Citation: | Chen Wang, Min Wang, Yan Zhang, Hongxin Jia, Binbin Chen. Cyclic arginine-glycine-aspartic acid-modified red blood cells for drug delivery: Synthesis and in vitro evaluation[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 324-331. doi: 10.1016/j.jpha.2021.06.003 |
A.C. Anselmo, V. Gupta, B.J. Zern, et al., Delivering Nanoparticles to Lungs while Avoiding Liver and Spleen through Adsorption on Red Blood Cells, ACS Nano 7 (2013) 11129-11137
|
F. Mehryab, S. Rabbani, S. Shahhosseini, et al., Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges, Acta Biomater. 113 (2020) 42-62
|
C.C.P. da Silva, B.C.D. Owoyemi, B.R. Alvarenga, et al., Synthesis and solid-state characterization of diclofenac imidazolium monohydrate: an imidazolium pharmaceutical ionic liquid, Crystengcomm 22 (2020) 5345-5354
|
G. Yan, B. Chen, X. Zeng, et al., Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications, Carbohydr. Polym. 244 (2020), 116492
|
H. Zhang, T. Fan, W. Chen, et al., Recent advances of two-dimensional materials in smart drug delivery nano-systems, Bioact. Mater. 5 (2020) 1071-1086
|
T. Lang, Q. Yin, Y. Li, Progress of Cell-Derived Biomimetic Drug Delivery Systems for Cancer Therapy, Adv. Ther. (Weinh) 1 (2018), 1800053
|
L. Kremer, C. Schultz-Fademrecht, M. Baumann, et al., Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction, Angew. Chem.-Int. Edit. 56 (2017) 13021-13025
|
N. Patel, Validation of CRISPR/Cas9 Off-Target Discovery Profiles from In Silico Prediction, Cell-Based & Biochemical-Based Assays with Targeted Off-Target Sequencing, Mol. Ther. 28 (2020) 99-99
|
S. Da, J. Chen, Y. Wang, et al., Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery, Theranostics 9 (2019) 6885-6900
|
L. Koleva, E. Bovt, F. Ataullakhanov, et al., Erythrocytes as Carriers: From Drug Delivery to Biosensors, Pharmaceutics 12 (2020), 276
|
V.L. Tzounakas, D.G. Karadimas, I.S. Papassideri, et al., Erythrocyte-based drug delivery in Transfusion Medicine: Wandering questions seeking answers, Transfus. Apher. Sci. 56 (2017) 626-634
|
X. Dong, Y. Niu, Y. Ding, et al., Formulation and Drug Loading Features of Nano-Erythrocytes, Nanoscale Res. Lett. 12 (2017), 202
|
E. Xu, X. Wu, X. Zhang, et al., Study on the protection of dextran on erythrocytes during drug loading, Colloids Surf. B Biointerfaces 189 (2020), 110882
|
P.M. Glassman, C.H. Villa, A. Ukidve, et al., Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics, Pharmaceutics 12 (2020), 440
|
J.M. Guo, J.O. Agola, R. Serda, et al., Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components, ACS Nano 14 (2020) 7847-7859
|
X. Zhang, M. Qiu, P. Guo, et al., Autologous Red Blood Cell Delivery of Betamethasone Phosphate Sodium for Long Anti-Inflammation, Pharmaceutics 10 (2018), 286
|
J. Fan, B. Liu, Y. Long, et al., Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition, Acta Biomater. 113 (2020) 554-569
|
T. Wang, Y. Luo, H. Lv, et al., Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors, ACS Appl. Mater. Interfaces 11 (2019) 45455-45466
|
P. Dey, S. Banerjee, S. Mandal, et al., Design and evaluation of anti-fibrosis drug engineered resealed erythrocytes for targeted delivery, Drug Deliv. Transl. Res. 9 (2019) 997-1007
|
M.I. Riaz, H.S. Sarwar, M. Rehman, et al., Study of erythrocytes as a novel drug carrier for the delivery of artemether, Braz. J. Pharm. Sci. 55 (2019), e17680
|
J. Seghatchian, A joint narrative on methodological/standardization aspects of the lupus anticoagulant and erythrocyte-based drug delivery in transfusion medicine, Transfus. Apher. Sci. 56 (2017) 611-611
|
C.H. Villa, J. Seghatchian, V. Muzykantov, Drug delivery by erythrocytes: "Primum non nocere", Transfus. Apher. Sci. 55 (2016) 275-280
|
A. Zarrin, M. Foroozesh, M. Hamidi, Carrier erythrocytes: recent advances, present status, current trends and future horizons, Expert Opin. Drug Deliv. 11 (2014) 433-447
|
G.I. Harisa, M.F. Ibrahim, F. Alanazi, et al., Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel, Saudi Pharm. J. 22 (2014) 223-230
|
S. Biagiotti, M.F. Paoletti, A. Fraternale, et al., Drug Delivery by Red Blood Cells, IUBMB Life 63 (2011) 621-631
