Citation: | Juan Tan, Shiyue Wu, Qingqing Cai, Yi Wang, Pu Zhang. Reversible regulation of enzyme-like activity of molybdenum disulfide quantum dots for colorimetric pharmaceutical analysis[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 113-121. doi: 10.1016/j.jpha.2021.03.010 |
H. Wei, E. Wang, Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection, Anal. Chem. 80(2008)2250-2254
|
J. Wu, X. Wang, Q. Wang, et al., Nanomaterials with enzyme-like characteristics (nanozymes):next-generation artificial enzymes (II), Chem. Soc. Rev. 48(2019)1004-1076
|
L. Gao, J. Zhuang, L. Nie, et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2(2007)577-583
|
M. Liang, X. Yan, Nanozymes:from new concepts, mechanisms, and standards to applications, Acc. Chem. Res. 52(2019)2190-2200
|
Y. J. Long, Y. F. Li, Y. Liu, et al., Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles, Chem. Commun. 47(2011)11939-11941
|
X. Wang, W. Lv, J. Wu, et al., In situ generated nanozyme-initiated cascade reaction for amplified surface plasmon resonance sensing, Chem. Commun,56(2020)4571-4574
|
W. Li, B. Chen, H. Zhang, et al., BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions, Biosens. Bioelectron. 66(2015)251-258
|
J. Wei, X. Chen, S. Shi, et al., Investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures, Nanoscale 7(2015)19018-19026
|
X. Xia, J. Zhang, N. Lu, et al., Pd-Ir core-shell nanocubes:a type of highly efficient and versatile peroxidase mimic, ACS Nano 9(2015)9994-10004
|
J. Mu, Y. Wang, M. Zhao, et al., Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles, Chem. Commun. 48(2012)2540-2542
|
R. Andre, F. Natalio, M. Humanes, et al., V2O5 nanowires with an intrinsic peroxidase-like activity, Adv. Funct. Mater. 21(2011)501-509
|
Y. Li, P. Zhang, W. Fu, et al., Smartphone-based colorimetric assay of antioxidants in red wine using oxidase-mimic MnO2 nanosheets, Analyst 144(2019)5479-5485
|
J. Wu, W. Lv, Q. Yang, et al., Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme, Biosens. Bioelectron. 171(2021)112707
|
V. Baldim, F. Bedioui, N. Mignet, et al., The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+surface area concentration, Nanoscale 10(2018)6971-6980
|
W. Xia, P. Zhang, W. Fu, et al., Aggregation/dispersion-mediated peroxidase-like activity of MoS2 quantum dots for colorimetric pyrophosphate detection, Chem. Commun. 55(2019)2039-2042
|
Q. J. Guo, Z. Y. Pan, C. Men, et al., Visual detection of cancer cells by using in situ grown functional Cu2-xSe/reduced graphene oxide hybrids acting as an efficient nanozyme, Analyst 144(2019)716-721
|
Q. W. Shu, C. M. Li, P. F. Gao, et al., Porous hollow CuS nanospheres with prominent peroxidase-like activity prepared in large scale by a one-pot controllable hydrothermal step, RSC Adv. 5(2015)17458-17465
|
W. Shi, Q. Wang, Y. Long, et al., Carbon nanodots as peroxidase mimetics and their applications to glucose detection, Chem. Commun. 47(2011)6695-6697
|
Y. Song, K. Qu, C. Zhao, et al., Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection, Adv. Mater. 22(2010)2206-2210
|
H. Cheng, Y. Liu, Y. Hu, et al., Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics, Anal. Chem. 89(2017)11552-11559
|
J. Wang, Y. Hu, Q. Zhou, et al., Peroxidase-like activity of metal-organic framework[Cu (PDA)(DMF)] and its application for colorimetric detection of dopamine, ACS Appl. Mater. Interfaces 11(2019)44466-44473
|
L. He, Y. Li, Q. Wu, et al., Ru (III)-based metal-organic gels:intrinsic horseradish and NADH peroxidase-mimicking nanozyme, ACS Appl. Mater. Interfaces 11(2019)29158-29166
|
L.-N Zhang, H.-H Deng, F.-L Lin, et al., In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells, Anal. Chem. 86(2014)2711-2718
|
Z. Gao, G. G. Liu, H. Ye, et al., Facile colorimetric detection of silver ions with picomolar sensitivity, Anal. Chem. 89(2017)3622-3629
|
Z. Gao, S. Lv, M. Xu, et al., High-index{hk0}faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen, Analyst 142(2017)911-917
|
Y. Wang, P. Zhang, L. Liu, et al., Regulating peroxidase-like activity of Pd nanocubes through surface inactivation and its application for sulfide detection, New J. Chem. 43(2019)371-376
|
B. Xu, H. Wang, W. Wang, et al., A single-atom nanozyme for wound disinfection applications, Angew. Chem. Int. Ed. 131(2019)4965-4970
|
L. Huang, J. Chen, L. Gan, et al., Single-atom nanozymes, Sci. Adv. 5(2019) eaav5490
|
J. Shan, X. Li, K. Yang, et al., Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability, ACS Nano 13(2019)13797-13808
|
Z. Xi, H. Ye, X. Xia, Engineered noble-metal nanostructures for in vitro diagnostics, Chem. Mater. 30(2018)8391-8414
