Volume 10 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
Mubarak A. Alamri, Muhammad Tahir ul Qamar, Muhammad Usman Mirza, Safar M. Alqahtani, Matheus Froeyen, Ling-Ling Chen. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 546-559. doi: 10.1016/j.jpha.2020.08.012
Citation: Mubarak A. Alamri, Muhammad Tahir ul Qamar, Muhammad Usman Mirza, Safar M. Alqahtani, Matheus Froeyen, Ling-Ling Chen. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 546-559. doi: 10.1016/j.jpha.2020.08.012

Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches

doi: 10.1016/j.jpha.2020.08.012
Funds:

This work was supported by the Starting Research Grant for High-level Talents from Guangxi University and the Postdoctoral Project from Guangxi University. Authors would like to thank Guangxi University, Prince Sattam Bin Abdulaziz University and University of Leuven for providing necessary facilities to conduct this research.

  • Received Date: Mar. 25, 2020
  • Accepted Date: Aug. 24, 2020
  • Rev Recd Date: Aug. 23, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Dec. 10, 2020
  • The papain-like protease (PLpro) is vital for the replication of coronaviruses (CoVs), as well as for escaping innate-immune responses of the host. Hence, it has emerged as an attractive antiviral drug-target. In this study, computational approaches were employed, mainly the structure-based virtual screening coupled with all-atom molecular dynamics (MD) simulations to computationally identify specific inhibitors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro, which can be further developed as potential pan-PLpro based broad-spectrum antiviral drugs. The sequence, structure, and functional conserveness of most deadly human CoVs PLpro were explored, and it was revealed that functionally important catalytic triad residues are well conserved among SARS-CoV, SARS-CoV-2, and middle east respiratory syndrome coronavirus (MERS-CoV). The subsequent screening of a focused protease inhibitors database composed of ∼7,000 compounds resulted in the identification of three candidate compounds, ADM_13083841, LMG_15521745, and SYN_15517940. These three compounds established conserved interactions which were further explored through MD simulations, free energy calculations, and residual energy contribution estimated by MM-PB(GB)SA method. All these compounds showed stable conformation and interacted well with the active residues of SARS-CoV-2 PLpro, and showed consistent interaction profile with SARS-CoV PLpro and MERS-CoV PLpro as well. Conclusively, the reported SARS-CoV-2 PLpro specific compounds could serve as seeds for developing potent pan-PLpro based broad-spectrum antiviral drugs against deadly human coronaviruses. Moreover, the presented information related to binding site residual energy contribution could lead to further optimization of these compounds.
  • loading
  • G. Lu, Q. Wang, G.F. Gao, Bat-to-human: spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond, Trends Microbiol. 23 (2015) 468-478
    T. Ahmed, M. Noman, A. Almatroudi, et al, Coronavirus Disease 2019 Assosiated Pneumonia in China: Current Status and Future Prospects, Preprints https://www.preprints.org/manuscript/202002.0358/v3 (2020)
    L.-F. Wang, P.J. Walker, L.L. Poon, Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’as reservoirs for emerging viruses?, Curr. Opin. Virol. 1 (2011) 649-657
    J.S. Mackenzie, M. Jeggo, Reservoirs and vectors of emerging viruses, Curr. Opin. Virol. 3 (2013) 170-179
    Consensus document on the epidemiology of severe acute respiratory syndrome (SARS), World Health Organization, https://apps.who.int/iris/handle/10665/70863, accessed on
