Citation: | Jiaqian Zhao, Yuqiao Liu, Ling Zhu, Junmin Li, Yanhui Liu, Jiarui Luo, Tian Xie, Dajing Chen. Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening[J]. Journal of Pharmaceutical Analysis, 2023, 13(6): 673-682. doi: 10.1016/j.jpha.2023.04.015 |
K.J. Na, H. Choi, H.R. Oh, et al., Reciprocal change in Glucose metabolism of Cancer and Immune cells mediated by different Glucose Transporters predicts Immunotherapy response, Theranostics 10 (2020) 9579-9590.
|
X. Jiang, J. Wu, M. Ke, et al., Engineered XylE as a tool for mechanistic investigation and ligand discovery of the glucose transporters GLUTs, Cell. Discov. 5 (2019), 14.
|
L. Sylow, M. Kleinert, E.A. Richter, et al., Exercise-stimulated glucose uptake-regulation and implications for glycaemic control, Nat. Rev. Endocrinol. 13 (2017) 133-148.
|
T.M. Cheng, H.L. Chu, Y. Lee, et al., Quantitative analysis of glucose metabolic cleavage in glucose transporters overexpressed cancer cells by target-specific fluorescent gold nanoclusters, Anal. Chem. 90 (2018) 3974-3980.
|
Y. Wang, J. Li, Z. Chen, et al., A GLUTs/GSH cascade targeting-responsive bioprobe for the detection of circulating tumor cells, Chem. Commun (Camb). 58 (2022) 3945-3948.
|
S. Wu, K. Zhang, Y. Liang, et al., Nano-enabled tumor systematic energy exhaustion via Zinc (II) interference mediated glycolysis inhibition and specific GLUT1 depletion, Adv. Sci. (Weinh) 9 (2022), e2103534.
|
A. Zaritski, H. Castillo-Ecija, M. Kumarasamy, et al., Selective accumulation of galactomannan amphiphilic nanomaterials in pediatric solid tumor xenografts correlates with GLUT1 gene expression, ACS Appl. Mater. Interfaces 11 (2019) 38483-38496.
|
Y.Y. Song, Y. Yuan, X. Shi, et al., Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor, Colloids Surf. B Biointerfaces 190 (2020), 110966.
|
W. Jiang, X. Luo, L. Wei, et al., The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy, Small 17 (2021), e2102695.
|
A.R. Guerra, M.F. Duarte, I.F. Duarte, Targeting tumor metabolism with plant-derived natural products: emerging trends in cancer therapy, J. Agric. Food Chem. 66 (2018) 10663-10685.
|
J.W. Jang, H. Kim, I. Kim, et al., Surface functionalization of enzyme-coronated gold nanoparticles with an erythrocyte membrane for highly selective glucose assays, Anal. Chem. 94 (2022) 6473-6481.
|
R. Singh, S. Kumar, F. Liu, et al., Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection, Biosens. Bioelectron. 168 (2020), 112557.
|
N. Wang, S. Zhang, Y. Yuan, et al., Molecular basis for inhibiting human glucose transporters by exofacial inhibitors, Nat. Commun. 13 (2022), 2632.
|
F. Shao, Y. Wu, Z. Tian, et al., Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy, Biomaterials 274 (2021), 120869.
|
J. Hong, M. Kang, M. Jung, et al., T-cell-derived nanovesicles for cancer immunotherapy, Adv. Mater. 33 (2021), e2101110.
|
X. Liu, X. Gao, L. Yang, et al., Metal-organic framework-functionalized paper-based electrochemical biosensor for ultrasensitive exosome assay, Anal. Chem. 93 (2021) 11792-11799.
|
J. Chang, H. Li, T. Hou, et al., Paper-based fluorescent sensor via aggregation induced emission fluorogen for facile and sensitive visual detection of hydrogen peroxide and glucose, Biosens. Bioelectron. 104 (2018) 152-157.
|
C. Gu, X. Kong, X. Liu, et al., Enzymatic biofuel-cell-based self-powered biosensor integrated with DNA amplification strategy for ultrasensitive detection of single-nucleotide polymorphism, Anal. Chem. 91 (2019) 8697-8704.
