Volume 13 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Lingqi Yu, Jun Yan, Yingqi Zhan, Anyao Li, Lidan Zhu, Jingyang Qian, Fanfan Zhou, Xiaoyan Lu, Xiaohui Fan. Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 926-941. doi: 10.1016/j.jpha.2023.05.004
Citation: Lingqi Yu, Jun Yan, Yingqi Zhan, Anyao Li, Lidan Zhu, Jingyang Qian, Fanfan Zhou, Xiaoyan Lu, Xiaohui Fan. Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 926-941. doi: 10.1016/j.jpha.2023.05.004

Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity

doi: 10.1016/j.jpha.2023.05.004
Funds:

This research was supported by the National Natural Science Foundation of China (Grant No.: 81870426), the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No.: ZYYCXTD-D-202002), the Fundamental Research Funds for the Central Universities (Grant No.: 226-2023-00059), and the Fundamental Research Funds for the Central Universities.

  • Received Date: Nov. 29, 2022
  • Rev Recd Date: May 05, 2023
  • Available Online: Aug. 29, 2023
  • Gaining a better understanding of autoprotection against drug-induced liver injury (DILI) may provide new strategies for its prevention and therapy. However, little is known about the underlying mechanisms of this phenomenon. We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells (NPCs) in autoprotection against DILI, using acetaminophen (APAP) as a model drug. Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice, followed by a higher dose in a secondary challenge. NPC subsets and dynamic changes were identified in the APAP (hepatotoxicity-sensitive) and APAP-resistant (hepatotoxicity-resistant) groups. A chemokine (C-C motif) ligand 2+ endothelial cell subset almost disappeared in the APAP-resistant group, and an R-spondin 3+ endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection. Moreover, the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation. DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group. In addition, the natural killer cell subsets NK-3 and NK-4 and the Sca-1-CD62L+ natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways. Furthermore, macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity. Overall, this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.
  • loading
  • A.M. Larson, J. Polson, R.J. Fontana, et al., Acetaminophen-induced acute liver failure: Results of a United States multicenter, prospective study, Hepatology 42 (2005) 1364-1372.
    S.Chen, C. Yang, Drug-induced liver injury: Advances and confusions in treatment, J. Clin. Hepatol. 37 (2021) 2505-2509.
    M. Li, Q. Luo, Y. Tao, et al., Pharmacotherapies for drug-induced liver injury: A current literature review, Front. Pharmacol. 12 (2022), 806249.
    A.M. Larson, Acetaminophen hepatotoxicity, Clin. Liver Dis. 11 (2007) 525-548.
    T. Lee, Y.S. Lee, S.Y. Yoon, et al., Characteristics of liver injury in drug-induced systemic hypersensitivity reactions, J. Am. Acad. Dermatol. 69 (2013) 407-415.
    K. Dalhoff, H. Laursen, K. Bangert, et al., Autoprotection in acetaminophen intoxication in rats: The role of liver regeneration, Pharmacol. Toxicol. 88 (2001) 135-141.
    K.N. Thakore, H.M. Mehendale, Role of hepatocellular regeneration in CCl4 autoprotection, Toxicol. Pathol. 19 (1991) 47-58.
    R.S. Mangipudy, S. Chanda, H.M. Mehendale, Hepatocellular regeneration: Key to thioacetamide autoprotection, Pharmacol. Toxicol. 77 (1995) 182-188.
    D.V. Sivarao, H.M. Mehendale, 2-Butoxyethanol autoprotection is due to resiliance of newly formed erythrocytes to hemolysis, Arch. Toxicol. 69 (1995) 526-532.
    C.I. Ghanem, M.L. Ruiz, S.S.M. Villanueva, et al., Effect of repeated administration with subtoxic doses of acetaminophen to rats on enterohepatic recirculation of a subsequent toxic dose, Biochem. Pharmacol. 77 (2009) 1621-1628.
    S. Torres, A. Baulies, N. Insausti-Urkia, et al., Endoplasmic reticulum stress-induced upregulation of STARD1 promotes acetaminophen-induced acute liver failure, Gastroenterology 157 (2019) 552-568.
    J. Sun, Y. Wen, Y. Zhou, et al., p53 attenuates acetaminophen-induced hepatotoxicity by regulating drug-metabolizing enzymes and transporter expression, Cell Death Dis. 9 (2018), 536.
