Volume 12 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
Hao Cheng, Juan Liu, Yuzhu Tan, Wuwen Feng, Cheng Peng. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 541-555. doi: 10.1016/j.jpha.2021.10.003
Citation: Hao Cheng, Juan Liu, Yuzhu Tan, Wuwen Feng, Cheng Peng. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 541-555. doi: 10.1016/j.jpha.2021.10.003

Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine

doi: 10.1016/j.jpha.2021.10.003
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 81891012, 82104409, 81891010, 81630101, and U19A2010), Science and Technology Ministry of China (Grant No.: 2108ZX09721001-008), China Postdoctoral Science Foundation (Grant No.: 2021M690490), Sichuan Science and Technology Program (Grant No.: 2021YJ0466), Open Research Fund of Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China (Grant No.: 2020BSH003), and "Xinglin Scholar" Plan of Chengdu University of Traditional Chinese Medicine (Grant No.: BSH2020017).

  • Received Date: Mar. 27, 2021
  • Accepted Date: Oct. 19, 2021
  • Rev Recd Date: Sep. 23, 2021
  • Publish Date: Oct. 21, 2021
  • Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
  • loading
  • M.A. Neag, A. Mocan, J. Echeverría, et al., Berberine:Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders, Front. Pharmacol. 9(2018), 557.
    Z.L. Fang, Y.Q. Tang, J.M. Ying, et al., Traditional Chinese medicine for antiAlzheimer's disease:Berberine and evodiamine from Evodia rutaecarpa, Chin. Med. 15(2020), 82.
    Y. Gao, F. Wang, Y. Song, et al., The status of and trends in the pharmacology of berberine:A bibliometric review[19852018], Chin. Med. 15(2020), 7.
    L. Song, Y. Luo, X.Y. Wang, et al., Exploring the active mechanism of berberine against HCC by systematic pharmacology and experimental validation, Mol. Med. Rep. 20(2019) 4654-4664.
    M. Li, M. Zhang, Z.L. Zhang, et al., Induction of apoptosis by berberine in hepatocellular carcinoma HepG2 cells via downregulation of NF-kB, Oncol. Res. 25(2017) 233-239.
    Y.H. Li, W. Sun, B.J. Zhou, et al., iTRAQ-based pharmacoproteomics reveals potential targets of berberine, a promising therapy for ulcerative colitis, Eur. J. Pharmacol. 850(2019) 167-179.
    J.Q. Tan, J. Wang, C. Yang, et al., Antimicrobial characteristics of berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types, BMC Compl. Alternative Med. 19(2019), 218.
    W.D. Yao, X. Wang, K. Xiao, Protective effect of berberine against cardiac ischemia/reperfusion injury by inhibiting apoptosis through the activation of Smad7, Mol. Cell. Probes 38(2018) 38-44.
    L. Zhao, Z. Cang, H. Sun, et al., Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease, BMC Endocr. Disord. 17(2017), 13.
    C.-S. Liu, Y.-R. Zheng, Y.-F. Zhang, et al., Research progress on berberine with a special focus on its oral bioavailability, Fitoterapia 109(2016) 274-282.
    W. Chen, Y.-Q. Miao, D.-J. Fan, et al., Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats, AAPS PharmSciTech 12(2011) 705-711.
    R. Feng, Z.-X. Zhao, S.-R. Ma, et al., Gut microbiota-regulated pharmacokinetics of berberine and active metabolites in beagle dogs after oral administration, Front. Pharmacol. 9(2018), 214.
    F. Chen, Q. Wen, J. Jiang, et al., Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? J. Ethnopharmacol. 179(2016) 253-264.
    A. Pascale, N. Marchesi, C. Marelli, et al., Microbiota and metabolic diseases, Endocrine 61(2018) 357-371.
    B. Schmidt, I.E. Mulder, C.C. Musk, et al., Establishment of normal gut microbiota is compromised under excessive hygiene conditions, PLoS One 6(2011), e28284.
    E. Patterson, P.M. Ryan, J.F. Cryan, et al., Gut microbiota, obesity and diabetes, Postgrad. Med. J. 92(2016) 286-300.
    N. Eliakim-Raz, J. Bishara, Prevention and treatment of Clostridium difficile associated diarrhea by reconstitution of the microbiota, Hum. Vaccines Immunother. 15(2019) 1453-1456.
    X.Y. Guo, X.J. Liu, J.Y. Hao, Gut microbiota in ulcerative colitis:Insights on pathogenesis and treatment, J. Dig. Dis. 21(2020) 147-159.
    A.R. Weingarden, B.P. Vaughn, Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease, Gut Microb. 8(2017) 238-252.
    F. Angelucci, K. Cechova, J. Amlerova, et al., Antibiotics, gut microbiota, and Alzheimer's disease, J. Neuroinflammation 16(2019), 108.
