Citation: | Leonny Dwi Rizkita, Indwiani Astuti. The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 265-271. doi: 10.1016/j.jpha.2021.03.003 |
N. Mitash, J.E. Donovan, A. Swiatecka-Urban, The role of microrna in the airway surface liquid homeostasis, Int. J. Mol. Sci. 21 (2020), 3848
|
C. Nishioka, T. Ikezoe, B. Pan, et al., MicroRNA-9 plays a role in interleukin-10-mediated expression of E-cadherin in acute myelogenous leukemia cells, Cancer Sci. 108 (2017) 685-695
|
C.T. Pager, K.A. Wehner, G. Fuchs, P. Sarnow, Chapter 5 MicroRNA-Mediated Gene Silencing, in: J.W.B. Hershey (Ed), Progress in Mollecular Biology and Translational Science vol. 90 1st Edition., Elsevier Inc., 2009: pp. 187-210
|
A.N. Mekuria, A.D. Abdi, K.M. Mishore, MicroRNAs as a potential target for cancer therapy, J. Cancer Sci. Ther. 10 (2018) 152-161
|
N. Hosseinahli, M. Aghapour, P.H.G. Duijf, et al., Treating cancer with microRNA replacement therapy: A literature review, J. Cell. Physiol. 233 (2018) 5574-5588
|
M. Bhaskaran, M. Mohan, MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease, Vet. Pathol. 51 (2014) 759-774
|
D.P. Bartel, MicroRNAs: Target Recognition and Regulatory Functions, Cell. 136 (2009) 215-233
|
J.L. Umbach, B.R. Cullen, The role of RNAi and microRNAs in animal virus replication and antiviral immunity, Genes Dev. 23 (2009) 1151-1164
|
B. Eilam Frenkel, H. Naaman, G. Berkic, et al., MicroRNA 146-5p, miR-let-7c-5p, miR-221 and miR-345-5p are differentially expressed in Respiratory Syncytial Virus (RSV) persistently infected HEp-2 cells, Virus Res. 251 (2018) 34-39
|
J. O’Brien, H. Hayder, Y. Zayed, et al., Overview of microRNA biogenesis, mechanisms of actions, and circulation, Front. Endocrinol. (Lausanne). 9 (2018) 1-12
|
G. Tan, X. Tang, F. Tang, The role of microRNAs in nasopharyngeal carcinoma, Tumor Biol. 36 (2014) 69-79
|
H. Mollaei, R. Safaralizadeh, Z. Rostami, MicroRNA replacement therapy in cancer, J. Cell. Physiol. (2019) 1-16
|
S. Saini, A. Saini, C.J. Thakur, et al., Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity, Mol. Biol. Res. Commun. 9 (2020) 83-91
|
K. Chandan, M. Gupta, M. Sarwat, Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases, Front. Immunol. 10 (2020) 1-14
|
V. Scaria, M. Hariharan, S. Maiti, et al., Host-virus interaction: A new role for microRNAs, Retrovirology. 3 (2006) 1-9
|
Y.E. Guo, J.A. Steitz, Virus Meets Host MicroRNA: the Destroyer, the Booster, the Hijacker, Mol. Cell. Biol. 34 (2014) 3780-3787
|
J.J. Gonzalez Plaza, Current roles of microRNAs in infectious diseases - Advancing into healthcare, Infektoloski Glas. 36 (2016) 5-15
|
D.W. Trobaugh, C.L. Gardner, C. Sun, et al., RNA viruses can hijack vertebrate microRNAs to suppress innate immunity, Nature. 506 (2014) 245-248
|
D.W. Trobaugh, W.B. Klimstra, MicroRNA Regulation of RNA Virus Replication and Pathogenesis, Trends Mol. Med. 23 (2017) 80-93
|
S. Fulzele, B. Sahay, I. Yusufu, et al., COVID-19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile, Aging Dis. 11 (2020) 509-522
|
X. Wang, H.-K. Wang, J.P. McCoy, et al., Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6, RNA. 15 (2009) 637-647
|
R.R. Wong, N. Abd-Aziz, S. Affendi, et al., Role of microRNAs in antiviral responses to dengue infection, J. Biomed. Sci. 27 (2020) 1-11
