| Citation: | Jiaojiao Lu, Qiongqun Pan, Jieqiang Zhou, Yan Weng, Kaili Chen, Lv Shi, Guanxiu Zhu, Chunlin Chen, Liang Li, Meiyu Geng, Zhenqing Zhang. Pharmacokinetics, distribution, and excretion of sodium oligomannate, a recently approved anti-Alzheimer's disease drug in China[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 145-155. doi: 10.1016/j.jpha.2021.06.001 | 
 
	                | S. Xiao, A phase II clinical trial on GV-971 in patients with Alzheimer's[abstract no. OC 3] , J Prev. Alz. Dis. 1(2014)214 | 
| S. F. Xiao, A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer disease[abstract], Chin. J. Pharm. Toxicol. 6(2019)403 | 
| News at a glance, Science, 366(2019), 668-670, https://doi.org/10.1126/science.366.6466.668 | 
| Y. Y. Syed, Sodium oligomannate:first approval, Drugs. 80(2020)441-444 | 
| J. Cumming, A. Ritter, K. Zhong, Clinical trials for disease modifying therapies in Alzheimer's disease:a primer, lessons learned, and a blueprint for the future, J. Alzheimers Dis. 64(2018) S3-S22 | 
| Y. Y. Gao, L. J. Zhang, W. J. Jiao, Marine glycan-derived therapeutics in China, Prog. Molec. Biol. Transl. Sci. 163(2019)113-134 | 
| M. C. Xing, Q. Cao, Y. Wang, et al., Advances in Research on the Bioactivity of Alginate Oligosaccharides. Mar. Drugs. 18(2020)144 | 
| M. Szekalska, A. Pucilowska, E. Szymanska, et al., Alginate:current use and future perspectives in pharmaceutical and biomedical applications, Int. J. Polym. Sci. 2016(2016)1-17 | 
| K. Y. Lee, D. J. Mooney. Alginate:properties and biomedical applications, Prog. Polym. Sci. 37(2012)106-126 | 
| Y. Yamamoto, M. Kurachi, K. Yamaguchi, et al., Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration, Carbohydr. Res. 342(2007)1133-1137 | 
| X. Y. Wang, G. Q. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression, Cell Res. 29(2019)787-803 | 
| J. F. Hu, M. Y. Geng, J. Li, et al., Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein, J. Pharmacol. Sci. 95(2004)248-255 | 
| R. W. Jiang, X. G. Du, X. Zhang, et al., Synthesis and bioassay of β-(1,4)-D-mannans as potential agents against Alzheimer's disease, Acta Pharmacol. Sin. 34(2013)1585-1591 | 
| X. L. Guo, X. L. Xin, L. Gan, et al., Determination of the accessibility of acidic oligosaccharide sugar chain to blood-brain barrier using surface plasmon resonance, Bio. Pharm. Bull. 29(2006)60-63 | 
| G. L. Yu, X. Zhao, Carbohydrate-Based Pharmaceutics. First ed., China Ocean University press, Qingdao, 2012 | 
| B. Haab, Z. Klamer. Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies, Mol. Cell. Proteomics. 19(2020)224-232 | 
| M. Bibl, V. Welge, H. Esselmann, et al., Stability of amyloid-β peptides in plasma and serum, Electrophoresis. 33(2012)445-450 | 
| M. Sjogren, H. Vanderstichele, H. Agren, et al., Tau and Aβ42 in cerebrospinal fluid from healthy adults 21-93 years of age:establishment of reference values, Clin. Chem. 47(2001)1776-1781 | 
| M. Basche, D. L.Gustafson, S. N.Holden, et al., A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors, Clin. Cancer Res. 12(2006)5471-5480 | 
| H. S. Al-Sallami, N. J. Medlicott. Investigation of an anti-activated factor X (anti-Xa) assay for the quantification of enoxaparin in human plasma, J. Pharm. Pharmacol. 67(2015)209-214 | 
| L. F. Harris, V. Castro-Lopez, N. Hammadi, et al., Development of a fluorescent anti-factor Xa assay to monitor unfractionated and low molecular weight heparins, Talanta. 81(2010)1725-1730 | 
| B. Wen, M. S. Zhu, Applications of mass spectrometry in drug metabolism:50 years of progress, Drug Metab. Rev. 47(2015)71-87 | 
| C. Y. Gao, X. Y. Chen, D. F. Zhong, Absorption and Disposition of Scutellarin in Rats:A Pharmacokinetic Explanation for the High Exposure of Its Isomeric Metabolite, Drug Metab. Dispos. 39(2011)2034-2044 | 
| T. Yang, Y. Shi, C. J. Lin, et al., Pharmacokinetics, bioavailability and tissue distribution study of JCC-02, a novel N-methyl-d-aspartate (NMDA) receptor inhibitor, in rats by LC-MS/MS, Eur. J. Pharm. Sci. 131(2019)146-152 | 
| P. J. Trim, J. J. Hopwood, M. F. Snel, Butanolysis derivatization:improved sensitivity in LC-MS/MS quantitation of heparan sulfate in urine from mucopolysaccharidosis patients, Anal. Chem. 87(2015)9243-9250 | 
| X. R. Han, P. Sanderson, S. Nesheiwat, et al., Structural analysis of urinary glycosaminoglycans from healthy human subjects, Glycobiology. 30(2020)143-151 | 
| L. Di, E. H. Kerns, G. T. Carter, Drug-like property concepts in pharmaceutical design, Curr. Pharm. Des. 15(2009)2184-2194 | 
| A. J. Lucas, J. L. Sproston, P. Barton, et al., Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin. Drug Discov. 14(2019)1313-1327 | 
| S. D. Deng, P. Zhang, L. Lin, et al., Study on intestinal absorption features of oligosaccharides in Morinda officinalis How. With single-pass perfusion, China J. Chin. Mater. Med. 40(2015)134-140 | 
| E. D. Biase, G. Lunghi, M. Maggioni, et al., GM1 oligosaccharide crosses the human blood-brain barrier in vitro by a paracellular route, Int. J. Mol. Sci. 21(2020), 2858 | 
| T. H. Kim, S. Shin, C. B. Landersdorfer, et al., Population pharmacokinetic modeling of the enterohepatic recirculation of fimasartan in rats, dogs, and humans, AAPS J. 17(2015)1210-1223 | 
| A. El-Kattan, S. Hurst, J. Brodfuehrer, et al., Anatomical and physiological factors affecting oral drug bioavailability in rats, dogs, and humans, Oral Bioavailability:Basic Principles, Advanced Concepts, and Applications, John Wiley and Sons, Inc., New Jersey, 2011, pp253-265 | 
| C. Zihni, C. Mills, K. Matter, et al., Tight junctions:from simple barriers to multifunctional molecular gates, Nat. Rev. Mol. Cell Biol. 17(2016)564-580 | 
| W. Abdullahi, D. Tripathi, P.T. Ronaldson, Blood-brain barrier dysfunction in ischemic stroke:targeting tight junctions and transporters for vascular protection, Am. J. Physiol.-Cell Physiol. 315(2018) C343-C356 | 
