Volume 11 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Donata Pluskota-Karwatka, Marcin Hoffmann, Jan Barciszewski. Reducing SARS-CoV-2 pathological protein activity with small molecules[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 383-397. doi: 10.1016/j.jpha.2021.03.012
Citation: Donata Pluskota-Karwatka, Marcin Hoffmann, Jan Barciszewski. Reducing SARS-CoV-2 pathological protein activity with small molecules[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 383-397. doi: 10.1016/j.jpha.2021.03.012

Reducing SARS-CoV-2 pathological protein activity with small molecules

doi: 10.1016/j.jpha.2021.03.012
  • Received Date: Nov. 13, 2020
  • Accepted Date: Mar. 29, 2021
  • Rev Recd Date: Mar. 21, 2021
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • Coronaviruses are dangerous human and animal pathogens. The newly identified coronavirus SARS-CoV-2 is the causative agent of COVID-19 outbreak, which is a real threat to human health and life. The world has been struggling with this epidemic for about a year, yet there are still no targeted drugs and effective treatments are very limited. Due to the long process of developing new drugs, reposition of existing ones is one of the best ways to deal with an epidemic of emergency infectious diseases. Among the existing drugs, there are candidates potentially able to inhibit the SARS-CoV-2 replication, and thus inhibit the infection of the virus. Some therapeutics target several proteins, and many diseases share molecular paths. In such cases, the use of existing pharmaceuticals for more than one purpose can reduce the time needed to design new drugs. The aim of this review was to analyze the key targets of viral infection and potential drugs acting on them, as well as to discuss various strategies and therapeutic approaches, including the possible use of natural products. We highlighted the approach based on increasing the involvement of human deaminases, particularly APOBEC deaminases in editing of SARS-CoV-2 RNA. This can reduce the cytosine content in the viral genome, leading to the loss of its integrity. We also indicated the nucleic acid technologies as potential approaches for COVID-19 treatment. Among numerous promising natural products, we pointed out curcumin and cannabidiol as good candidates for being anti-SARS-CoV-2 agents.
  • loading
  • C.B. Hudson, F.R. Beaudette, Infection of the cloaca with the virus of Infectious bronchitis., Science. 76 (1932) 34-34
    D. Hamre, J.J. Procknow, A new virus isolated from the human respiratory tract., Proc. Soc. Exp. Biol. Med. 121 (1966) 190-193
    K. McIntosh, J.H. Dees, W.B. Becker, et al., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease., Proc. Natl. Acad. Sci. U. S. A. 57 (1967) 933-940
    C. Wang, P.W. Horby, F.G. Hayden, et al., A novel coronavirus outbreak of global health concern., Lancet. 395 (2020) 470-473
    C. Chang, S.-C. Lo, Y.-S. Wang, et al., Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein., Drug Discov. Today. 21 (2016) 562-572
    Y. Matoba, C. Abiko, T. Ikeda, et al., Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan., Jpn. J. Infect. Dis. 68 (2015) 138-141. https://doi.org/10.7883/yoken.JJID.2014.266
    E.R. Gaunt, A. Hardie, E.C.J. Claas, et al., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method., J. Clin. Microbiol. 48 (2010) 2940-2947
    T. Kuiken, R.A.M. Fouchier, M. Schutten, et al., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome., Lancet. 362 (2003) 263-270
    R. Hilgenfeld, From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design., FEBS J. 281 (2014) 4085-4096
    R. Hilgenfeld, M. Peiris, From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses., Antiviral Res. 100 (2013) 286-295
    A.M. Zaki, S. van Boheemen, T.M. Bestebroer, et al., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia., N. Engl. J. Med. 367 (2012) 1814-1820
    Z. Song, Y. Xu, L. Bao, et al., From SARS to MERS, thrusting coronaviruses into the spotlight, viruses., 11 (2019) 59
