Volume 13 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Georgia Koutentaki, Pavel Krýsa, Dan Trunov, Tomáš Pekárek, Markéta Pišlová, Miroslav Šoóš. 3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 276-286. doi: 10.1016/j.jpha.2023.02.004
Citation: Georgia Koutentaki, Pavel Krýsa, Dan Trunov, Tomáš Pekárek, Markéta Pišlová, Miroslav Šoóš. 3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 276-286. doi: 10.1016/j.jpha.2023.02.004

3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles

doi: 10.1016/j.jpha.2023.02.004
Funds:

This work was financially supported by specific university research (Grant No.: A1_FCHI_2022_006). We also thank the research platform “Pharmaceutical Applied Research Center” (PARC) (Prague, Czech Republic) for the support in various parts of this project.

  • Received Date: Sep. 04, 2022
  • Accepted Date: Feb. 09, 2023
  • Rev Recd Date: Feb. 03, 2023
  • Publish Date: Feb. 16, 2023
  • The properties of dry-coated paracetamol particles (fast-dissolving model drug) with carnauba wax particles as the coating agent (dissolution retardant) were investigated. Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles. The results showed that the wax existed in two forms on the surface of the paracetamol particles, forming a porous coating layer: i) whole wax particles on the surface of paracetamol and glued together with other wax surface particles, and ii) deformed wax particles spread on the surface. Regardless of the final particle size fraction (between 100 and 800 μm), the coating thickness had high variability, with average thickness of 5.9 ± 4.2 μm. The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations. The dissolution was slower for larger coated particles. Tableting further reduced the dissolution rate, clearly indicating the impact of subsequent formulation processes on the final quality of the product.
  • loading
  • V. Humar, A. Beso, I. Legen, et.al., Inventors; Active coating of pharmaceutical dosage forms, Europe patent WO2010081824A2, 22 July 2010.
    A.M. Mehta, Inventors; Taste-masked pharmaceutical compositions, United States patent US5084278A, 28 January 1992.
    R. Gandhi, C. Issa, R. Malik, Inventors; Coating composition for taste masking coating and methods for their application and use, United States patent US20060159758A1, 20 July 2006.
    M. Capece, R.N. Dave, Solventless polymer coating of microparticles, Powder Technol. 261 (2014) 118-132.
    M. Capece, J. Barrows, R.N. Dave, Controlled Release from Drug Microparticles via Solventless Dry-Polymer Coating, J. Pharm. Sci. 104 (2015) 1340-1351.
    Q. Zhou, B. Armstrong, I. Larson, et al., Effect of host particle size on the modification of powder flow behaviours for lactose monohydrate following dry coating, Dairy Sci. Technol. 90 (2010) 237-251.
    E.Z. Dahmash, A.R. Mohammed, Functionalised particles using dry powder coating in pharmaceutical drug delivery: promises and challenges, Expert Opin. Drug Deliv. 12 (2015) 1867-1879.
    PharmTech.com, Dry Particle Coating-A Unique Solution for Pharmaceutical Formulation. https://www.pharmtech.com/view/dry-particle-coating-unique-solution-pharmaceutical-formulation. (accessed February 21, 2021).
    R. Pfeffer, R.N. Dave, D. Wei, et al., Synthesis of engineered particulates with tailored properties using dry particle coating, Powder Technol. 117 (2001) 40-67.
    D. Sauer, M. Cerea, J. DiNunzio, et al., Dry powder coating of pharmaceuticals: A review, Int. J. Pharm. 457 (2013) 488-502.
    K. Kunnath, Z. Huang, L. Chen, et al., Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating, Int. J. Pharm. 543 (2018) 288-299.
    A. Dubey, F. Boukouvala, G. Keyvan, et al., Improvement of Tablet Coating Uniformity Using a Quality by Design Approach, AAPS PharmSciTech 13 (2012) 231-246.
    M. Jivraj, L.G. Martini, C.M. Thomson, An overview of the different excipients useful for the direct compression of tablets, Pharm. Sci. Technol. Today 3 (2000) 58-63.
    T. Blicharski, K. Swiader, A. Serefko, et al., Challenges in technology of bilayer and multi-layer tablets: a mini-review, Curr. Issues Pharm. Med. Sci. 32 (2019) 229-235.
    M. Hindiyeh, T. Altalafha, M. Al-Naerat, et al., Process Modification of Pharmaceutical Tablet Manufacturing Operations: An Eco-Efficiency Approach, Processes 6 (2018), 15.
    R. Bodmeier, Tableting of coated pellets, Eur. J. Pharm. Biopharm. 43 (1997) 1-8.
    K. Kunnath, L. Chen, K. Zheng, et al., Assessing predictability of packing porosity and bulk density enhancements after dry coating of pharmaceutical powders, Powder Technol. 377 (2021) 709-722.
    L. Chen, X. Ding, Z. He, et al., Surface engineered excipients: I. Improved functional properties of fine grade microcrystalline cellulose, Int. J. Pharm. 536 (2017) 127-137.
    L. Chen, X. Ding, Z. He, et al., Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties, Int. J. Pharm. 546 (2018) 125-136.