    J.H. Zhang, J.M. Zhang, R. Wang, Gut microbiota modulates drug pharmacokinetics, Drug Metab. Rev. 50(2018) 357-368.
    H.I. Swanson, Drug metabolism by the host and gut microbiota:A partnership or rivalry? Drug Metab. Dispos. 43(2015) 1499-1504.
    K. Noh, Y.R. Kang, M.R. Nepal, et al., Impact of gut microbiota on drug metabolism:An update for safe and effective use of drugs, Arch. Pharm. Res. 40(2017) 1345-1355.
    W. Feng, H. Ao, C. Peng, et al., Gut microbiota, a new frontier to understand traditional Chinese medicines, Pharm. Res. 142(2019) 176-191.
    S. Habtemariam, Berberine pharmacology and the gut microbiota:A hidden therapeutic link, Pharmacol. Res. 155(2020), 104722.
    R. Feng, J.-W. Shou, Z.-X. Zhao, et al., Transforming berberine into its intestine-absorbable form by the gut microbiota, Sci. Rep. 5(2015), 12155.
    Y. Ji, Y. Yin, Z.R. Li, et al., Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD), Nutrients 11(2019), 1712.
    F. Brial, A.L. Lay, M. Dumas, et al., Implication of gut microbiota metabolites in cardiovascular and metabolic diseases, Cell. Mol. Life Sci. 75(2018) 3977-3990.
    Y. Tian, J.W. Cai, W. Gui, et al., Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation, Drug Metab. Dispos. 47(2019) 86-93.
    S.-J. Yue, J. Liu, A.-T. Wang, et al., Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids, Am. J. Physiol. Endocrinol. Metab. 316(2019) E73eE85.
    K. Wang, X.C. Feng, L.W. Chai, et al., The metabolism of berberine and its contribution to the pharmacological effects, Drug Metab. Rev. 49(2017) 139-157.
    N.M. Koropatkin, E.A. Cameron, E.C. Martens, How glycan metabolism shapes the human gut microbiota, Nat. Rev. Microbiol. 10(2012) 323-335.
    P. Dey, Gut microbiota in phytopharmacology:A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions, Pharmacol. Res. 147(2019), 104367.
    Y. Li, Y.M. Yin, X.Y. Wang, et al., Evaluation of berberine as a natural fungicide:Biodegradation and antimicrobial mechanism, J. Asian Nat. Prod. Res. 20(2018) 148-162.
    L.C. Peng, S. Kang, Z.Q. Yin, et al., Antibacterial activity and mechanism of berberine against Streptococcus agalactiae, Int. J. Clin. Exp. Pathol. 8(2015) 5217-5223.
    X.X. Huang, M.Y. Zheng, Y.L. Yi, et al., Inhibition of berberine hydrochloride on Candida albicans biofilm formation, Biotechnol. Lett. 42(2020) 2263-2269.
    X.J. Zhang, X.Y. Sun, J.X. Wu, et al., Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus, Front. Microbiol. 11(2020), 621.
    N. Budeyri Gokgoz, F.G. Avci, K.K. Yoneten, et al., Response of Escherichia coli to prolonged berberine exposure, Microb. Drug Resist. 23(2017) 531-544.
    D. Wultanska, M. Piotrowski, H. Pituch, The effect of berberine chloride and/ or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile, Eur. J. Clin. Microbiol. Infect. Dis. 39(2020) 1391-1399.
    S. Kang, Z.W. Li, Z.Q. Yin, et al., The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae, Nat. Prod. Res. 29(2015) 2203-2206.
    W.J. Kong, X.Y. Xing, X.H. Xiao, et al., Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry, Appl. Microbiol. Biotechnol. 96(2012) 503-510.
    H.J. Pan, Z.F. Li, J. Xie, et al., Berberine influences blood glucose via modulating the gut microbiome in grass carp, Front. Microbiol. 10(2019), 1066.
    Y. Guo, Y.C. Zhang, W.H. Huang, et al., Dose-response effect of berberine on bile acid profile and gut microbiota in mice, BMC Compl. Alternative Med. 16(2016), 394.
    D. Liu, Y.Y. Zhang, Y.H. Liu, et al., Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway, Exp. Clin. Endocrinol. Diabetes 126(2018) 513-520.
    L. Zhu, D.Y. Zhang, H. Zhu, et al., Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in ApoE-/- mice, Atherosclerosis 268(2018) 117-126.
    Y.F. Shi, J.X. Hu, J. Geng, et al., Berberine treatment reduces atherosclerosis by mediating gut microbiota in ApoE-/- mice, Biomed. Pharmacother. 107(2018) 1556-1563.
    M. Wu, S.J. Yang, S.Z. Wang, et al., Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice, Front. Pharmacol. 11(2020), 223.