    R.K. Guy, R.S. DiPaola, F. Romanelli, et al., Rapid repurposing of drugs for COVID-19., Science. 368 (2020) 829-830
    B. Tang, N.L. Bragazzi, Q. Li, et al., An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov)., Infect. Dis. Model. 5 (2020) 248-255
    N. Zhu, D. Zhang, W. Wang, et al., China novel coronavirus investigating and research team, a novel coronavirus from patients with pneumonia in China, 2019., N. Engl. J. Med. 382 (2020) 727-733
    J.J. Rossi, D. Rossi, Oligonucleotides and the COVID-19 pandemic: a perspective., Nucleic Acid Ther. 30 (2020) 129-132
    E.A. J Alsaadi, I.M. Jones, Membrane binding proteins of coronaviruses., Future Virol. 14 (2019) 275-286
    P.S. Masters, The Molecular Biology of Coronaviruses: Adv. Virus Res., Academic Press, 2006: pp. 193-292
    e Wilde A.H., Snijder E.J., Kikkert M., Host Factors in Coronavirus Replication in: Roles of Host Gene and Non-coding RNA Expression in Virus Infection, Vol. 419, Springer, Switzerland, 2018, pp. 113-150
    C. Liu, Q. Zhou, Y. Li, et al., Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases., ACS Cent. Sci. 6 (2020) 315-331
    S. Payne, Family Coronaviridae., Viruses. (2017) 149-158
    S. Jiang, C. Hillyer, L. Du, Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses., Trends Immunol. 41 (2020) 355-359
    F.A. Rabi, M.S. Al Zoubi, G.A. Kasasbeh, et al., SARS-CoV-2 and coronavirus disease 2019: What we know so far., Pathog. 9 (2020) 231
    A.C. Walls, Y.-J. Park, M.A. Tortorici, et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein., Cell. 181 (2020) 281-292
    P.K. Panda, M.N. Arul, P. Patel, et al., Structure-based drug designing and immunoinformatics approach for SARS-CoV-2., Sci. Adv. 6 (2020) eabb8097"
    F. Hikmet, L. Mear, A. Edvinsson, et al., The protein expression profile of ACE2 in human tissues., Mol. Syst. Biol. 16 (2020) e9610"
    L. Cantuti-Castelvetri, R. Ojha, L.D. Pedro, et al., Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity., Science. 370 (2020) 856-860
    G. Guo, L. Ye, K. Pan, et al., New insights of emerging SARS-CoV-2: Epidemiology, etiology, clinical features, clinical treatment, and prevention., Front. Cell Dev. Biol. 8 (2020) 410
    M.A. Shereen, S. Khan, A. Kazmi, et al., COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses., J. Adv. Res. 24 (2020) 91-98
    I. Astuti, Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response., Diabetes Metab. Syndr. 14 (2020) 407-412
    F. Wu, S. Zhao, B. Yu, et al., A new coronavirus associated with human respiratory disease in China., Nature. 579 (2020) 265-269
    S. Ludwig, A. Zarbock, Coronaviruses and SARS-CoV-2: A brief overview., Anesth. Analg. 131 (2020) 93-96
    H.S. Dagur, S. Dhakar, Genome organization of Covid-19 and emerging Severe Acute Respiratory Syndrome Covid-19 outbreak: A Pandemic., Eurasian J. Med. Oncol. 4 (2020) 107-115
    A.A.T. Naqvi, K. Fatima, T. Mohammad, et al., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach., Biochim. Biophys. Acta - Mol. Basis Dis. 1866 (2020) 165878
    C. Ceraolo, F.M. Giorgi, Genomic variance of the 2019-nCoV coronavirus., J. Med. Virol. 92 (2020) 522-528
    A. Wu, Y. Peng, B. Huang, et al., Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China., Cell Host Microbe. 27 (2020) 325-328
    D. Bojkova, K. Klann, B. Koch, et al., Proteomics of SARS-CoV-2-infected host cells reveals therapy targets., Nature. 583 (2020) 469-472
    A.D. Davidson, M.K. Williamson, S. Lewis, et al., Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein., Genome Med. 12 (2020) 68
    Y. Finkel, O. Mizrahi, A. Nachshon, et al., The coding capacity of SARS-CoV-2., Nature. (2020) 1-9
    W. Dai, B. Zhang, X.-M. Jiang, et al., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease., Science. 368 (2020) 1331-1335. https://doi.org/10.1126/science.abb4489
    L. Zhang, D. Lin, X. Sun, et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors., Science. 368 (2020) 409-412
    S. Ullrich, C. Nitsche, The SARS-CoV-2 main protease as drug target., Bioorg. Med. Chem. Lett. 30 (2020) 127377