|
C.H. Lecellier, P. Dunoyer, K. Arar, et al., A cellular microRNA mediates antiviral defense in human cells, Science. 308 (2005) 557-560
|
T.H. Nguyen, X. Liu, Z.Z. Su, et al., Potential role of MicroRNAs in the regulation of antiviral responses to influenza infection, Front. Immunol. 9 (2018), 1541
|
S. Peng, J. Wang, S. Wei, et al., Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus, Mol. Ther. - Nucleic Acids. 10 (2018) 361-375
|
World Health Organization, Weekly epidemiological update-8 December 2020, (2020). https://www.who.int/publications/m/item/weekly-epidemiological-update-8-december-2020, 2020 (accessed 13 December 2020)
|
J. Machhi, J. Herskovitz, A.M. Senan, et al., The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections, J. Neuroimmune Pharmacol. 15 (2020) 359-386
|
K. Dhama, S. Khan, R. Tiwari, et al., Coronavirus Disease 2019-COVID-19, Clin. Microbiol. Rev. 33 (2020) 1-48
|
I. Astuti, Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020) 407-412
|
B.T. Bradley, A. Bryan, Emerging respiratory infections: The infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella, Semin. Diagn. Pathol. 36 (2019) 152-159
|
E. Crimi, G. Benincasa, N. Figueroa-Marrero, et al., Epigenetic susceptibility to severe respiratory viral infections: pathogenic and therapeutic implications: a narrative review, Br. J. Anaesth. (2020) 1002-1017
|
F.K. Yoshimoto, The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19, Protein J. 39 (2020) 198-216
|
S. Kannan, P.S.S. Ali, A. Sheeza, et al., COVID-19 (Novel Coronavirus 2019) - recent trends, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 2006-2011
|
J. Wu, X. Yuan, B. Wang, et al., Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy, Front. Microbiol. 11 (2020) 1-13
|
S.O. Aftab, M.Z. Ghouri, M.U. Masood, et al., Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach, J. Transl. Med. 18 (2020) 1-15
|
H. Jia, P. Gong, A structure-function diversity survey of the rna-dependent rna polymerases from the positive-strand RNA viruses, Front. Microbiol. 10 (2019), 1945
|
E.D. Arisan, A. Dart, G.H. Grant, et al., The Prediction of miRNAs in SARS-CoV-2 Genomes: Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities, Viruses. 12 (2020) 1-27
|
A.L. Totura, A. Whitmore, S. Agnihothram, et al., Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection Allison, MBio. 6 (2015) 1-14
|
M.Z. Tay, C.M. Poh, L. Renia, et al., The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol. 20 (2020) 363-374
|
J. Paces, Z. Strizova, D. Smrz,et al., COVID-19 and the immune system, Physiol. Res. 69 (2020) 379-388
|
M.K. Vidya, V.G. Kumar, V. Sejian, et al., Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals, Int. Rev. Immunol. 37 (2018) 20-36
|
C.J. Neufeldt, B. Cerikan, M. Cortese, et al., SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-kB, BioRxiv. (2020) 212639 (accessed 20 December 2020)
|
Y. Yang, C. Shen, J. Li, et al., Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome, MedRxiv. (2020) (accessed 16 December 2020)
|
World Health Organization, What we know about the COVID-19 immune response, 2020, https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update-34-immunity-2nd.pdf?sfvrsn=8a488cb6_2. (Accessed 29 January 2021).