    M.A. O’Connor, P. Koza-Taylor, S.N. Campion, et al., Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection), Toxicol. Appl. Pharmacol. 274 (2014) 156-167.
    L.M. Aleksunes, S.N. Campion, M.J. Goedken, et al., Acquired resistance to acetaminophen hepatotoxicity is associated with induction of multidrug resistance-associated protein 4 (Mrp4) in proliferating hepatocytes, Toxicol. Sci. 104 (2008) 261-273.
    S. Rudraiah, P.R. Rohrer, I. Gurevich, et al., Tolerance to acetaminophen hepatotoxicity in the mouse model of autoprotection is associated with induction of flavin-containing monooxygenase-3 (FMO3) in hepatocytes, Toxicol. Sci. 141 (2014) 263-277.
    R. Eakins, J. Walsh, L. Randle, et al., Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome, Sci. Rep. 5 (2015), 16423.
    M.J.T. Stubbington, O. Rozenblatt-Rosen, A. Regev, et al., Single-cell transcriptomics to explore the immune system in health and disease, Science 358 (2017) 58-63.
    S. Ben-Moshe, T. Veg, R. Manco, et al., The spatiotemporal program of zonal liver regeneration following acute injury, Cell Stem Cell 29 (2022) 973-989.e10.
    C.M. Walesky, K.E. Kolb, C.L. Winston, et al., Functional compensation precedes recovery of tissue mass following acute liver injury, Nat. Commun. 11 (2020), 5785.
    S. Hu, S. Liu, Y. Bian, et al., Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b, Cell Rep. Med. 3 (2022), 100754.
    G. Yu, L.-G. Wang, Y. Han, et al., clusterProfiler: An R package for comparing biological themes among gene clusters, OMICS 16 (2012) 284-287.
    X. Qiu, Q. Mao, Y. Tang, et al., Reversed graph embedding resolves complex single-cell trajectories, Nat. Meth. 14 (2017) 979-982.
    R. Vento-Tormo, M. Efremova, R.A. Botting, et al., Single-cell reconstruction of the early maternal-fetal interface in humans, Nature 563 (2018) 347-353.
    X. Xiong, H. Kuang, S. Ansari, et al., Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis, Mol. Cell 75 (2019) 644-660.e5.
    C. Yang, W. Lim, H. Bae, et al., C-C motif chemokine ligand 2 induces proliferation and prevents lipopolysaccharide-induced inflammatory responses in bovine mammary epithelial cells, J. Dairy Sci. 101 (2018) 4527-4541.
    T. Yoshimura, The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments, Cytokine 98 (2017) 71-78.
    T. Yoshimura, The chemokine MCP-1 (CCL2) in the host interaction with cancer: A foe or ally?, Cell. Mol. Immunol. 15 (2018) 335-345.
    M.H. Lehmann, L.E. Torres-Dominguez, P.J.R. Price, et al., CCL2 expression is mediated by type I IFN receptor and recruits NK and T cells to the lung during MVA infection, J. Leukoc. Biol. 99 (2016) 1057-1064.
    B. Liu, R. Zhang, G. Tao, et al., Augmented Wnt signaling as a therapeutic tool to prevent ischemia/reperfusion injury in liver: Preclinical studies in a mouse model, Liver Transpl. 21 (2015) 1533-1542.
    U. Apte, S. Singh, G. Zeng, et al., Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury, Am. J. Pathol. 175 (2009) 1056-1065.
    M.K. Connolly, D. Ayo, A. Malhotra, et al., Dendritic cell depletion exacerbates acetaminophen hepatotoxicity, Hepatology 54 (2011) 959-968.
    V.G. Pillarisetty, A.B. Shah, G. Miller, et al., Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition, J. Immunol. 172 (2004) 1009-1017.
    R. Soysa, X. Wu, I.N. Crispe, Dendritic cells in hepatitis and liver transplantation, Liver Transpl. 23 (2017) 1433-1439.
    G. Szabo, P. Mandrekar, A. Dolganiuc, Innate immune response and hepatic inflammation, Semin. Liver. Dis. 27 (2007) 339-350.