    E. Estrada, Topological analysis of SARS CoV-2 main protease., Chaos Interdiscip. J. Nonlinear Sci. 30 (2020) 061102
    T. Muramatsu, Y.-T. Kim, W. Nishii, et al., Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins, FEBS J. 280 (2013) 2002-2013
    T. Pillaiyar, M. Manickam, V. Namasivayam, et al., An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy., J. Med. Chem. 59 (2016) 6595-6628
    M. Tahir ul Qamar, S.M. Alqahtani, M.A. Alamri, et al., Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants., J. Pharm. Anal. 10 (2020) 313-319
    Z. Jin, X. Du, Y. Xu, et al., Structure of M pro from SARS-CoV-2 and discovery of its inhibitors., Nature. 582 (2020) 289-293
    Y. Cai, J. Zhang, T. Xiao, et al., Distinct conformational states of SARS-CoV-2 spike protein., Science. 369 (2020) 1586-1592
    D. Wrapp, N. Wang, K.S. Corbett, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation., Science. 367 (2020) 1260-1263
    Q. Wang, Y. Qiu, J.-Y. Li, et al., A unique protease cleavage sPredicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility., Virol. Sin. 35 (2020) 337-339
    M. Hoffmann, H. Kleine-Weber, S. Pohlmann, A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells., Mol. Cell. 78 (2020) 779-784
    J. Shang, Y. Wan, C. Luo, et al., Cell entry mechanisms of SARS-CoV-2., Proc. Natl. Acad. Sci. USA. 117 (2020) 11727-11734
    M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor., Cell. 181 (2020) 271-280
    C. Toelzer, K. Gupta, S.K.N. Yadav, et al., Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein., Science. 370 (2020) 725-730
    J.A. Plante, Y. Liu, J. Liu, et al., Spike mutation D614G alters SARS-CoV-2 fitness., Nature. (2020) https://doi.org/10.1038/s41586-020-2895-3
    C. Yin, Genotyping coronavirus SARS-CoV-2: methods and implications, Genomics. 112 (2020) 3588-3596
    W. Yin, C. Mao, X. Luan, et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir., Science. 368 (2020) 1499-1504
    J. Ahmad, S. Ikram, F. Ahmad, et al., SARS-CoV-2 RNA dependent RNA polymerase (RdRp) - a drug repurposing study., Heliyon. 6 (2020) e04502"
    Y. Gao, L. Yan, Y. Huang, et al., Structure of the RNA-dependent RNA polymerase from COVID-19 virus., Science. 368 (2020) 779-782
    H.S. Hillen, G. Kokic, L. Farnung, et al., Structure of replicating SARS-CoV-2 polymerase., Nature. 584 (2020) 154-156
    R.N. Kirchdoerfer, A.B. Ward, Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors., Nat. Commun. 10 (2019) https://doi.org/10.1038/s41467-019-10280-3
    D. Shin, R. Mukherjee, D. Grewe, et al., Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity., Nature. 584 (2020) 154-156
    S.G. Devaraj, N. Wang, Z. Chen, et al., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus., J. Biol. Chem. 282 (2007) 32208-32221
    Y.M. Baez-Santos, S.E. St. John, A.D. Mesecar, The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds., Antiviral Res. 115 (2015) 21-38
    Y. Liang, M.-L. Wang, C.-S. Chien, et al., Highlight of immune pathogenic response and hematopathologic effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 infection., Front. Immunol. 11 (2020) 1022
    D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge., Virol. J. 16 (2019) 69
    B.W. Neuman, G. Kiss, A.H. Kunding, et al., A structural analysis of M protein in coronavirus assembly and morphology., J. Struct. Biol. 174 (2011) 11-22
    S.F. Ahmed, A.A. Quadeer, M.R. McKay, Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies., Viruses. 12 (2020) 254
    R. McBride, M. van Zyl, B.C. Fielding, The coronavirus nucleocapsid is a multifunctional protein., Viruses. 6 (2014) 2991-3018
    S. Kang, M. Yang, Z. Hong, et al., Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites., Acta Pharm. Sin. B. 10 (2020) 1228-1238
    T. Shu, M. Huang, D. Wu, et al., SARS-Coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts., Virol. Sin. 35 (2020) 321-329
    M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase., J. Pharm. Anal. 10 (2020) 320-328