    Y.Z. Wang, J.M. Zheng, H.T. Hou, et al., Effects of berberine on intestinal flora of non-alcoholic fatty liver induced by high-fat diet through 16S rRNA gene segmentation, J. King Saud Univ. Sci. 32(2020) 2603-2609.
    D.H. Li, J.M. Zheng, Y.T. Hu, et al., Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats, Pharmacogn. Mag. 13(2017) 677-682.
    Z.Q. Liao, Y.Z. Xie, B.J. Zhou, et al., Berberine ameliorates colonic damage accompanied with the modulation of dysfunctional bacteria and functions in ulcerative colitis rats, Appl. Microbiol. Biotechnol. 104(2020) 1737-1749.
    H.T. Cui, Y.Z. Cai, L. Wang, et al., Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon, Front. Pharmacol. 9(2018), 571.
    H.T. Chen, F. Zhang, J. Zhang, et al., A holistic view of berberine inhibiting intestinal carcinogenesis in conventional mice based on microbiomemetabolomics analysis, Front. Immunol. 11(2020), 588079.
    Y. Wang, J.W. Shou, X.Y. Li, et al., Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism, Metabolism 70(2017) 72-84.
    C.N. Li, X. Wang, L. Lei, et al., Berberine combined with stachyose induces better glycometabolism than berberine alone through modulating gut microbiota and fecal metabolomics in diabetic mice, Phytother. Res. 34(2020) 1166-1174.
    W. Zhang, J.-H. Xu, T. Yu, et al., Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice, Biomed. Pharmacother. 118(2019), 109131.
    M.F. Yue, Y. Tao, Y.L. Fang, et al., The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply, Faseb. J. 33(2019) 12311-12323.
    X. Jia, L. Jia, L. Mo, et al., Berberine ameliorates periodontal bone loss by regulating gut microbiota, J. Dent. Res. 98(2019) 107-116.
    X. Zhang, Y.F. Zhao, M.H. Zhang, et al., Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats, PLoS One 7(2012), e42529.
    Z. Du, Q. Wang, X. Huang, et al., Effect of berberine on spleen transcriptome and gut microbiota composition in experimental autoimmune uveitis, Int. Immunopharm. 81(2020), 106270.
    S. Li, N. Wang, H.-Y. Tan, et al., Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease, Clin. Transl. Med. 10(2020), e112.
    Y. Yao, H. Chen, L. Yan, et al., Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids, Biomed. Pharmacother. 131(2020), 110669.
    Q. Jia, L. Zhang, J. Zhang, et al., Fecal microbiota of diarrhea-predominant irritable bowel syndrome patients causes hepatic inflammation of germ-free rats and berberine reverses it partially, BioMed Res. Int. 2019(2019), 4530203.
    H.L. Sun, N.J. Wang, Z. Cang, et al., Modulation of microbiota-gut-brain axis by berberine resulting in improved metabolic status in high-fat diet-fed rats, Obes. Facts 9(2016) 365-378.
    J.H. Xu, X.Z. Liu, W. Pan, et al., Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels, Mol. Med. Rep. 15(2017) 2765-2787.
    X. Zhang, Y.F. Zhao, J. Xu, et al., Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats, Sci. Rep. 5(2015), 14405.
    M. Li, X. Shu, H. Xu, et al., Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds, J. Transl. Med. 14(2016), 237.
    H. Chen, F. Zhang, R. Li, et al., Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota, Biomed. Pharmacother. 124(2020), 109829.
    W. Cao, L. Hu, H. Chen, et al., Berberine alleviates chronic inflammation of mouse model of type 2 diabetes by adjusting intestinal microbes and inhibiting TLR4 signaling pathway, Int. J. Clin. Exp. Med. 10(2017) 10267-10276.
    H.-X. Cui, Y.-N. Hu, J.-W. Li, et al., Hypoglycemic mechanism of the berberine organic acid salt under the synergistic effect of intestinal flora and oxidative stress, Oxid. Med. Cell. Longev. 2018(2018), 8930374.
    H. Wang, L. Guan, J. Li, et al., The effects of berberine on the gut microbiota in Apc min/þ mice fed with a high fat diet, Molecules 23(2018), 2298.
    Q. Feng, W.-D. Chen, Y.-D. Wang, Gut microbiota:An integral moderator in health and disease, Front. Microbiol. 9(2018), 151.
    E.S. Chambers, T. Preston, G. Frost, et al., Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health, Curr. Nutr. Rep. 7(2018) 198-206.
    E.E. Canfora, R.C.R. Meex, K. Venema, et al., Gut microbial metabolites in obesity, NAFLD and T2DM, Nat. Rev. Endocrinol. 15(2019) 261-273.
    Z.H. Zhao, J.K.L. Lai, L. Qiao, et al., Role of gut microbial metabolites in nonalcoholic fatty liver disease, J. Dig. Dis. 20(2019) 181-188.