|
Z. Gao, H. Ye, D. Tang, et al., Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics, Nano Lett. 17(2017)5572-5579
|
Z. Sui, Q. Meng, X. Zhang, et al., Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification, J. Mater. Chem. 22(2012)8767-8771
|
Y. Huang, J. Ren, X. Qu, Nanozymes:classification, catalytic mechanisms, activity regulation, and applications, Chem. Rev. 119(2019)4357-4412
|
W. Luo, C. Zhu, S. Su, et al, Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles, ACS Nano 4(2010)7451-7458
|
C. Ge, G. Fang, X. Shen, et al., Facet energy versus enzyme-like activities:the unexpected protection of palladium nanocrystals against oxidative damage, ACS Nano 10(2016)10436-10445
|
Z. Xi, X. Cheng, Z. Gao, et al., Strain effect in palladium nanostructures as nanozymes, Nano Lett. 20(2020)272-277
|
M. Vazquez-Gonzalez, W.C Liao, R. Cazelles, et al., Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts, ACS Nano 11(2017)3247-3253
|
Z. Zhang, X. Zhang, B. Liu, et al., Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity, J. Am. Chem. Soc. 139(2017)5412-5419
|
K. Zhao, W. Gu, S. Zheng, et al., SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose, Talanta 141(2015)47-52
|
B. A. Dickinson, H. M. Semus, R. L. Montgomery, et al., Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure, Eur. J. Heart Failure 15(2013)650-659
|
P. Chen, H. Lao, F. Qu, et al., Ratiometric captopril assay based on the recovery of the Bi (III)-quenched yellow fluorescence of dually emitting carbon nanodots, New J. Chem. 41(2017)2227-2230
|
E. Schmidt Jr, W. R. Melchert, F. R. P. Rocha, Flow-injection iodimetric determination of captopril in pharmaceutical preparations, J. Braz. Chem. Soc. 20(2009)236-242
|
S. Vancea, S. Imre, G. Donath-Nagy, et al., Determination of free captopril in human plasma by liquid chromatography with mass spectrometry detection, Talanta 79(2009)436-441
|
G. Absalan, M. Akhond, R. Karimi, et al., Simultaneous determination of captopril and hydrochlorothiazide by using a carbon ionic liquid electrode modified with copper hydroxide nanoparticles, Microchim. Acta 185(2018)97
|
Q. Chen, S. Bai, C. Lu, The new approach for captopril detection employing triangular gold nanoparticles-catalyzed luminol chemiluminescence, Talanta 89(2012)142-148
|
C. G. Ravazzi, M. O. K. Franco, M. C. R. Vieira, et al., Smartphone application for captopril determination in dosage forms and synthetic urine employing digital imaging, Talanta 189(2018)339-344
|
S. J. Xiao, X. J. Zhao, Z. J. Chu, et al., New ofi-on sensor for captopril sensing based on photoluminescent MoOx quantum dots, ACS Omega 2(2017)1666-1671
|
Chinese. Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, China Medical Science Press, Beijing, 2015
|
W. Gu, Y. Yan, et al, A one-step synthesis of water-soluble MoS2 quantum dots via hydrothermal method as fluorescent probe for hyaluronidase detection, ACS Appl. Mater. Interfaces 8(2016)11272-11279
|
W. Gao, M. Wang, C. Ran, et al., Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties, Chem. Commun. 51(2015)1709-1712
|
X. Ren, L. Pang, Y. Zhang, et al., One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution, J. Mater. Chem. A 3(2015)10693-10697
|
N. Sabari Arul, V.D. Nithya, Molybdenum disulfide quantum dots:synthesis and applications, RSC Adv. 6(2016)65670-65682
|
Y. Shi, J. Peng, X. Meng, et al., Turn-on fluorescent detection of captopril in urine samples based on hydrophilic hydroxypropyl β-cyclodextrin polymer, Anal. Bioanal. Chem. 410(2018)7373-7384
|
C. A. T. Toloza, S. Khan, R. L. D. Silva, et al., Different approaches for sensing captopril based on functionalized graphene quantum dots as photoluminescent probe, J. Lumin. 179(2016)83-92
|
H. Bahramipur, F. Jalali, Voltammetric determination of captopril using chlorpromazine as a comogeneous mediator, Int. J. Electrochem. 2011(2011)864358
|
F. Armijo, I. Torres, R. Tapia, et al., Captopril electrochemical oxidation on fluorine-doped SnO2 electrodes and their determination in pharmaceutical preparations, Electroanalysis 22(2010)2269-2276
|
W. T. Suarez, O. D. Pessoa-Neto, B. C. Janegitz, et al., Flow injection spectrophotometric determination of N-acetylcysteine and captopril employing prussian blue generation reaction, Anal. Lett. 44(2011)2394-2405
|
B. Pasquini, S. Orlandini, C. Caprinia, et al., Cyclodextrin-and solvent-modified micellar electrokinetic chromatography for the determination of captopril, hydrochlorothiazide and their impurities:a quality by design approach, Talanta 160(2016)332-339
|