|
C. Liu, X. Yu, C. Gao, et al., Characterization of antibody responses to SARS-CoV-2 in convalescent COVID-19 patients, J. Med. Virol. (2020) 1-7
|
V. Baruah, S. Bose, Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV, J. Med. Virol. 92 (2020) 495-500
|
A. Allegra, M. Di Gioacchino, A. Tonacci, et al., Immunopathology of SARS-CoV-2 infection: Immune cells and mediators, prognostic factors, and immune-therapeutic implications, Int. J. Mol. Sci. 21 (2020) 1-19
|
Y. Xiong, Y. Liu, L. Cao, et al., Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients, Emerg. Microbes Infect. 9 (2020) 761-770
|
S. Khan, R. Siddique, M.A. Shereen, et al., Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: Biology and therapeutic options, J. Clin. Microbiol. 58 (2020) 1-10
|
J.S. Bhatti, G.K. Bhatti, N. Khullar, et al., Therapeutic Strategies in the Development of Anti-viral Drugs and Vaccines Against SARS-CoV-2 Infection, Mol. Neurobiol. 57 (2020) 4856-4877
|
R. Bartoszewski, M. Dabrowski, B. Jakiela, et al., SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs, Am. J. Physiol. - Lung Cell. Mol. Physiol. 319 (2020) L444-L455
|
P.K. Mishra, R. Tandon, S.N. Byrareddy, Diabetes and COVID-19 risk: an miRNA perspective, Am. J. Physiol. - Hear. Circ. Physiol. 319 (2020) H604-H609
|
R. Zhou, T. Rana, RNA-based mechanisms regulating host-virus interactions, Immunol. Reveiw. 253 (2013) 97-111
|
T. Huan, G. Chen, C. Liu, et al., Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits, Aging Cell. 17 (2018) 1-10
|
R. Gambari, E. Brognara, D.A. Spandidos, et al., Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Ew trends in the development of miRNA therapeutic strategies in oncology (Review), Int. J. Oncol. 49 (2016) 5-32
|
W. Ji, B. Sun, C. Su, Targeting microRNAs in cancer gene therapy, Genes (Basel). 8 (2017) 1-15
|
Z. Wicik, C. Eyileten, D. Jakubik, et al., ACE2 interaction networks in COVID-19: a physiological framework for prediction of outcome in patients with cardiovascular risk factors, BioRxiv. (2020) 1-14 (accessed 16 December 2020)
|
D. Lu, S. Chatterjee, K. Xiao, et al., MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes., J. Mol. Cell. Cardiol. 148 (2020) 46-49
|
W. Ni, X. Yang, D. Yang, et al., Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19, Crit. Care. 24 (2020) 1-10
|
Z.L. Qin, P. Zhao, X.L. Zhang, et al., Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells, Biochem. Biophys. Res. Commun. 324 (2004) 1186-1193
|
Y. Zhang, T. Li, L. Fu, et al., Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference, FEBS Lett. 560 (2004) 141-146
|
Q. Liu, J. Du, X. Yu, et al., MiRNA-200c-3p is crucial in acute respiratory distress syndrome, Cell Discov. 3 (2017) 1-17
|
B. Mallick, Z. Ghosh, J. Chakrabarti, MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells, PLoS One. 4 (2009), e7837
|
P. Wang, J. Hou, L. Lin, et al., Inducible microRNA-155 Feedback Promotes Type I IFN Signaling in Antiviral Innate Immunity by Targeting Suppressor of Cytokine Signaling 1, J. Immunol. 185 (2010) 6226-6233
|
F. Huang, J. Zhang, D. Yang, et al., MicroRNA expression profile of whole blood is altered in adenovirus-infected pneumonia children, Mediators Inflamm. 2018 (2018), 2320640
|
J. Makkoch, W. Poomipak, S. Saengchoowong, et al., Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1), Exp. Biol. Med. 241 (2016) 409-420
|