    T. Doifode, V.V. Giridharan, J.S. Generoso, et al., The impact of the microbiotagut-brain axis on Alzheimer's disease pathophysiology, Pharmacol. Res. 24(2020), 105314.
    M.A.G. Hernandez, E.E. Canfora, J.W.E. Jocken, et al., The short-chain fatty acid acetate in body weight control and insulin sensitivity, Nutrients 11(2019), 1943.
    P. Sittipo, J.-W. Shim, Y.K. Lee, Microbial metabolites determine host health and the status of some diseases, Int. J. Mol. Sci. 20(2019), 5296.
    H. Ohira, W. Tsutsui, Y. Fujioka, Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atherosclerosis Thromb. 24(2017) 660-672.
    D.J. Morrison, T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microb. 7(2016) 189-200.
    J.M. Hu, S.L. Lin, B.D. Zheng, et al., Short-chain fatty acids in control of energy metabolism, Crit. Rev. Food Sci. Nutr. 58(2018) 1243-1249.
    J. Tan, C. McKenzie, M. Potamitis, et al., The role of short-chain fatty acids in health and disease, Adv. Immunol. 121(2014) 91-119.
    T. Ulven, Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets, Front. Endocrinol. 3(2012), 111.
    W. Feng, H. Ao, C. Peng, Gut microbiota, short-chain fatty acids, and herbal medicines, Front. Pharmacol. 9(2018), 1354.
    K.J. Falkenberg, R.W. Johnstone, Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders, Nat. Rev. Drug Discov. 13(2014) 673-691.
    M.S. Alavi, A. Shamsizadeh, H. Azhdari-Zarmehri, et al., Orphan G proteincoupled receptors:The role in CNS disorders, Biomed. Pharmacother. 98(2018) 222-232.
    C. Recio, D. Lucy, P. Iveson, et al., The role of metabolite-sensing G proteincoupled receptors in inflammation and metabolic disease, Antioxidants Redox Signal. 29(2018) 237-256.
    J. Wang, C. Gareri, A.H. Rockman, G-protein-coupled receptors in heart disease, Circ. Res. 123(2018) 716-735.
    P. Melbye, A. Olsson, T.H. Hansen, et al., Short-chain fatty acids and gut microbiota in multiple sclerosis, Acta Neurol. Scand. 139(2019) 208-219.
    B.J.H. Verhaar, A. Prodan, M. Nieuwdorp, et al., Gut microbiota in hypertension and atherosclerosis:A review, Nutrients 12(2020), 2982.
    G. Wang, Y. Yu, Y.Z. Wang, et al., Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy, J. Cell. Physiol. 234(2019) 17023-17049.
    D.P. Venegas, M.K. De la Fuente, G. Landskron, et al., Corrigendum:Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol. 10(2019), 1486.
    D.K. Mandaliya, S. Seshadri, Short chain fatty acids, pancreatic dysfunction and type 2 diabetes, Pancreatology 19(2019) 280-284.
    S. Xiao, Z. Zhang, M. Chen, et al., Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism, J. Ethnopharmacol. 241(2019), 112032.
    I. Khan, S. Pathan, X.A. Li, et al., Far infrared radiation induces changes in gut microbiota and activates GPCRs in mice, J. Adv. Res. 22(2019) 145-152.
    M. Vital, A.C. Howe, J.M. Tiedje, Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data, mBio 5(2014), e00889.
    M. Sun, W. Wu, Z. Liu, et al., Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases, J. Gastroenterol. 52(2017) 1-8.
    L.L. Wang, H.H. Guo, S. Huang, et al., Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gaschromatography combined with polymerase chain reaction, J. Chromatogr. B. 1057(2017) 70-80.
    J.J.G. Marin, R.I. Macias, O. Briz, et al., Bile acids in physiology, pathology and pharmacology, Curr. Drug Metabol. 17(2015) 4-29.
    S.L. Long, C.G.M. Gahan, S.A. Joyce, Interactions between gut bacteria and bile in health and disease, Mol. Aspect. Med. 56(2017) 54-65.
    E.F. Enright, B.T. Griffin, C.G.M. Gahan, et al., Microbiome-mediated bile acid modification:Role in intestinal drug absorption and metabolism, Pharmacol. Res. 133(2018) 170-186.
    J.M. Ridlon, D.J. Kang, P.B. Hylemon, et al., Bile acids and the gut microbiome, Curr. Opin. Gastroenterol. 30(2014) 332-338.
    K.C. Doerner, F. Takamine, C.P. LaVoie, et al., Assessment of fecal bacteria with bile acid 7 alpha-dehydroxylating activity for the presence of Bai-like genes, Appl. Environ. Microbiol. 63(1997) 1185-1188.