    P. Woo, Y. Huang, S. Lau, et al, Coronavirus genomics and bioinformatics analysis, Viruses 2 (2010) 1804-1820
    V.S. Raj, A.D. Osterhaus, R.A. Fouchier, et al, MERS: emergence of a novel human coronavirus, Curr. Opin. Virol. 5 (2014) 58-62
    E.I. Azhar, S.A. El-Kafrawy, S.A. Farraj, et al, Evidence for camel-to-human transmission of MERS coronavirus, N. Eng. J. Med. 370 (2014) 2499-2505
    P. Vijayanand, E. Wilkins, M. Woodhead, Severe acute respiratory syndrome (SARS): a review, Clin. Med. 4 (2004) 152-160
    N. Ramadan, H. Shaib, Middle East respiratory syndrome coronavirus (MERS-CoV): A review, Germs 9 (2019) 35
    C. Liu, Q. Zhou, Y. Li, et al, Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases, ACS Cent. Sci. https://doi.org/10.1021/acscentsci.0c00272 (2020)
    D.-G. Ahn, H.-J. Shin, M.-h. Kim, et al, Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19), J. Microbiol. Biotechnol. 30 (2020) 313-324
    L. Rosenbaum, Facing Covid-19 in Italy-ethics, logistics, and therapeutics on the epidemic’s front line, N. Eng. J. Med. 382 (2020) 1873-1875
    J.M. Sanders, M.L. Monogue, T.Z. Jodlowski, et al, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review, JAMA 323 (2020) 1824-1836
    L.-s. Wang, Y.-r. Wang, D.-w. Ye, et al, A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence, Int. J. Antimicrob. Agents (2020) 105948
    X. Xu, P. Chen, J. Wang, et al, Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci. 63 (2020) 457-460
    N. Zhu, D. Zhang, W. Wang, et al, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727-733
    K. Ratia, K.S. Saikatendu, B.D. Santarsiero, et al, Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme, PNAS USA 103 (2006) 5717-5722
    Y.M. Baez-Santos, S.E.S. John, A.D. Mesecar, The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds, Antivir. Res. 115 (2015) 21-38
    M.U. Mirza, S. Ahmad, I. Abdullah, et al, Identification of novel human USP2 inhibitor: might involve in SARS-CoV-2 papain-like (PLpro) protease deubiquitination activity, Preprints https://dx.doi.org/10.20944/preprints202005.0136.v1 (2020)
    K. Ratia, S. Pegan, J. Takayama, et al, A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication, PNAS USA 105 (2008) 16119-16124
    C. Wu, Y. Liu, Y. Yang, et al, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (2020) 766-788
    D.S. Hui, E. I Azhar, T.A. Madani, et al, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infec. Dis. 91 (2020) 264-266
    M. Tahir ul Qamar, F. Shahid, U. Ali, et al, Structural modeling and conserved epitopes prediction against SARS-COV-2 structural proteins for vaccine development, Research Square https://dx.doi.org/10.21203/rs.2.23973/v1 (2020)
    C.I. Paules, H.D. Marston, A.S. Fauci, Coronavirus infections-more than just the common cold, JAMA 323 (2020) 707-708
    M. Wang, R. Cao, L. Zhang, et al, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. (2020) 1-3
    W. Liu, J.S. Morse, T. Lalonde, et al, Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV, ChemBioChem 21 (2020) 730-738
    M. Tahir ul Qamar, A. Maryam, I. Muneer, et al, Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus, Sci. Rep. 9 (2019) 1-16
    M. Tahir Ul Qamar, S. Saleem, U.A. Ashfaq, et al, Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study, J. Transl. Med. 17 (2019) 362
    M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against Main protease, Nsp12 RNA-dependent RNA polymerase and Nsp13 helicase, J. Pharm. Anal. https://doi.org/10.1016/j.jpha.2020.04.008 (2020)
    M.U. Mirza, N. Ikram, Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40, Int. J. Mol. Sci. 17 (2016) 1748