|
H. Wu, C. Shi, Q. Zhu, et al., Capillary-driven blood separation and in situ electrochemical detection based on 3D conductive gradient hollow fiber membrane, Biosens. Bioelectron. 171 (2021), 112722.
|
I. Kim, D. Kwon, D. Lee, et al., A highly permselective electrochemical glucose sensor using red blood cell membrane, Biosens. Bioelectron. 02 (2018) 617-623.
|
I. Kim, D. Kwon, D. Lee, et al., Permselective glucose sensing with GLUT1-rich cancer cell membranes, Biosens. Bioelectron. 135 (2019) 82-87.
|
J. Zhao, C. Wang, X. Zhang, et al., Cell membrane coated electrochemical sensor for kinetic measurements of GLUT transport, Anal. Chimica Acta 1226 (2022), 340263.
|
Y. Luo, J. Zhao, X. Zhang, et al., Size controlled fabrication of enzyme encapsulated amorphous calcium phosphate nanoparticle and its intracellular biosensing application, Colloids Surf. B Biointerfaces 201 (2021), 111638.
|
S.H. Huang, B.C. Huang, L. Chao, Development of cell membrane electrophoresis to measure the diffusivity of a native transmembrane protein, Anal. Chem. 94 (2022) 4531-4537.
|
L. Li, L. Li, W. Li, et al., TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation, Nat. Commun. 9 (2018), 4683.
|
Y.M. Lee, G. Lee, T.I. Oh, et al., Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress, Int. J. Oncol. 48 (2016) 399-408.
|
X. Chen, J. Tan, L. Zhang, et al., Apigenin ameliorates vascular injury in rats with high fructose-induced metabolic disturbance by inhibiting PI3K/AKT/GLUT1, RSC Adv. 8 (2018) 24470-24476.
|
S.Y. Lee, J.H. Park, S.H. Ko, et al., Mussel-inspired hyaluronic acid derivative nanostructures for improved tumor targeting and penetration, ACS Appl. Mater. Interfaces 9 (2017) 22308-22320.
|
P.M. Ung, W. Song, L. Cheng, et al., Inhibitor discovery for the human GLUT1 from homology modeling and virtual screening, ACS Chem. Biol. 11 (2016) 1908-1916.
|
R. Commander, C. Wei, A. Sharma, et al., Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion, Nat. Commun. 11 (2020), 1533.
|
J. Liu, C. Zhang, R. Wu, et al., RRAD inhibits the Warburg effect through negative regulation of the NF-κB signaling, Oncotarget 6 (2015), 14982-14992.
|
N. Kong, X. Chen, J. Feng, et al., Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1, Acta Pharm. Sin. B 11 (2021) 4045-4054.
|
P. Fang, M. Yu, L. Zhang, et al., Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway, Mol. Cell. Endocrinol. 448 (2017) 77-86.
|
R. Wu, K. Zhu, X. Zhang, et al., Nonimmobilized biomaterial capillary electrophoresis for screening drugs targeting human glucose transporter 1, Anal. Chem. 89 (2017) 12951-12959.
|
D. Deng, C. Xu, P. Sun, et al., Crystal structure of the human glucose transporter GLUT1, Nature 510 (2014) 121-125.
|
O.A. Ojelabi, K.P. Lloyd, J.K. De Zutter, et al., Red wine and green tea flavonoids are cis-allosteric activators and competitive inhibitors of glucose transporter 1 (GLUT1)-mediated sugar uptake, J. Biol. Chem. 293 (2018) 19823-19834.
|
J.J. Gu, K.S. Qiao, P. Sun, et al., Study of EGCG induced apoptosis in lung cancer cells by inhibiting PI3K/Akt signaling pathway, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 4557-4563.
|
Q. Wu, B. Zhao, G. Sui, et al., Phytochemicals block glucose utilization and lipid synthesis to counteract metabolic reprogramming in cancer cells, Appl. Sci. 11 (2021), 1259.
|
I. Peluso, M. Serafini, Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms, Br. J. Pharmacol. 174 (2017) 1195-1208.
|