    M.D. Chow, Y.H. Lee, G.L. Guo, The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, Mol. Aspect. Med. 56(2017) 34-44.
    C. Wang, C. Zhu, L. Shao, et al., Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease, Mediators Inflamm. 2019(2019), 7659509.
    Y. Li, R.Q. Tang, P.S.C. Leung, et al., Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases, Autoimmun. Rev. 16(2017) 885-896.
    J.A. Gonz alez-Regueiro, L. Moreno-Castaneda, M. Uribe, et al., The role of bile~acids in glucose metabolism and their relation with diabetes, Ann. Hepatol. 16(2017) 16-21.
    E. Martinot, L. Sedes, M. Baptissart, et al., Bile acids and their receptors, Mol. Aspect. Med. 56(2017) 2-9.
    J.Y. Chiang, Bile acid metabolism and signaling, Comp. Physiol. 3(2013) 1191-1212.
    S. Fiorucci, M. Biagioli, A. Zampella, et al., Bile acids activated receptors regulate innate immunity, Front. Immunol. 9(2018), 1853.
    R. Sun, N. Yang, B. Kong, et al., Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway, Mol. Pharmacol. 91(2017) 110-122.
    M.T. Velasquez, A. Ramezani, A. Manal, et al., Trimethylamine N-oxide:The good, the bad and the unknown, Toxins 8(2016), 326.
    S. Rath, B. Heidrich, D.H. Pieper, et al., Uncovering the trimethylamine-producing bacteria of the human gut microbiota, Microbiome 5(2017), 54.
    J. Chhibber-Goel, A. Gaur, V. Singhal, et al., The complex metabolism of trimethylamine in humans:Endogenous and exogenous sources, Expert Rev. Mol. Med. 18(2016), e8.
    D. Fennema, I.R. Phillips, E.A. Shephard, Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3(FMO3)-mediated hostmicrobiome metabolic axis implicated in health and disease, Drug Metab. Dispos. 44(2016) 1839-1850.
    S. Subramaniam, C. Fletcher, Trimethylamine N-oxide:Breathe new life, Br. J. Pharmacol. 175(2018) 1344-1353.
    A. Wilson, C. McLean, R.B. Kim, Trimethylamine-N-oxide:A link between the gut microbiome, bile acid metabolism, and atherosclerosis, Curr. Opin. Lipidol. 27(2016) 148-154.
    A.U. Din, A. Hassan, Y. Zhu, et al., Amelioration of TMAO through probiotics and its potential role in atherosclerosis, Appl. Microbiol. Biotechnol. 103(2019) 9217-9228.
    J.J. DiNicolantonio, M. McCarty, J. OKeefe, Association of moderately elevated trimethylamine N-oxide with cardiovascular risk:Is TMAO serving as a marker for hepatic insulin resistance, Open Heart 6(2019), e000890.
    C.W.H. Chan, B.M.H. Law, M.M.Y. Waye, et al., Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer-where we are and where shall we go? J. Cancer 10(2019) 5874-5882.
    J. Oellgaard, S.A. Winther, T.S. Hansen, et al., Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer, Curr. Pharm. Des. 23(2017) 3699-3712.
    Z. Li, Z. Wu, J. Yan, et al., Gut microbe-derived metabolite trimethylamine Noxide induces cardiac hypertrophy and fibrosis, Lab. Invest. 99(2019) 346-357.
    X. Li, J. Geng, J. Zhao, et al., Trimethylamine N-oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome, Front. Physiol. 10(2019), 866.
    X. Sun, X. Jiao, Y. Ma, et al., Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome, Biochem. Biophys. Res. Commun. 481(2016) 63-70.
    M.-L. Chen, X.-H. Zhu, L. Ran, et al., Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway, J. Am. Heart. Assoc. 6(2017), e006347.
    K.M. Boini, T. Hussain, P.-L. Li, et al., Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction, Cell. Physiol. Biochem. 44(2017) 152-162.
    Z. Yang, S. Huang, D.Y. Zou, et al., Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice, Amino Acids 48(2016) 2731-2745.
    T.M.A. Franco, J.S. Blanchard, Bacterial branched-chain amino acid biosynthesis:Structures, mechanisms, and drugability, Biochemistry 56(2017) 5849-5865.
    H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, et al., Human gut microbes impact host serum metabolome and insulin sensitivity, Nature 535(2016) 376-381.
    E.P. Neis, C.H. Dejong, S.S. Rensen, The role of microbial amino acid metabolism in host metabolism, Nutrients 7(2015) 2930-2946.
    Z.-L. Dai, G.Y. Wu, W.-Y. Zhu, Amino acid metabolism in intestinal bacteria:Links between gut ecology and host health, Front. Biosci. (Landmark Ed). 16(2011) 1768-1786.
    S.-K. Hwang, H.-H. Kim, The functions of mTOR in ischemic diseases, BMB Rep. 44(2011) 506-511.