    W.J. Sim, P.J. Ahl, J.E. Connolly, Metabolism is central to tolerogenic dendritic cell function, Mediators Inflamm. 2016 (2016), 2636701.
    S. Sozzani, M. Rusnati, E. Riboldi, et al., Dendritic cell-endothelial cell cross-talk in angiogenesis, Trends Immunol. 28 (2007) 385-392.
    Z. Liu, S. Govindarajan, S. Okamoto, et al., NK cells cause liver injury and facilitate the induction of T cell-mediated immunity to a viral liver infection, J. Immunol. 164 (2000) 6480-6486.
    J.R. Ortaldo, H.A. Young, Expression of IFN-γ upon triggering of activating Ly49D NK receptors in vitro and in vivo: Costimulation with IL-12 or IL-18 overrides inhibitory receptors, J. Immunol. 170 (2003) 1763-1769.
    L. Li, Z. Zeng, Z. Qi, et al., Natural killer cells-produced IFN-γ improves bone marrow-derived hepatocytes regeneration in murine liver failure model, Sci. Rep. 5 (2015), 13687.
    C.-W. Cheng, C.C. Duwaerts, N. van Rooijen, et al., NK cells suppress experimental cholestatic liver injury by an interleukin-6-mediated, Kupffer cell-dependent mechanism, J. Hepatol. 54 (2011) 746-752.
    G. Notas, T. Kisseleva, D. Brenner, NK and NKT cells in liver injury and fibrosis, Clin. Immunol. 130 (2009) 16-26.
    B. Gao, S. Radaeva, W.I. Jeong, Activation of natural killer cells inhibits liver fibrosis: A novel strategy to treat liver fibrosis, Expert Rev. Gastroenterol. Hepatol. 1 (2007) 173-180.
    Y.-Y. Sun, X.-F. Li, X.-M. Meng, et al., Macrophage phenotype in liver injury and repair, Scand. J. Immunol. 85 (2017) 166-174.
    S. Tian, S.-Y. Chen, Macrophage polarization in kidney diseases, Macrophage (Houst), 2 (2015), e679.
    M. Miyanishi, K. Tada, M. Koike, et al., Identification of Tim4 as a phosphatidylserine receptor, Nature 450 (2007) 435-439.
    J. Yan, T. Horng, Lipid metabolism in regulation of macrophage functions, Trends Cell Biol. 30 (2020) 979-989.
    W.N. Silva, P.H.D.M. Prazeres, A.E. Paiva, et al., Macrophage-derived GPNMB accelerates skin healing, Exp. Dermatol. 27 (2018) 630-635.
    J. Tonkin, L. Temmerman, R.D. Sampson, et al., Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization, Mol. Ther. 23 (2015) 1189-1200.
    G.J. Graham, M. Locati, Regulation of the immune and inflammatory responses by the ‘atypical’ chemokine receptor D6, J. Pathol. 229 (2013) 168-175.
    M. Lux, A. Blaut, N. Eltrich, et al., The atypical chemokine receptor 2 limits progressive fibrosis after acute ischemic kidney injury, Am. J. Pathol. 189 (2019) 231-247.
    M. Ohms, S. Moller, T. Laskay, An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro, Front. Immunol. 11 (2020), 532.
    L.D. Sansores-Espana, S. Melgar-Rodriguez, R. Vernal, et al., Neutrophil N1 and N2 subsets and their possible association with periodontitis: A scoping review, Int. J. Mol. Sci. 23 (2022), 12068.
    Y. Ma, A. Yabluchanskiy, R.P. Iyer, et al., Temporal neutrophil polarization following myocardial infarction, Cardiovasc. Res. 110 (2016) 51-61.
    E. Wier, M. Asada, G. Wang, et al., Neutrophil extracellular traps impair regeneration, J. Cell. Mol. Med. 25 (2021) 10008-10019.
    A.J. Paris, Y. Liu, J. Mei, et al., Neutrophils promote alveolar epithelial regeneration by enhancing type II pneumocyte proliferation in a model of acid-induced acute lung injury, Am. J. Physiol. Lung Cell. Mol. Physiol. 311 (2016) L1062-L1075.