    Y. Ren, T. Shu, D. Wu, et al., The ORF3a protein of SARS-CoV-2 induces apoptosis in cells., Cell. Mol. Immunol. 17 (2020) 881-883
    J.-Y. Li, C.-H. Liao, Q. Wang, et al., The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway., Virus Res. 286 (2020) 198074
    T.G. Flower, C.Z. Buffalo, R.M. Hooy, et al., Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein., Proc. Natl. Acad. Sci. 118 (2021) e2021785118"
    G. Miao, H. Zhao, Y. Li, et al., ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation., Dev. Cell. (2020) https://doi.org/10.1016/j.devcel.2020.12.010
    K. Narayanan, C. Huang, S. Makino, SARS coronavirus accessory proteins., Virus Res. 133 (2008) 113-121
    R. McBride, B.C. Fielding, The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus accessory proteins in virus pathogenesis., Viruses. 4 (2012) 2902-2923
    L. Zinzula, Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2., Biochem. Biophys. Res. Commun. (2020) https://doi.org/10.1016/j.bbrc.2020.10.045
    R. Arya, S. Kumari, B. Pandey, et al., Structural insights into SARS-CoV-2 proteins., J. Mol. Biol. 433 (2021) 166725
    P. Majumdar, S. Niyogi, ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection., Epidemiol. Infect. 148 (2020) E262. doi: 10.1017/S0950268820002599
    A. Hachim, N. Kavian, C.A. Cohen, et al., ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection., Nat. Immunol. 21 (2020) 1293-1301
    X. Lei, X. Dong, R. Ma, et al., Activation and evasion of type I interferon responses by SARS-CoV-2., Nat. Commun. 11 (2020) 3810
    F. Pereira, Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene., Infect. Genet. Evol. 85 (2020) 104525
    A. Addetia, H. Xie, P. Roychoudhury, et al., Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates., J. Clin. Virol. 129 (2020) 104523
    K. Pancer, A. Milewska, K. Owczarek, et al., The SARS-CoV-2 ORF10 is not essential in vitro or in vivo in humans., PLOS Pathog. 16 (2020) e1008959"
    I.X. Wang, E. So, J.L. Devlin, et al., ADAR regulates RNA editing, transcript stability, and gene expression., Cell Rep. 5 (2013) 849-860
    S.M. Rueter, C.M. Burns, S.A. Coode, et al., Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine., Science. 267 (1995) 1491-1494
    J.H. Yang, P. Sklar, R. Axel, et al., Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine., Nature. 374 (1995) 77-81
    C.S. Nabel, S.A. Manning, R.M. Kohli, The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential., ACS Chem. Biol. 7 (2012) 20-30
    R. Sah, A.J. Rodriguez-Morales, R. Jha, et al., Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain Isolated in nepal., Microbiol. Resour. Announc. 9 (2020) e00169-20 https://doi.org/10.1128/MRA.00169-20
    K. Pyrc, M.F. Jebbink, B. Berkhout, et al., Genome structure and transcriptional regulation of human coronavirus NL63., Virol. J. 1 (2004) 7
    S.D. Giorgio, F. Martignano, M.G. Torcia, et al., Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2., Sci. Adv. 6 (2020) eabb5813"
    N. Sinha, G. Balayla, Hydroxychloroquine and covid-19., Postgrad. Med. J. 96 (2020) 550-555
    R. Choudhary, A.K. Sharma, Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance., New Microbes New Infect. 35 (2020) 100684
    J. Andreani, M. Le Bideau, I. Duflot, et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect., Microb. Pathog. 145 (2020) 104228
    A.J. Siddiqui, S. Jahan, S.A. Ashraf, et al., Current status and strategic possibilities on potential use of combinational drug therapy against COVID-19 caused by SARS-CoV-2., J. Biomol. Struct. Dyn. (2020) 1-14
    J. Liu, R. Cao, M. Xu, et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro., Cell Discov. 6 (2020) 1-4
    R.E. Ferner, J.K. Aronson, Chloroquine and hydroxychloroquine in covid-19., BMJ. 369 (2020) m1432
    J. Geleris, Y. Sun, J. Platt, et al., Observational study of hydroxychloroquine in hospitalized patients with Covid-19., N. Engl. J. Med. 382 (2020) 2411-2418
    A. Asai, M. Konno, M. Ozaki, et al., COVID-19 drug discovery using intensive approaches., Int. J. Mol. Sci. 21 (2020) 2839