    H. Hua, Q. Kong, H. Zhang, et al., Targeting mTOR for cancer therapy, J. Hematol. Oncol. 12(2019), 71.
    M.-S. Yoon, The emerging role of branched-chain amino acids in insulin resistance and metabolism, Nutrients 8(2016), 405.
    E. Blomstrand, J. Eliasson, H.K. Karlsson, et al., Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise, J. Nutr. 136(2006) 269Se273S.
    Y. Shimomura, Y. Kitaura, Physiological and pathological roles of branchedchain amino acids in the regulation of protein and energy metabolism and neurological functions, Pharmacol. Res. 133(2018) 215-217.
    J.D. Berke, What does dopamine mean? Nat. Neurosci. 21(2018) 787-793.
    A. Moreira da Silva Santos, J.P. Kelly, P. Dockery, et al., Effect of a binge-like dosing regimen of methamphetamine on dopamine levels and tyrosine hydroxylase expressing neurons in the rat brain, Prog. Neuropsychopharmacol. Biol. Psychiatry 89(2019) 303-309.
    J. Belik, Y. Shifrin, E. Arning, et al., Corrigendum:Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice, Sci. Rep. 7(2017), 44161.
    Y. Wang, Q. Tong, S.-R. Ma, et al., Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota, Signal Transduct Target. Ther. 6(2021), 77.
    M. Modoux, N. Rolhion, S. Mani, et al., Tryptophan metabolism as a pharmacological target, Trends Pharmacol. Sci. 42(2021) 60-73.
    J. Zhang, S. Zhu, N. Ma, et al., Metabolites of microbiota response to tryptophan and intestinal mucosal immunity:A therapeutic target to control intestinal inflammation, Med. Res. Rev. 41(2021) 1061-1088.
    W. Jing, S. Dong, X. Luo, et al., Berberine improves colitis by triggering AHR activation by microbial tryptophan catabolites, Pharmacol. Res. 64(2021), 105358.
    F. Di Lorenzo, C. De Castro, A. Silipo, et al., Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions, FEMS Microbiol. Rev. 43(2019) 257-272.
    J.B. Soares, P. Pimentel-Nunes, R. Roncon-Albuquerque, et al., The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases, Hepatol. Int. 4(2010) 659-672.
    L.G. Hersoug, P. Møller, S. Loft, Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue:Implications for inflammation and obesity, Obes. Rev. 17(2016) 297-312.
    E. Bianconi, A. Piovesan, F. Facchin, et al., An estimation of the number of cells in the human body, Ann. Hum. Biol. 40(2013) 463-471.
    C.A. Lozupone, J.I. Stombaugh, J.I. Gordon, et al., Diversity, stability and resilience of the human gut microbiota, Nature 489(2012) 220-230.
    X.C. Morgan, N. Segata, C. Huttenhower, Biodiversity and functional genomics in the human microbiome, Trends Genet. 29(2013) 51-58.
    C. Pan, Q. Guo, N. Lu, Role of gut microbiota in the pharmacological effects of natural products, Evid. Based Complement. Alternat. Med. 2019(2019), 2682748.
    L. Tan, Y. Wang, G. Ai, et al., Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-kB and MAPK signaling pathways, Int. Immunopharm. 75(2019), 105802.
    C. Bryant, L. Hubbard, W.D. McElroy, Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae, J. Biol. Chem. 266(1991) 4126-4130.
    J. Song, S. Zhang, L. Lu, Fungal cytochrome P450 protein cyp51:What we can learn from its evolution, regulons and cyp51-based azole resistance, Fungal Biol. Rev. 32(2018) 131-142.
    Z.-W. Zhang, L. Cong, R. Peng, et al., Transformation of berberine to its demethylated metabolites by the CYP51 enzyme in the gut microbiota, J. Pharm. Anal. 11(2021) 628-637.
    X.-T. Yu, Y.-F. Xu, Y.-F. Huang, et al., Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice, PLoS One 13(2018), e0194069.
    L. Zhu, P. Gu, H. Shen, Protective effects of berberine hydrochloride on DSSinduced ulcerative colitis in rats, Int. Immunopharm. 68(2019) 242-251.
    Z. Zhao, Q. Wei, W. Hua, et al., Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice, Biomed. Pharmacother. 103(2018) 1319-1326.
    M. Abd El-Salama, H. Mekky, E.M.B. El-Naggar, et al., Hepatoprotective properties and biotransformation of berberine and berberrubine by cell suspension cultures of dodonaea viscosa and ocimum basilicum, South Afr. J. Bot. 97(2015) 191-195.
    Y.T. Liu, H.P. Hao, H.G. Xie, et al., Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats, Drug Metab. Dispos. 38(2010) 1779-1784.