    I. Muneer, M. Tahir Ul Qamar, K. Tusleem, et al, Discovery of selective inhibitors for cyclic AMP response element-binding protein: a combined ligand and structure-based resources pipeline, Anti-cancer Drugs 30 (2019) 363-373
    H. Khalid, K.B. Landry, B. Ijaz, et al, Discovery of novel Hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase, Infect. Genet. Evol. (2020) 104371
    N.A. Saleh, The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015) 1523-1529
    M.U. Mirza, M. Vanmeert, A. Ali, et al, Perspectives towards antiviral drug discovery against Ebola virus, J. Med. Virol. 91 (2019) 2029-2048
    M.U. Mirza, M. Vanmeert, M. Froeyen, et al, In silico structural elucidation of RNA-dependent RNA polymerase towards the identification of potential Crimean-Congo Hemorrhagic Fever Virus inhibitors, Sci. Rep. 9 (2019) 1-18
    S. Durdagi, M.T. ul Qamar, R.E. Salmas, et al, Investigating the molecular mechanism of staphylococcal DNA gyrase inhibitors: A combined ligand-based and structure-based resources pipeline, J. Mol. Graph. Model. 85 (2018) 122-129
    M. Tahir ul Qamar, U.A. Ashfaq, K. Tusleem, et al, In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach, Pak. J. Pharm. Sci. 30 (2017) 2119-2137
    J. Du, T.A. Cross, H.-X. Zhou, Recent progress in structure-based anti-influenza drug design, Drug Discov. Today 17 (2012) 1111-1120
    P.B. Madrid, S. Chopra, I.D. Manger, et al, A systematic screen of FDA-approved drugs for inhibitors of biological threat agents, PLoS One 8 (2013) e60579
    M.U. Mirza, N. Ikram, Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40, Int. J. Mol. Sci. 17 (2016)
    A.C. Shurtleff, T.L. Nguyen, D.A. Kingery, et al, Therapeutics for filovirus infection: traditional approaches and progress towards in silico drug design, Expert Opin. Drug Discov. 7 (2012) 935-954
    S.L. Leela, C. Srisawat, G.P. Sreekanth, et al, Drug repurposing of minocycline against dengue virus infection, Biochem. Biophys. Res. Commun. 478 (2016) 410-416
    V. Luzhkov, E. Decroly, B. Canard, et al, Evaluation of adamantane derivatives as inhibitors of dengue virus mRNA cap methyltransferase by docking and molecular dynamics simulations, Mol. Inform. 32 (2013) 155-164
    Q.Y. Wang, S.J. Patel, E. Vangrevelinghe, et al, A small-molecule dengue virus entry inhibitor, Antimicrob. Agents Chemother. 53 (2009) 1823-1831
    Z. Zhou, M. Khaliq, J.-E. Suk, et al, Antiviral Compounds Discovered by Virtual Screening of Small− Molecule Libraries against Dengue Virus E Protein, ACS Chem. Biol. 3 (2008) 765-775
    P. Parida, L.M. Nainwal, A. Das, et al, Potential of plant alkaloids as dengue ns3 protease inhibitors: Molecular docking and simulation approach, Bangladesh J. Pharmacol. 9 (2014) 262-267
    M. Tahir ul Qamar, S. Kiran, U.A. Ashfaq, et al, Discovery of novel dengue NS2B/NS3 protease inhibitors using pharmacophore modeling and molecular docking based virtual screening of the zinc database, Int. J. Pharmacol. 12 (2016) 621-632
    C. Nitsche, Strategies Towards Protease Inhibitors for Emerging Flaviviruses, Dengue and Zika: Control and Antiviral Treatment Strategies, Springer, 2018, pp. 175-186
    A. Pattnaik, N. Palermo, B.R. Sahoo, et al, Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening, Antiviral Res. 151 (2018) 78-86
    R. Ramajayam, K.-P. Tan, H.-G. Liu, et al, Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease, Bioorg. Med. Chem. Lett. 20 (2010) 3569-3572
    L. Wang, B.-B. Bao, G.-Q. Song, et al, Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study, Eur. J. Med. Chem. 137 (2017) 450-461
    M. Tahir ul Qamar, S.M. Alqahtani, M.A. Alamri, et al, Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. https://doi.org/10.1016/j.jpha.2020.03.009 (2020)