|
M. Magnani, L. Rossi, Approaches to erythrocyte-mediated drug delivery, Expert Opin. Drug Deliv. 11 (2014) 677-687
|
C.H. Villa, D.C. Pan, I.H. Johnston, et al., Biocompatible coupling of therapeutic fusion proteins to human erythrocytes, Blood Advances 2 (2018) 165-176
|
C. Hu, R. Fang, L. Zhang, Erythrocyte-Inspired Delivery Systems, Adv. Healthc. Mater. 1 (2012) 537-547
|
M. Magnani, L. Chiarantini, E. Vittoria, et al., Red blood cells as an antigen delivery system, Biotechnol. Appl. Biochem. 16 (1992) 188-194
|
V.R. Muzykantov, J.C. Murciano, R.P. Taylor, et al., Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin, Anal. Biochem. 241 (1996) 109-119
|
A.B. Zaltzman, C.W. Vandenberg, V.R. Muzykantov, et al., Enhanced complement susceptibility of avidin-biotin-treated human erythrocytes is a consequence of neutralization of the complement regulators CD59 and decay accelerating factor, Biochem. J. 307 (1995) 651-656
|
F.C. Vasconcellos, A.J. Swiston, M.M. Beppu, et al., Bioactive Polyelectrolyte Multilayers: Hyaluronic Acid Mediated B Lymphocyte Adhesion, Biomacromolecules 11 (2010) 2407-2414
|
N. Doshi, A.J. Swiston, J.B. Gilbert, et al., Cell-Based Drug Delivery Devices Using Phagocytosis-Resistant Backpacks, Adv. Mater. 23 (2011) H105-H109
|
J.S. Brenner, D. Pan, J.W. Myerson, et al., Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude, Nat. Commun. 9 (2018), 2684
|
Y. Cheng, Y. Ji, RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics, Eur. J. Pharm. Sci. 128 (2019) 8-17
|
J. Peng, S. Fumoto, T. Suga, et al., Targeted co-delivery of protein and drug to a tumor in vivo by sophisticated RGD-modified lipid-calcium carbonate nanoparticles, J. Control. Release 302 (2019) 42-53
|
Z. Song, Y. Lin, X. Zhang, et al., Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects, Int. J. Nanomed. 12 (2017) 1941-1958
|
Y. Zhu, L. Guan, Y. Mu, Preparation of arginine-glycine-aspartic acid (RGDS)-Urokinase-carrying targeting ultrasound contrast agent by avidin-biotin system and its impacts on thrombus-targeting affinity, Int. J. Clin. Exp. Med. 10 (2017) 15160-15167
|
M. Hamidi, A.H. Zarrin, M. Foroozesh, et al., Preparation and in vitro evaluation of carrier erythrocytes for RES-targeted delivery of interferon-alpha 2b, Int. J. Pharm. 341 (2007) 125-133
|
V.R. Muzykantov, M.D. Smirnov, G.P. Samokhin, Avidin attachment to biotinylated erythrocytes induces homologous lysis via the alternative pathway of complement, Blood 78 (1991) 2611-2618
|
V.R. Muzykantov, M.D. Smirnov, G.P. Samokhin, Streptavidin-induced lysis of homologous biotinylated erythrocytes. Evidence against the key role of the avidin charge in complement activation via the alternative pathway, FEBS Letters 280 (1991) 112-114
|
V.R. Muzykantov, M.D. Smirnov, G.P. Samokhin, Avidin-induced lysis of biotinylated erythrocytes by homologous complement via the alternative pathway depends on avidin's ability of multipoint binding with biotinylated membrane, Biochim. Biophys. Acta. 1107 (1992) 119-125
|
V.R. Muzykantov, M.D. Smirnov, A.L. Klibanov, Avidin attachment to biotinylated amino groups of the erythrocyte membrane eliminates homologous restriction of both classical and alternative pathways of the complement, FEBS Letters 318 (1993) 108-112
|
V.R. Muzykantov, M.D. Smirnov, G.P. Samokhin, Avidin acylation prevents the complement-dependent lysis of avidin-carrying erythrocytes, Biochem. J. 273 (1991) 393-397
|
V.R. Muzykantov, M.D. Smirnov, A.L. Klibanov, Avidin attachment to red blood cells via a phospholipid derivative of biotin provides complement-resistant immunoerythrocytes, J. Immunol. Methods. 158 (1993) 183-190
|
V.R. Muzykantov, M.D. Smirnov, A.B. Zaltzman, et al., Tannin-mediated attachment of avidin provides complement-resistant immunoerythrocytes that can be lysed in the presence of activator of complement, Anal. Biochem. 208 (1993) 338-342
|
V.R. Muzykantov, N. Seregina, M.D. Smirnov, Fast lysis by complement and uptake by liver of avidin-carrying biotinylated erythrocytes, Int. J. Artif. Organs 15 (1992) 622-627
|