    X. Wang, S. Wang, J. Ma, et al., Pharmacokinetics in rats and tissue distribution in mouse of berberrubine by UPLC-MS/MS, J. Pharm. Biomed. Anal.115(2015) 368-374.
    H. Wu, K. He, Y. Wang, et al., The antihypercholesterolemic effect of jatrorrhizine isolated from Rhizoma Coptidis, Phytomedicine 21(2014) 1373-1381.
    P. Wang, X.Y. Gao, S.Q. Yang, et al., Jatrorrhizine inhibits colorectal carcinoma proliferation and metastasis through Wnt/b-catenin signaling pathway and epithelial-mesenchymal transition, Drug Des. Dev. Ther. 13(2019) 2235-2247.
    J. Hallajzadeh, P. Maleki Dana, M. Mobini, et al., Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer, Med. Oncol. 37(2020), 49.
    S.F. Dong, Y. Hong, M. Liu, et al., Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats, Eur. J. Pharmacol. 660(2011) 368-374.
    R. Shi, H. Zhou, B. Ma, et al., Pharmacokinetics and metabolism of jatrorrhizine, a gastric prokinetic drug candidate, Biopharm Drug Dispos. 33(2012) 135-145.
    M.Y. Zhang, Y.Y. Yu, S.F. Wang, et al., Cardiotoxicity evaluation of nine alkaloids from Rhizoma Coptis, Hum. Exp. Toxicol. 37(2018) 185-195.
    C. Li, G. Ai, Y. Wang, et al., Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect:Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-kB pathway, Pharmacol. Res. 152(2020), 104603.
    Y. Dou, R. Huang, Q. Li, et al., Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways, Biomed. Pharmacother. 137(2021), 111312.
    C.L. Li, L.H. Tan, Y.F. Wang, et al., Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo, Phytomedicine 52(2019) 272-283.
    P. Dey, Targeting gut barrier dysfunction with phytotherapies:Effective strategy against chronic diseases, Pharmacol. Res. 161(2020), 105135.
    U. Heinemann, A. Schuetz, Structural features of tight-junction proteins, Int. J. Mol. Sci. 20(2019), 6020.
    Z.M. Slifer, A.T. Blikslager, The integral role of tight junction proteins in the repair of injured intestinal epithelium, Int. J. Mol. Sci. 21(2020), 972.
    S.C. Bischoff, G. Barbara, W. Buurman, et al., Intestinal permeability a new target for disease prevention and therapy, BMC Gastroenterol. 14(2014), 189.
    V. Schüppel, D. Haller, Intestinal microbiome in chronic diseases:Relevance of gut bacteria in inflammatory bowel diseases and metabolic disorders, Diabetologe 12(2016) 420-427.
    M. Julio-Pieper, J.A. Bravo, E. Aliaga, et al., Review article:Intestinal barrier dysfunction and central nervous system disorders e a controversial association, Aliment. Pharmacol. Ther. 40(2014) 1187-1201.
    C. Matuchansky, Food and intestinal barrier function in irritable bowel syndrome, Neurogastroenterol. Motil. 24(2012), 888.
    A. Michielan, R. D'Inca, Intestinal permeability in in flammatory bowel disease:Pathogenesis, clinical evaluation, and therapy of leaky gut, Mediators Inflamm. 2015(2015), 628157.
    G. Rogler, G. Rosano, The heart and the gut, Eur. Heart J. 35(2014) 426-430.
    B. Meijers, R. Farre, S. Dejongh, et al., Intestinal barrier function in chronic kidney disease, Toxins 10(2018), 298.
    G.R. Sharmila, G. Venkateswaran, Bacillus subtilis CFR5 isolated from fermented soybean attenuates the chronic pancreatitis, J. Funct. Foods 40(2018) 197-206.
    G.L. Klein, B.W. Petschow, A.L. Shaw, et al., Gut barrier dysfunction and microbial translocation in cancer cachexia:A new therapeutic target, Curr. Opin. Support. Palliat. Care 7(2013) 361-367.
    J.M. Natividad, E.F. Verdu, Modulation of intestinal barrier by intestinal microbiota:Pathological and therapeutic implications, Pharmacol. Res. 69(2013) 42-51.
    J. Li, S. Lin, P.M. Vanhoutte, et al., Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE-/- mice, Circulation 133(2016) 2434-2446.
    X. Bian, W. Wu, L. Yang, et al., Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice, Front. Microbiol. 10(2019), 2259.
    D.R. Donohoe, N. Garge, X. Zhang, et al., The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metabol. 13(2011) 517-526.
    C.J. Kelly, L. Zheng, E.L. Campbell, et al., Crosstalk between microbiotaderived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function, Cell Host Microbe 17(2015) 662-671.
    W. Liu, X. Luo, J. Tang, et al., A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively:By changing gut barrier, Eur. J. Nutr. 60(2020) 2317-2330.