    D. Huang, H. Yu, T. Wang, et al., Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis., J. Med. Virol. 93 (2021) 481-490
    R. Wu, L. Wang, H.-C.D. Kuo, et al., An update on current therapeutic drugs treating COVID-19., Curr. Pharmacol. Rep. 6 (2020) 56-70
    J. Villalain, Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes., J. Phys. Chem. B. 114 (2010) 8544-8554
    I.A. Leneva, R.J. Russell, Y.S. Boriskin, et al., Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol., Antiviral Res. 81 (2009) 132-140
    X. Wang, R. Cao, H. Zhang, et al., The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro., Cell Discov. 6 (2020) 1-5
    N. Lian, H. Xie, S. Lin, et al., Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study., Clin. Microbiol. Infect. 26 (2020) 917-921
    A. Aktas, B. Tuzun, R. Aslan, et al., New anti-viral drugs for the treatment of COVID-19 instead of favipiravir., J. Biomol. Struct. Dyn. (2020) 1-11
    C.-C. Lu, M.-Y. Chen, W.-S. Lee, et al., Potential therapeutic agents against COVID-19: What we know so far., J. Chin. Med. Assoc. 83 (2020) 534-536
    S.M. Hashemian, T. Farhadi, A.A. Velayati, A review on remdesivir: A possible promising agent for the treatment of COVID-19., Drug Des. Devel. Ther. 14 (2020) 3215-3222
    D. Siegel, H.C. Hui, E. Doerffler, et al., Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of ebola and emerging viruses., J. Med. Chem. 60 (2017) 1648-1661
    C.J. Gordon, E.P. Tchesnokov, E. Woolner, et al., Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency., J. Biol. Chem. 295 (2020) 6785-6797
    E.P. Tchesnokov, J.Y. Feng, D.P. Porter, et al., Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir., Viruses. 11 (2019) 326
    M.L. Agostini, E.L. Andres, A.C. Sims, et al., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease., MBio. 9 (2018) e00221-18"
    A.J. Brown, J.J. Won, R.L. Graham, et al., Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase., Antiviral Res. 169 (2019) 104541
    T.P. Sheahan, A.C. Sims, R.L. Graham, et al., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses., Sci. Transl. Med. 9 (2017) eaal3653"
    T.P. Sheahan, A.C. Sims, S.R. Leist, et al., Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV., Nat. Commun. 11 (2020) 222
    J.H. Beigel, K.M. Tomashek, L.E. Dodd, et al., Remdesivir for the treatment of Covid-19 - preliminary report., N. Engl. J. Med. 383 (2020) 1813-1826
    Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report, N. Engl. J. Med. 0 (2020) null. https://doi.org/10.1056/NEJMoa2021436
    K. Duan, B. Liu, C. Li, et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 9490-9496
    H.-I. Shih, C.-J. Wu, Y.-F. Tu, et al., Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines., Biomed. J. 43 (2020) 341-354
    M. Marovich, J.R. Mascola, M.S. Cohen, Monoclonal antibodies for prevention and treatment of COVID-19., JAMA. 324 (2020) 131-132
    K. Asha, P. Kumar, M. Sanicas, et al., Advancements in nucleic acid based therapeutics against respiratory viral infections., J. Clin. Med. 8 (2019) 6
    N. Agrawal, P.V.N. Dasaradhi, A. Mohmmed, et al., RNA interference: Biology, mechanism, and applications., Microbiol. Mol. Biol. Rev. 67 (2003) 657-685
    Z. Wang, L. Ren, X. Zhao, et al., Inhibition of Severe Acute Respiratory Syndrome Virus replication by small interfering RNAs in mammalian cells., J. Virol. 78 (2004) 7523-7527
    C.-J. Wu, H.-W. Huang, C.-Y. Liu, et al., Inhibition of SARS-CoV replication by siRNA., Antiviral Res. 65 (2005) 45-48
    Y. Zhang, T. Li, L. Fu, et al., Silencing SARS-CoV spike protein expression in cultured cells by RNA interference., FEBS Lett. 560 (2004) 141-146
    A. Fukushima, N. Fukuda, Y. Lai, et al., Development of a chimeric DNA-RNA hammerhead ribozyme targeting SARS virus., Intervirology. 52 (2009) 92-99
    C.F. Bennett, E.E. Swayze, RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform., Annu. Rev. Pharmacol. Toxicol. 50 (2010) 259-293