    Y. Weng, H. Wang, D. Wu, et al., A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL, Cell Res. 32 (2022) 814-830.
    W.M. Anderson, A. Grundholm, B.H. Sells, Modification of ribosomal proteins during liver regeneration, Biochem. Biophys. Res. Commun. 62 (1975) 669-676.
    A.J. Rizzo, T.E. Webb, Regulation of ribosome formation in regenerating rat liver, Eur. J. Biochem. 27 (1972) 136-144.
    Y. Hu, H. Zhang, J. Li, et al., Gut-derived lymphocyte recruitment to liver and induce liver injury in non-alcoholic fatty liver disease mouse model, J. Gastroenterol. Hepatol. 31 (2016) 676-684.
    H. Okamura, S. Kashiwamura, H. Tsutsui, et al., Regulation of interferon-γ production by IL-12 and IL-18, Curr. Opin. Immunol. 10 (1998) 259-264.
    E. Santoni-Rugiu, P. Jelnes, S.S. Thorgeirsson, et al., Progenitor cells in liver regeneration: Molecular responses controlling their activation and expansion, APMIS 113 (2005) 876-902.
    A.P. Holt, Z. Stamataki, D.H. Adams, Attenuated liver fibrosis in the absence of B cells, Hepatology 43 (2006) 868-871.
    L.D. DeLeve, Liver sinusoidal endothelial cells and liver regeneration, J. Clin. Invest. 123 (2013) 1861-1866.
    G. Soria, A. Ben-Baruch, The inflammatory chemokines CCL2 and CCL5 in breast cancer, Cancer Lett. 267 (2008) 271-285.
    J.-L. Duan, Z.-Y. Zhou, B. Ruan, et al., Notch-regulated c-kit-positive liver sinusoidal endothelial cells contribute to liver zonation and regeneration, Cell. Mol. Gastroenterol. Hepatol. 13 (2022) 1741-1756.
    B.-Z. Qian, J. Li, H. Zhang, et al., CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature 475 (2011) 222-225.
    C.D. Conrady, M. Zheng, N.A. Mandal, et al., IFN-α-driven CCL2 production recruits inflammatory monocytes to infection site in mice, Mucosal Immunol. 6 (2013) 45-55.
    A.S. Rocha, V. Vidal, M. Mertz, et al., The angiocrine factor rspondin3 is a key determinant of liver zonation, Cell Rep. 13 (2015) 1757-1764.
    O. Kazanskaya, B. Ohkawara, M. Heroult, et al., The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development, Development 135 (2008) 3655-3664.
    B. Scholz, C. Korn, J. Wojtarowicz, et al., Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca2+/NFAT signaling, Dev. Cell 36 (2016) 79-93.
    R. Ogasawara, D. Hashimoto, S. Kimura, et al., Intestinal lymphatic endothelial cells produce R-spondin3, Sci. Rep. 8 (2018), 10719.
    L.A.J O’Neill, E.J. Pearce, Immunometabolism governs dendritic cell and macrophage function, J. Exp. Med. 213 (2016) 15-23.
    O. Morante-Palacios, F. Fondelli, E. Ballestar, et al., Tolerogenic dendritic cells in autoimmunity and inflammatory diseases, Trends Immunol. 42 (2021) 59-75.
    S.K. Wculek, S.C. Khouili, E. Priego, et al., Metabolic control of dendritic cell functions: digesting information, Front. Immunol. 10 (2019), 775.
    J. Kroll, J. Waltenberger, Regulation of the endothelial function and angiogenesis by vascular endothelial growth factor-A (VEGF-A), Z. Kardiol. 89 (2000) 206-218.
    H. Shimizu, N. Mitsuhashi, M. Ohtsuka, et al., Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats, World J. Gastroenterol. 11 (2005) 7254-7260.
    T. Sato, O.N. El-Assal, T. Ono, et al., Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver, J. Hepatol. 34 (2001) 690-698.
    H.J. Wild, Conflict-centered group discussion in the industrial outpatient clinic, Z. Arztl. Fortbild (Jena). 67 (1973) 390-393.
    J. Bi, X. Zheng, Y. Chen, et al., TIGIT safeguards liver regeneration through regulating natural killer cell-hepatocyte crosstalk, Hepatology 60 (2014) 1389-1398.
    R. Sun, B. Gao, Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-γ), Gastroenterology 127 (2004) 1525-1539.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (685) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return