Citation: | Xin-Yuan Hu, Jia-Jing Li, Zi-Wei Yang, Jun Zhang, Huai-Song Wang. Fluorescent intracellular imaging of reactive oxygen species and pH levels moderated by a hydrogenase mimic in living cells[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 801-807. doi: 10.1016/j.jpha.2022.05.007 |
B.W. Yang, Y. Chen, J.L. Shi, Reactive oxygen species (ROS)-based nanomedicine, Chem. Rev. 119 (2019) 4881-4985
|
M. Lian, Z. Xue, X. Qiao, et al., Movable hollow nanoparticles as reactive oxygen scavengers, Inside Chem. 5 (2019) 2378-2387
|
L. Wang, B. Zhu, Y. Deng, et al., Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics, Adv. Funct. Mater. 31 (2021), 2101804
|
M. Chen, L. Jiang, Y. Li, et al., Hydrogen protects against liver injury during CO2 pneumoperitoneum in rats, Oncotarget 9 (2017) 2631-2645
|
F. Xu, S. Yu, M. Qin, et al., Hydrogen-rich saline ameliorates allergic rhinitis by reversing the imbalance of Th1/Th2 and up-regulation of CD4+CD25+Foxp3+regulatory T cells, interleukin-10, and membrane-bound transforming growth factor-β in Guinea pigs, Inflammation 41 (2018) 81-92
|
L.C. Chen, S.F. Zhou, L.C. Su, et al., Gas-mediated cancer bioimaging and therapy, ACS Nano 13 (2019) 10887-10917
|
Y. Gao, Q. Gui, L. Jin, et al., Hydrogen-rich saline attenuates hippocampus endoplasmic reticulum stress after cardiac arrest in rats, Neurosci. Lett. 640 (2017) 29-36
|
I. Ohsawa, M. Ishikawa, K. Takahashi, et al., Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat. Med. 13 (2007) 688-694
|
L. Ge, M. Yang, N.N. Yang, et al., Molecular hydrogen: a preventive and therapeutic medical gas for various diseases, Oncotarget 8 (2017) 102653-102673
|
L. Yao, H. Chen, Q. Wu, et al., Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy, Int. J. Mol. Med. 44 (2019) 1048-1062
|
Z. Zhang, X. Sun, K. Wang, et al., Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats, Brain Res. Bull. 172 (2021) 1-13
|
K. Li, H.L. Yin, Y. Duan, et al., Pre-inhalation of hydrogen-rich gases protect against caerulein-induced mouse acute pancreatitis while enhance the pancreatic Hsp60 protein expression, BMC Gastroenterol. 21 (2021), 178
|
Q. Shi, K. Liao, K. Zhao, et al., Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-κB pathway, Mediat. Inflamm. 2015 (2015), 685043
|
M.A. Martini, O. Rudiger, N. Breuer, et al., The nonphysiological reductant sodium dithionite and [FeFe] hydrogenase: influence on the enzyme mechanism, J. Am. Chem. Soc. 143 (2021) 18159-18171
|
J. Jian, Q. Liu, Z. Li, et al., Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase, Nat. Commun. 4 (2013), 2695
|
S. Pullen, H. Fei, A. Orthaber, et al., Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework, J. Am. Chem. Soc. 135 (2013) 16997-17003
|
A. Roy, C. Madden, G. Ghirlanda, Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic, Chem. Commun. 48 (2012) 9816-9818
|
S. Ott, M. Kritikos, B. Åkermark, et al., Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer, Angew. Chem., Int. Ed. Engl. 42 (2003) 3285-3288
|
M. Wen, X. Li, J. Jian, et al., Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water, Sci. Rep. 6 (2016), 29851
|
J.X. Jian, C. Ye, X.Z. Wang, et al., Comparison of H2 photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution, Energy Environ. Sci. 9 (2016) 2083-2089
|
H. Zheng, X. Wang, J. Hu, et al., Photo-catalytic H2 evolution, structural effect and electron transfer mechanism based on four novel [2Fe2S] model complexes by photochemical splitting water, Sol. Energy 132 (2016) 373-385
|
Y.D. Lee, C.K. Lim, A. Singh, et al., Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide, ACS Nano 6 (2012) 6759-6766
|
C.-K. Lim, Y.-D. Lee, J. Na, et al., Chemiluminescence-generating nanoreactor formulation for near-infrared imaging of hydrogen peroxide and glucose level in vivo, Adv. Funct. Mater. 20 (2010) adfm.201090072
|
Z. Zhao, X. Yao, Z. Zhang, et al., Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery, Macromol. Biosci. 14 (2014) 1609-1618
|
K. Yang, H. Luo, M. Zeng, et al., Intracellular pH-triggered, targeted drug delivery to cancer cells by multifunctional envelope-type mesoporous silica nanocontainers, ACS Appl. Mater. Interfaces 7 (2015) 17399-17407
|
D. Sil, Z. Martinez, S. Ding, et al., Cyanide docking and linkage isomerism in models for the artificial [FeFe]-hydrogenase maturation process, J. Am. Chem. Soc. 140 (2018) 9904-9911
|
M.E. Ahmed, S. Dey, M.Y. Darensbourg, et al., Oxygen-tolerant H2 production by [FeFe]-H2ase active site mimics aided by second sphere proton shuttle, J. Am. Chem. Soc. 140 (2018) 12457-12468
|
D. Schilter, T.B. Rauchfuss, And the winner is..Azadithiolate: an amine proton relay in the [FeFe] hydrogenases, Angew. Chem., Int. Ed. Engl. 52 (2013) 13518-13520
|
U. Anand, S. Mukherjee, Microheterogeneity and microviscosity of F127 micelle: the counter effects of urea and temperature, Langmuir 30 (2014) 1012-1021
|
M. Valero, F. Castiglione, A. Mele, et al., Competitive and synergistic interactions between polymer micelles, drugs, and cyclodextrins: the importance of drug solubilization locus, Langmuir 32 (2016) 13174-13186
|
Z. Yang, Y. Zhang, J. Kong, et al., Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers, Chem. Mater. 25 (2013) 704-710
|
M. Stephenson, L.H. Stickland, Hydrogenase: a bacterial enzyme activating molecular hydrogen: the properties of the enzyme, Biochem. J. 25 (1931) 205-214
|
H. Herd, N. Daum, A.T. Jones, et al., Nanoparticle geometry and surface orientation influence mode of cellular uptake, ACS Nano 7 (2013) 1961-1973
|
J. Rejman, V. Oberle, I.S. Zuhorn, et al., Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis, Biochem. J. 377 (2004) 159-169
|
S. Liu, J. Zhao, K. Zhang, et al., Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe, Analyst 141 (2016) 2296-2302
|
L. Meng, Y. Wu, T. Yi, A ratiometric fluorescent probe for the detection of hydroxyl radicals in living cells, Chem. Commun. 50 (2014) 4843-4845
|
K. Engin, D.B. Leeper, J.R. Cater, et al., Extracellular pH distribution in human tumours, Int. J. Hyperther. 11 (1995) 211-216
|
M. Stubbs, P.M. McSheehy, J.R. Griffiths, et al., Causes and consequences of tumour acidity and implications for treatment, Mol. Med. Today 6 (2000) 15-19
|