    B.W. Neuman, D.A. Stein, A.D. Kroeker, et al., Inhibition and escape of SARS-CoV treated with antisense morpholino oligomers, in: S. Perlman, K.V. Holmes (Eds.), The Nidoviruses, Springer US, Boston, MA, 2006: pp. 567-571
    B.W. Neuman, D.A. Stein, A.D. Kroeker, et al, Inhibition, escape, and attenuated growth of Severe Acute Respiratory Syndrome Coronavirus treated with antisense morpholino oligomers., J. Virol. 79 (2005) 9665-9676
    R.L. Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China., F1000Research. 9 (2020) 72
    A.M. Sayed, H.A. Alhadrami, A.O. El-Gendy, et al., Microbial natural products as potential inhibitors of SARS-CoV-2 main protease (Mpro)., Microorganisms. 8 (2020) 970
    A. da S. Antonio, L.S.M. Wiedemann, V.F. Veiga-Junior, Natural products role against COVID-19., RSC Adv. 10 (2020) 23379-23393
    C.-C. Wen, Y.-H. Kuo, J.-T. Jan, et al., Specific plant terpenoids and lignoids possess potent antiviral activities against Severe Acute Respiratory Syndrome Coronavirus., J. Med. Chem. 50 (2007) 4087-4095
    R.S. Joshi, S.S. Jagdale, S.B. Bansode, et al., Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease., J. Biomol. Struct. Dyn. (2020) 1-16
    Z. Liu, Y. Ying, The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia, Front. Cell Dev. Biol. 8 (2020). https://doi.org/10.3389/fcell.2020.00479
    J. Dai, L. Gu, Y. Su, et al., Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways., Int. Immunopharmacol. 54 (2018) 177-187
    B. Zhang, S. Swamy, S. Balijepalli, et al., Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia., FASEB J. 33 (2019) 13294-13309
    L. Chen, Y. Lu, L. Zhao, et al., Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of Tregs., Int. Immunopharmacol. 61 (2018) 1-7
    Y. Chai, Y. Chen, S. Lin,et al., Curcumin regulates the differentiation of naive CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice., Biomed. Pharmacother. 125 (2020) 109946
    Y. Ren, Z. Yang, Z. Sun, et al., Curcumin relieves paraquat-induced lung injury through inhibiting the thioredoxin interacting protein/NLR pyrin domain containing 3-mediated inflammatory pathway., Mol. Med. Rep. 20 (2019) 5032-5040
    N. Pannu, A. Bhatnagar, Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases., Biomed. Pharmacother. 109 (2019) 2237-2251
    S. Zupancic, Z. Lavric, J. Kristl, Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature., Eur. J. Pharm. Biopharm. 93 (2015) 196-204
    A. Chimento, F. De Amicis, R. Sirianni, et al., Progress to improve oral bioavailability and beneficial effects of resveratrol., Int. J. Mol. Sci. 20 (2019) 1381
    S. Filardo, M. Di Pietro, P. Mastromarino, et al., Therapeutic potential of resveratrol against emerging respiratory viral infections., Pharmacol. Ther. 214 (2020) 107613
    Y.-Q. Li, Z.-L. Li, W.-J. Zhao, et al., Synthesis of stilbene derivatives with inhibition of SARS coronavirus replication., Eur. J. Med. Chem. 41 (2006) 1084-1089
    H.M. Wahedi, S. Ahmad, S.W. Abbasi, Stilbene-based natural compounds as promising drug candidates against COVID-19., J. Biomol. Struct. Dyn. (2020) 1-10
    H. Khodadadi, E.L. Salles, A. Jarrahi, et al., Cannabidiol modulates cytokine storm in acute respiratory distress syndrome induced by simulated viral infection using synthetic RNA., Cannabis Cannabinoid Res. 5 (2020) 197-201
    T.E. Bozkurt, Endocannabinoid system in the airways., Molecules. 24 (2019) 4626
    M. Ackermann, S.E. Verleden, M. Kuehnel, et al., Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19., N. Engl. J. Med. 383 (2020) 120-128
    T.J. Oxley, J. Mocco, S. Majidi, et al., Large-vessel stroke as a presenting feature of Covid-19 in the young., N. Engl. J. Med. 382 (2020) e60"
    Q. Zhang, P. Bastard, Z. Liu, et al., Inborn errors of type I IFN immunity in patients with life-threatening COVID-19., Science. 370 (2020) eabd4570"
    P. Bastard, L.B. Rosen, Q. Zhang, et al., Auto-antibodies against type I IFNs in patients with life-threatening COVID-19, Science. 370 (2020) eabd4585"
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (181) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return