Citation: | Yury A. Gubarev, Natalya Sh. Lebedeva, Elena S. Yurina, Sergey A. Syrbu, Aleksey N. Kiselev, Mikhail A. Lebedev. Possible therapeutic targets and promising drugs based on unsymmetrical hetaryl-substituted porphyrins to combat SARS-CoV-2[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 691-698. doi: 10.1016/j.jpha.2021.08.003 |
J. Vallamkondu, A. John, W.Y. Wani, et al., SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets, Biochim. Biophys. Acta Mol. Basis Dis. 1866 (2020), 165889
|
A. Ramani, L. Muller, P.N. Ostermann, et al., SARS-CoV-2 targets neurons of 3D human brain organoids, EMBO J. 39 (2020), e106230
|
A. Kumar, V. Pareek, P. Prasoon, et al., Possible routes of SARS-CoV-2 invasion in brain: In context of neurological symptoms in COVID-19 patients, J. Neurosci. Res. 98 (2020) 2376-2383
|
E.M. Rhea, A.F. Logsdon, K.M. Hansen, et al., The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice, Nat. Neurosci. 24 (2021) 368-378
|
E. Song, C. Zhang, B. Israelow, et al., Neuroinvasion of SARS-CoV-2 in human and mouse brain, J. Exp. Med. 218 (2021), e20202135
|
L. Mao, H. Jin, M. Wang, et al., Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China, JAMA neurology 77 (2020) 683-690
|
M.F. DosSantos, S. Devalle, V. Aran, et al., Neuromechanisms of SARS-CoV-2: a review, Front Neuroanat. 14 (2020), 37
|
J. Yang, W. Zhang, B. He, et al., Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade, Proteins 84 (2016) 233-246
|
D.K. Deda, C. Pavani, E. Carita, et al., Control of cytolocalization and mechanism of cell death by encapsulation of a photosensitizer, J. Biomed. Nanotechnol. 9 (2013) 1307-1317
|
D.J. Benton, A.G. Wrobel, C. Roustan, et al., The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2, Proc. Natl. Acad. Sci. U.S.A. 118 (2021), e2022586118
|
F. Neese, Software update: the ORCA program system, version 4.0, Wiley Interdiscip Rev. Comput. Mol. Sci. 8 (2018), e1327
|
O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455-461
|
R. Rentzsch, B.Y. Renard, Docking small peptides remains a great challenge: an assessment using AutoDock Vina, Briefings in Bioinformatics 16 (2015) 1045-1056
|
N.A. Baker, D. Sept, S. Joseph, et al., Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 10037-10041
|
N.S. Lebedeva, Y.A. Gubarev, O.I. Koifman, Interaction between albumin and zinc tetra-4-[(4′-carboxy) phenylamino] phthalocyanine, Mendeleev Commun. 25 (2015) 307-309
|
N.S. Lebedeva, Y.A. Gubarev, A.I. Vyugin, et al., Investigation of interaction between alkoxy substituted phthalocyanines with different lengths of alkyl residue and bovine serum albumin, J. Lumin. 166 (2015) 71-76
|
N. Lebedeva, E. Malkova, A. Vyugin, et al., Spectral and hydrodynamic studies of complex formation of tetraalkoxy substituted zinc(II)phthalocyanines with defatted and nondefatted bovine serum albumin, BioChip J. 10 (2016) 1-8
|
N.S. Lebedeva, Y.A. Gubarev, O.I. Koifman, The interaction of cationic and anionic porphyrins with the bovine serum albumin in borate buffer, J. Incl. Phenom. Macrocycl. Chem. 88 (2017) 191-198
|
N.S. Lebedeva, Y.A. Gubarev, E.S. Yurina, et al., Features of interaction of tetraiodide meso-tetra (N-methyl-3-pyridyl) porphyrin with bovine serum albumin, J. Mol. Liq. 265 (2018) 664-667
|
N.S. Lebedeva, E.S. Yurina, S.S. Guseinov, et al., The interaction of 5, 10, 15, 20-tetrakis [4-(2, 3, 4, 6-tetra-O-acetyl-β-D-galactopyranosyl) phenyl] porphine with biopolymers, Dyes Pigments 162 (2019) 266-271
|
Z. Liu, X. Xiao, X. Wei, et al., Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2, J. Med. Virol. 92 (2020) 595-601
|
F.A. Rabi, M.S. Al Zoubi, G.A. Kasasbeh, et al., SARS-CoV-2 and coronavirus disease 2019: what we know so far, Pathogens 9 (2020), 231.
|
D. Bestle, M.R. Heindl, H. Limburg, et al., TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells, Life Sci. Alliance 3 (2020), e202000786
|
H. Sekimukai, N. Iwata-Yoshikawa, S. Fukushi, et al., Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs, Microbiol. Immunol. 64 (2020) 33-51
|
J. Shang, Y. Wan, C. Luo, et al., Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 11727-11734
|
Y. Wan, J. Shang, R. Graham, et al., Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus, J. Virol. 94 (2020), e00127-20
|
K. Wu, G. Peng, M. Wilken, et al., Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus, J. Biol. Chem. 287 (2012) 8904-8911
|
M.A. Rodgers, P.T. Snowden, Lifetime of oxygen (O2(1ΔG)) in liquid water as determined by time-resolved infrared luminescence measurements, J. Am. Chem. Soc. 104 (1982) 5541-5543
|
R.W. Redmond, I.E. Kochevar, Spatially resolved cellular responses to singlet oxygen, Photochem. Photobiol. 82 (2006) 1178-1186
|
S. Nonell, S.E. Braslavsky, [4] Time-resolved singlet oxygen detection, Methods Enzymol. 319 (2000) 37-49
|
S. Hatz, L. Poulsen, P.R. Ogilby, Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: Effects of oxygen diffusion and oxygen concentration, Photochem. Photobiol. 84 (2008) 1284-1290
|
Q. Ye, A.M. West, S. Silletti, et al., Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein, Protein Sci. 29 (2020) 1890-1901
|
W. Zeng, G. Liu, H. Ma, et al., Biochemical characterization of SARS-CoV-2 nucleocapsid protein, Biochem. Biophys. Res. Commun. 527 (2020) 618-623
|
T.M. Perdikari, A.C. Murthy, V.H. Ryan, et al., SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs, EMBO J. 39 (2020), e106478.
|
M.J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun. 305 (2003) 761-770
|
G.T.P. Brancini, G.B. Rodrigues, M.d.S.L. Rambaldi, et al., The effects of photodynamic treatment with new methylene blue N on the Candida albicans proteome, Photochem. Photobiol. Sci. 15 (2016) 1503-1513
|
M. Bouvet, I. Imbert, L. Subissi, et al., RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 9372-9377
|
Y. Ma, L. Wu, N. Shaw, et al., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 9436-9441
|
N.S. Ogando, J.C. Zevenhoven-Dobbe, Y. van der Meer, et al., The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2, J. Virol. 94 (2020), e01246-20
|
M. Romano, A. Ruggiero, F. Squeglia, et al., A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping, Cells 9 (2020), 1267
|
J.M. Dabrowski, L.G. Arnaut, Photodynamic therapy (PDT) of cancer: from local to systemic treatment, Photochem. Photobiol. Sci. 14 (2015) 1765-1780
|