    T. Hou, R. Yu, Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance, J. Med. Chem. 50 (2007) 1177-1188
    J. Tu, J.J. Li, Z.J. Shan, et al, Exploring the binding mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus capsid combined 3D-QSAR and molecular dynamics, Antiviral Res. 137 (2017) 151-164
    S. Anusuya, M.M. Gromiha, Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: molecular docking, molecular dynamics simulation, and binding free energy calculation, J. Biomol. Struct. Dyn. 35 (2017) 2895-2909
    S. Guan, T. Wang, Z. Kuai, et al, Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation, Sci. Rep. 7 (2017)
    S. Bhakat, A.J. Martin, M.E. Soliman, An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine, Mol. BioSysT. 10 (2014) 2215-2228
    B. Speelman, B.R. Brooks, C.B. Post, Molecular dynamics simulations of human rhinovirus and an antiviral compound, Biophys. J. 80 (2001) 121-129
    M. Mottin, R.C. Braga, R.A. da Silva, et al, Molecular dynamics simulations of Zika virus NS3 helicase: Insights into RNA binding site activity, Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2017.03.070 (2017)
    C. Zhang, T. Feng, J. Cheng, et al, Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design, Biochem. Biophys. Res. Commun. 492 (2017) 624-630
    D. Pan, Y. Niu, W. Xue, et al, Computational study on the drug resistance mechanism of hepatitis C virus NS5B RNA-dependent RNA polymerase mutants to BMS-791325 by molecular dynamics simulation and binding free energy calculations, Chemometr. Intell. Lab. Syst. 154 (2016) 185-193
    G. Leonis, T. Steinbrecher, M.G. Papadopoulos, A contribution to the drug resistance mechanism of Darunavir, Amprenavir, Indinavir, and Saquinavir complexes with HIV-1 protease due to flap mutation I50V: A systematic MM-PBSA and thermodynamic integration study, J. Chem. Info. Model. 53 (2013) 2141-2153
    P. Pan, L. Li, Y. Li, et al, Insights into susceptibility of antiviral drugs against the E119G mutant of 2009 influenza A (H1N1) neuraminidase by molecular dynamics simulations and free energy calculations, Antiviral Res. 100 (2013) 356-364
    C. McInnes, Virtual screening strategies in drug discovery, Curr. Opin. Chem. Biol. 11 (2007) 494-502
    H.M. Berman, P.E. Bourne, J. Westbrook, et al, The protein data bank, Protein Structure, CRC Press, 2003, pp. 394-410
    F. Sievers, A. Wilm, D. Dineen, et al, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Sys. Biol. 7 (2011)
    W.L.J.C.N.o.p.c. DeLano, Pymol: An open-source molecular graphics tool, CCP4 Newsletter Protein Crystallograph. 40 (2002) 82-92
    N.M. O’Boyle, M. Banck, C.A. James, et al, Open Babel: An open chemical toolbox, J. Cheminfo. 3 (2011) 33
    S. Forli, R. Huey, M.E. Pique, et al, Computational protein-ligand docking and virtual drug screening with the AutoDock suite, Nature Prot. 11 (2016) 905
    D. Systemes, BIOVIA, Discovery Studio Modeling Environment, Dassault Systemes Biovia: San Diego, CA, USA (2016)
    S. Dallakyan, A.J. Olson, Small-Molecule Library Screening by Docking with PyRx, In: J. Hempel, C. Williams, C. Hong (eds), Chemical Biology, Methods in Molecular Biology, Vol 1263, Humana Press, New York, 2015, https://doi.org/10.1007/978-1-4939-2269-7_19
    Q. Wang, J. He, D. Wu, et al, Interaction of α-cyperone with human serum albumin: Determination of the binding site by using Discovery Studio and via spectroscopic methods, J. Lumin. 164 (2015) 81-85
    A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717
    B. Gimenez, M. Santos, M. Ferrarini, et al, Evaluation of blockbuster drugs under the rule-of-five, Pharmazie-Int. J. Pharm. Sci. 65 (2010) 148-152
    D.E.V. Pires, T.L. Blundell, D.B. Ascher, pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem. 58 (2015) 4066-4072