S. Nersisyan, M. Shkurnikov, A. Turchinovich, et al., Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2, PLoS One. 15 (2020) 1-12
|
A. Sacconi, S. Donzelli, C. Pulito, et al., TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients, J. Exp. Clin. Cancer Res. 39 (2020) 1-15
|
M.L. He, B. Zheng, Y. Peng, J, et al., Inhibition of SARS-Associated Coronavirus Infection and Replication by RNA Interference, J. Am. Med. Assoc. 290 (2003) 2665-2666
|
T.R. Tong, Therapies for coronaviruses. Part 2: inhibitors of intracellular life cycle, Expert Opin. Ther. Pat. 19 (2009) 415-431
|
J.T.-S. Chow, L. Salmena, Prediction and Analysis of SARS-CoV-2-Targeting microRNA in Human Lung Epithelium, Genes (Basel). 11 (2020) 1-12
|
M.D. Sacar Demirci, A. Adan, Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection, PeerJ. 8 (2020), e9369
|
M.G. Barbu, C.E. Condrat, D.C. Thompson, et al., MicroRNA Involvement in Signaling Pathways During Viral Infection, Front. Cell Dev. Biol. 8 (2020) 1-22
|
M.A.A.K. Khan, M.R.U. Sany, M.S. Islam, et al., Epigenetic Regulator miRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19, Front. Genet. 11 (2020) 1-17
|
S.A. Leon-Icaza, M. Zeng, A.G. Rosas-Taraco, microRNAs in viral acute respiratory infections: immune regulation, biomarkers, therapy, and vaccines, ExRNA. 1 (2019) 1-7
|
M.J. de Veer, M. Holko, Frevel. M, et al., Functional classification of interferon-stimulated genes identified using microarrays, J. Leukoc. Biol. 69 (2001) 912-920
|
C.H. Yang, K. Li, S.R. Pfeffer, et al., The type I IFN-Induced miRNA, miR-21, Pharmaceuticals. 8 (2015) 836-847
|
Y. Li, E.Y. Chan, J. Li, et al., MicroRNA Expression and Virulence in Pandemic Influenza Virus-Infected Mice, J. Virol. 84 (2010) 3023-3032
|
A.Y. Wen, K.M. Sakamoto, L.S. Miller, The Role of the Transcription Factor CREB in Immune Function, J. Immunol. 185 (2017) 6413-6419
|
F.W. Lai, K.B. Stephenson, J. Mahony, et al., Human Coronavirus OC43 Nucleocapsid Protein Binds MicroRNA 9 and Potentiates NF- B Activation, J. Virol. 88 (2014) 54-65
|
A. Globinska, M. Pawelczyk, M.L. Kowalski, MicroRNAs and the immune response to respiratory virus infections, Expert Rev. Clin. Immunol. 10 (2014) 963-971
|
D.T. Gracias, E. Stelekati, J.L. Hope, et al., MicroRNA-155 controls CD8+ T cell responses by regulating interferon signaling, Nat. Immunol. 14 (2013) 593-602
|
V. Chaudhary, S. Jangra, N.R. Yadav, Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection, J. Nanobiotechnology. 16 (2018), 40
|
A. Wicki, D. Witzigmann, V. Balasubramanian, et al., Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications, J. Control. Release. 200 (2015) 138-157
|
B. Bahrami, M. Hojjat-Farsangi, H. Mohammadi, et al., Nanoparticles and targeted drug delivery in cancer therapy, Immunol. Lett. 190 (2017) 64-83
|
B. Fluhmann, I. Ntai, G. Borchard, et al., Nanomedicines: the magic bullets reaching their target?, Eur. J. Pharm. Sci. 128 (2019) 73-80
|
X. Xu, W. Ho, X. Zhang, et al., Cancer nanomedicine: From targeted delivery to combination therapy, Trends Mol. Med. 21 (2015) 223-232
|
B. Santos-Carballal, L.J. Aaldering, M. Ritzefeld, et al., Physicochemical and biological characterization of chitosan- microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells, Sci. Rep. 13567 (2015), 13567
|
Z. Bai, J. Wei, C. Yu, et al., Non-viral nanocarriers for intracellular delivery of microRNA therapeutics, J. Mater. Chem. B. 7 (2019) 1209-1225
|