regeneration through regulating natural killer cell-hepatocyte crosstalk, Hepatology 60 (2014) 1389-1398.
|
|
R. Sun, B. Gao, Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-γ), Gastroenterology 127 (2004) 1525-1539.
|