    B. Hess, C. Kutzner, D. Van Der Spoel, et al, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory. Comput. 4 (2008) 435-447
    M.A. Alamri, Pharmacoinformatics and molecular dynamic simulation studies to identify potential small-molecule inhibitors of WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of WNK kinases, Arabian J. Chem. 13 (2020) 5107-5117
    E.C. Meng, E.F. Pettersen, G.S. Couch, et al, Tools for integrated sequence-structure analysis with UCSF Chimera, BMC Bioinfo. 7 (2006) 339
    B.R. Miller Iii, T.D. McGee Jr, J.M. Swails, et al, MMPBSA. py: an efficient program for end-state free energy calculations, J. Chem. Theory. Comput. 8 (2012) 3314-3321
    N. Ikram, M.U. Mirza, M. Vanmeert, et al, Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds, Biomol. 9 (2019) 124
    K. Iman, M.U. Mirza, N. Mazhar, et al, In silico Structure-based Identification of Novel Acetylcholinesterase Inhibitors Against Alzheimer’s Disease, CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 17 (2018) 54-68
    T. Hou, J. Wang, Y. Li, et al, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inform. Model. 51 (2011) 69-82
    H.K. Srivastava, G.N. Sastry, Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches, J. Chem. Inform. Model. 52 (2012) 3088-3098
    J.J. Tan, W. Zu Chen, C.X. Wang, Investigating interactions between HIV-1 gp41 and inhibitors by molecular dynamics simulation and MM-PBSA/GBSA calculations, J. Mol. Struct.: THEOCHEM 766 (2006) 77-82
    J.F. Chan, K.-H. Chan, R.Y. Kao, et al, Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus, J. Infect. 67 (2013) 606-616
    A.K. Ghosh, J. Takayama, K.V. Rao, et al, Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: design, synthesis, protein− ligand X-ray structure and biological evaluation, J. Med. Chem. 53 (2010) 4968-4979
    M. Tahir ul Qamar, Z. Shokat, I. Muneer, et al, Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach, Vaccines 8 (2020)
    M.A. Alamri, M. Tahir ul Qamar, M.U. Mirza, et al, Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro, J. Biomol. Struct. Dyn. https://dx.doi.org/10.1080/07391102.2020.1782768 (2020)
    K. El Hage, P. Mondal, M. Meuwly, Free energy simulations for protein ligand binding and stability, Mol. Simulat. 44 (2018) 1044-1061
    K. Liu, H. Kokubo, Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study, J. Chem. Inform. Model. 57 (2017) 2514-2522
    K. Liu, E. Watanabe, H. Kokubo, Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations, J. Comput. Aided Mol. Des. 31 (2017) 201-211
    M. Wieder, U. Perricone, S. Boresch, et al, Evaluating the stability of pharmacophore features using molecular dynamics simulations, Biochem. Biophys. Res. Commun. 470 (2016) 685-689
    L. McGillewie, M.E. Soliman, The binding landscape of plasmepsin V and the implications for flap dynamics, Mol. BioSyst. 12 (2016) 1457-1467
    T. Sindhu, P. Srinivasan, Exploring the binding properties of agonists interacting with human TGR5 using structural modeling, molecular docking and dynamics simulations, RSC Advan. 5 (2015) 14202-14213
    T.J. Richmond, Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect, J. Mol. Biol. 178 (1984) 63-89
    F. Chen, H. Liu, H. Sun, et al, Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking, Phys. Chem. Chem. Phys. 18 (2016) 22129-22139
    S. Sirin, R. Kumar, C. Martinez, et al, A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring, J. Chem. Infor. Model. 54 (2014) 2334-2346
    T. Hou, J. Wang, Y. Li, et al, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Infor. Model. 51 (2011) 69-82
    H. Sun, L. Duan, F. Chen, et al, Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches, Phys. Chem. Chem. Phys. 20 (2018) 14450-14460