    L. Chen, Z. He, K.T. Kunnath, et al., Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs, Int. J. Pharm. 557 (2018) 354-365.
    Y. Chen, J. Yang, R.N. Dave, et al., Fluidization of coated group C powders, AIChE J. 54 (2008) 104-121.
    Z. Huang, W. Xiong, K.T. Kunnath, et al., Improving blend content uniformity via dry particle coating of micronized drug powders, Eur. J. Pharm. Sci. 104 (2017) 344-355.
    Z. Huang, K.T. Kunnath, X. Han, et al., Ultra-fine dispersible powders coated with l-Leucine via two-step co-milling, Adv. Powder Technol. 29 (2018) 2957-2965.
    D. Bhowmik, H. Gopinath, B.P. Kumar, et al., Controlled Release Drug Delivery Systems, The Pharma Innov. J. 1 (2012) 24-32.
    B. Ward, J.M. Alexander-Williams, Paracetamol revisited: A review of the pharmacokinetics and pharmacodynamics, Acute Pain 2 (1999) 139-149.
    A.D. Rathnayake, U. Mannapperuma, D. Thambawita, et al., Determination of in-vitro equivalence of paracetamol tablets, Int. J. Multidiscip. Stud. 1 (2014) 75-83.
    Norwegian Food Safety Authority, Risk Profile Acetaminophen, CAS No. 103-90-2 (Jun. 17, 2013).
    C.A.S. de Freitas, P.H.M. de Sousa, D.J. Soares, et al., Carnauba wax uses in food - A review, Food Chem. 291 (2019) 38-48.
    Drugs.com, L544 (Acetaminophen extended release 650 mg). https://www.drugs.com/imprints/l544-15705.html. (Accessed July 15, 2022).
    Z.H. Loh, A.K. Samanta, P.W.S. Heng, Overview of milling techniques for improving the solubility of poorly water-soluble drugs, Asian J. Pharm. Sci. 10 (2015) 255-274.
    M. Gera, V. Saharan, M. Kataria, et al., Mechanical Methods for Dry Particle Coating Processes and Their Applications in Drug Delivery and Development Recent Pat. Drug Deliv. Formul. 4 (2010) 58-81.
    M. Azad, J. Moreno, E. Bilgili, et al., Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size, Int. J. Pharm. 513 (2016) 319-331.
    F.L. Laksmana, L.J. Van Vliet, P.J.A. Hartman Kok, et al., Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles, Pharm Res. 26 (2009) 965-976.
    F. Sondej, A. Buck, E. Tsotsas, Comparative analysis of the coating thickness on single particles using X-ray micro-computed tomography and confocal laser-scanning microscopy, Powder Technol. 287 (2016) 330-340.
    T. Vankeirsbilck, A. Vercauteren, W. Baeyens, et al., Applications of Raman spectroscopy in pharmaceutical analysis, TrAC, Trends Anal. Chem. 21 (2002) 869-877.
    K.C. Gordon, C.M. McGoverin, Raman mapping of pharmaceuticals, Int. J. Pharm. 417 (2011) 151-162.
    T. Capkova-Helesicova, T. Pekarek, M. Schongut, et al., New designed special cells for Raman mapping of the disintegration process of pharmaceutical tablets, J. Pharm. Biomed. Anal. 168 (2019) 113-123.
    A.V. Ewing, P.S. Wray, G.S. Clarke, et al., Evaluating drug delivery with salt formation: Drug disproportionation studied in situ by ATR-FTIR imaging and Raman mapping, J. Pharm. Biomed. Anal. 111 (2015) 248-256.
    H. Ueda, Y. Ida, K. Kadota, et al., Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images, Int. J. Pharm. 462 (2014) 115-122.
    T. Helesicova, T. Pekarek, P. Matejka, The influence of different acquisition settings and the focus adjustment on Raman spectral maps of pharmaceutical tablets, J. Drug Deliv. Sci. Technol. 47 (2018) 386-394.
    N.J. Everall, Confocal Raman Microscopy: Why the Depth Resolution and Spatial Accuracy Can Be Much Worse Than You Think, Appl. Spectrosc. 54 (2000) 1515-1520.
    N. J. Everall, Confocal Raman microscopy : common errors and artefacts, Analyst 135 (2010) 2512-2522.
    A.M. Macdonald, A.S. Vaughan, P. Wyeth, Application of confocal Raman spectroscopy to thin polymer layers on highly scattering substrates: a case study of synthetic adhesives on historic textiles, J. Raman Spectrosc. 36 (2005) 185-191.
    N. Everall, Optimising image quality in 2D and 3D confocal Raman mapping: 2D and 3D Raman imaging, J. Raman Spectrosc. 45 (2014) 133-138.
    P. Bashpa, K. Bijudas, A.M. Tom, et al., Polymorphism of paracetamol: A comparative study on commercial paracetamol samples., Int. J. Chem. Stud. 1 (2014) 25-29.
    PubChem, Acetaminophen. https://pubchem.ncbi.nlm.nih.gov/compound/1983. (Accessed February 21, 2021).
    DrugBank Online, Acetaminophen. https://go.drugbank.com/drugs/DB00316. (Accessed February 21, 2021).
    H. Ahmed, Relationship between crystal structure and mechanical properties in cocrystals and salts of paracetamol [licentiate thesis], Luleå: University of Technology, 2014.
    R.A. Granberg, Å.C. Rasmuson, Solubility of paracetamol in pure solvents, J. Chem. Eng. Data 44 (1999) 1391-1395.
    Y. Zhang, M.J. Adams, Z. Zhang, et al., Plasticisation of carnauba wax with generally recognised as safe (GRAS) additives, Polymer 86 (2016) 208-219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (236) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return