    P. Hegyi, J. Maleth, J.R. Walters, et al., Guts and gall:Bile acids in regulation of intestinal epithelial function in health and disease, Physiol. Rev. 98(2018) 1983-2023.
    S.A. Scott, J. Fu, P.V. Chang, Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor, Proc. Natl. Acad. Sci. U S A117(2020) 19376-19387.
    Y.-Y. Chen, R.-Y. Li, M.-J. Shi, et al., Demethyleneberberine alleviates inflammatory bowel disease in mice through regulating NF-kB signaling and Thelper cell homeostasis, Inflamm. Res. 66(2017) 187-196.
    S. Mollazadeh, A. Sahebkar, F. Hadizadeh, et al., Structural and functional aspects of P-glycoprotein and its inhibitors, Life Sci. 214(2018) 118-123.
    R. Silva, V. Vilas-Boas, H. Carmo, et al., Modulation of P-glycoprotein efflux pump:Induction and activation as a therapeutic strategy, Pharmacol. Ther.149(2015) 1-123.
    F.J. Sharom, The P-glycoprotein multidrug transporter, Essays Biochem. 50(2011) 161-178.
    Q.-S. Xie, J.-X. Zhang, M. Liu, et al., Short-chain fatty acids exert opposite effects on the expression and function of P-glycoprotein and breast cancer resistance protein in rat intestine, Acta Pharmacol. Sin. 42(2021) 470-481.
    J. Zhang, Q. Xie, W. Kong, et al., Short-chain fatty acids oppositely altered expressions and functions of intestinal cytochrome P4503A and P-glycoprotein and affected pharmacokinetics of verapamil following oral administration to rats, J. Pharm. Pharmacol. 72(2020) 448-460.
    R. Mazzanti, O. Fantappie, Y. Kamimoto, et al., Bile acid inhibition of P- glycoprotein-mediated transport in multidrug-resistant cells and rat liver canalicular membrane vesicles, Hepatology 20(1994) 170-176.
    W. Zha, G. Wang, W. Xu, et al., Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages, PLoS One 8(2013), e54349.
    A. Kumar, Ekavali, J. Mishra, et al., Possible role of P-glycoprotein in the neuroprotective mechanism of berberine in intracerebroventricular streptozotocin-induced cognitive dysfunction, Psychopharmacology (Berl) 233(2016) 137-152.
    S.M. Jandhyala, R. Talukdar, C. Subramanyam, et al., Role of the normal gut microbiota, World J. Gastroenterol. 21(2015) 8787-8803.
    J. Gagniere, J. Raisch, J. Veziant, et al., Gut microbiota imbalance and colo- rectal cancer, World J. Gastroenterol. 22(2016) 501-518.
    K. Lange, M. Buerger, A. Stallmach, et al., Effects of antibiotics on gut microbiota, Dig. Dis. 34(2016) 260-268.
    J. Ramirez, F. Guarner, L. Bustos Fernandez, et al., Antibiotics as major disruptors of gut microbiota, Front. Cell. Infect. Microbiol. 10(2020), 572912.
    J. Yin, H. Xing, J. Ye, Efficacy of berberine in patients with type 2 diabetes mellitus, Metabolism 57(2008) 712-717.
    S.-J. Yue, J. Liu, W.-X. Wang, et al., Berberine treatment-emergent mild diarrhea associated with gut microbiota dysbiosis, Biomed. Pharmacother. 116(2019), 109002.
    B.S. Wong, M. Camilleri, P. Carlson, et al., Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea, Clin. Gastroenterol. Hepatol. 10(2012), 10091015.e1-3.
    D. Bornigen, X.C. Morgan, E.A. Franzosa, et al., Functional pro € filing of the gut microbiome in disease-associated inflammation, Genome Med. 5(2013), 65.
    W. Feng, J. Liu, H. Ao, et al., Targeting gut microbiota for precision medicine:Focusing on the efficacy and toxicity of drugs, Theranostics 10(2020) 11278-11301.
    P. Dey, The pharmaco-toxicological conundrum of oleander:Potential role of gut microbiome, Biomed. Pharmacother. 129(2020), 110422.
    Y. Wang, Q. Tong, J.W. Shou, et al., Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine, Theranostics 7(2017) 2443-2451.
    Z. Zhang, H. Zhang, B. Li, et al., Berberine activates thermogenesis in white and brown adipose tissue, Nat. Commun. 5(2014), 5493.
    N. Turner, J.-Y. Li, A. Gosby, et al., Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I:A mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action, Diabetes 57(2008) 1414-1418.
    M. Zimmermann, M. Zimmermann-Kogadeeva, R. Wegmann, et al., Separating host and microbiome contributions to drug pharmacokinetics and toxicity, Science 363(2019), eaat9931.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (571) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return