    M.-H. Lin, D.C. Moses, C.-H. Hsieh, et al, Disulfiram can inhibit mers and sars coronavirus papain-like proteases via different modes, Antiviral Res. 150 (2018) 155-163
    G. Li, E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV), Nature Rev. Drug Discov. 19 (2020) 149-150
    T. Bobrowski, V. Alves, C.C. Melo-Filho, et al, Computational models identify several FDA approved or experimental drugs as putative agents against SARS-CoV-2, ChemRxiv. https://doi.org/10.26434/chemrxiv.12153594.v1 (2020)
    F. Hu, J. Jiang, P. Yin, Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model, arXiv preprint https://arxiv.org/abs/2003.00728 (2020)
    J.F. Chan, K.-H. Chan, R.Y. Kao, et al, Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus, J. Infect. 67 (2013) 606-616
    J.F.-W. Chan, Y. Yao, M.-L. Yeung, et al, Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset, J. Infect. Dis. 212 (2015) 1904-1913
    Y.M. Arabi, A. Alothman, H.H. Balkhy, et al, Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial, Trials 19 (2018) 81
    T.P. Sheahan, A.C. Sims, S.R. Leist, et al, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nature Commun. 11 (2020) 1-14
    C. Chu, V. Cheng, I. Hung, et al, Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings, Thorax 59 (2004) 252-256
    V. Nukoolkarn, V.S. Lee, M. Malaisree, et al, Molecular dynamic simulations analysis of ritronavir and lopinavir as SARS-CoV 3CLpro inhibitors, J. Theor. Biol. 254 (2008) 861-867
    L.J. Stockman, R. Bellamy, P. Garner, SARS: systematic review of treatment effects, PLoS Med. 3 (2006)
    T.T. Yao, J.D. Qian, W.Y. Zhu, et al, A Systematic Review of Lopinavir Therapy for SARS Coronavirus and MERS Coronavirus-A Possible Reference for Coronavirus Disease-19 Treatment Option, J. Med. Virol. 92 (2020) 556-563
    I.F.-N. Hung, K.-C. Lung, E.Y.-K. Tso, et al, Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial, Lancet 395 (2020) 1695-1704
    S. Moro, G. Bolcato, M. Bissaro, et al, Targeting the Coronavirus SARS-CoV-2: computational insights into the mechanism of action of the protease inhibitors Lopinavir, Ritonavir, and Nelfinavir, Research Square https://dx.doi.org/10.21203/rs.3.rs-20948/v1 (2020)
    M. Hurst, D. Faulds, Lopinavir, Drugs 60 (2000) 1371-1379
    H. Lee, H. Lei, B.D. Santarsiero, et al, Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV, ACS Chem. Biol. 10 (2015) 1456-1465
    L. Cregar-Hernandez, G.-S. Jiao, A.T. Johnson, et al, Small molecule pan-dengue and West Nile virus NS3 protease inhibitors, Antiviral Chem. Chemother. 21 (2011) 209-217
    B. Lin, S. He, H.J. Yim, et al, Evaluation of antiviral drug synergy in an infectious HCV system, Antiviral Ther. 21 (2016) 595
    D.A. DeGoey, J.T. Randolph, D. Liu, et al, Discovery of ABT-267, a pan-genotypic inhibitor of HCV NS5A, J. Med. Chem. 57 (2014) 2047-2057
    A.M. Lam, E. Murakami, C. Espiritu, et al, PSI-7851, a pronucleotide of β-D-2′-deoxy-2′-fluoro-2′-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication, Antimicrobial Agents Chemother. 54 (2010) 3187-3196
    M. Belema, N.A. Meanwell, Discovery of daclatasvir, a pan-genotypic hepatitis C virus NS5A replication complex inhibitor with potent clinical effect, J. Med. Chem. https://doi.org/10.1021/jm500335h (2014)
    H. Nakata, S.M. Steinberg, Y. Koh, et al, Potent synergistic anti-human immunodeficiency virus (HIV) effects using combinations of the CCR5 inhibitor aplaviroc with other anti-HIV drugs, Antimicrobial Agents Chemother. 52 (2008) 2111-2119
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (278) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return