Citation: | Mubarak A. Alamri, Muhammad Tahir ul Qamar, Muhammad Usman Mirza, Safar M. Alqahtani, Matheus Froeyen, Ling-Ling Chen. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 546-559. doi: 10.1016/j.jpha.2020.08.012 |
G. Lu, Q. Wang, G.F. Gao, Bat-to-human: spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond, Trends Microbiol. 23 (2015) 468-478
|
T. Ahmed, M. Noman, A. Almatroudi, et al, Coronavirus Disease 2019 Assosiated Pneumonia in China: Current Status and Future Prospects, Preprints https://www.preprints.org/manuscript/202002.0358/v3 (2020)
|
L.-F. Wang, P.J. Walker, L.L. Poon, Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’as reservoirs for emerging viruses?, Curr. Opin. Virol. 1 (2011) 649-657
|
J.S. Mackenzie, M. Jeggo, Reservoirs and vectors of emerging viruses, Curr. Opin. Virol. 3 (2013) 170-179
|
Consensus document on the epidemiology of severe acute respiratory syndrome (SARS), World Health Organization, https://apps.who.int/iris/handle/10665/70863, accessed on
|
P. Woo, Y. Huang, S. Lau, et al, Coronavirus genomics and bioinformatics analysis, Viruses 2 (2010) 1804-1820
|
V.S. Raj, A.D. Osterhaus, R.A. Fouchier, et al, MERS: emergence of a novel human coronavirus, Curr. Opin. Virol. 5 (2014) 58-62
|
E.I. Azhar, S.A. El-Kafrawy, S.A. Farraj, et al, Evidence for camel-to-human transmission of MERS coronavirus, N. Eng. J. Med. 370 (2014) 2499-2505
|
P. Vijayanand, E. Wilkins, M. Woodhead, Severe acute respiratory syndrome (SARS): a review, Clin. Med. 4 (2004) 152-160
|
N. Ramadan, H. Shaib, Middle East respiratory syndrome coronavirus (MERS-CoV): A review, Germs 9 (2019) 35
|
C. Liu, Q. Zhou, Y. Li, et al, Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases, ACS Cent. Sci. https://doi.org/10.1021/acscentsci.0c00272 (2020)
|
D.-G. Ahn, H.-J. Shin, M.-h. Kim, et al, Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19), J. Microbiol. Biotechnol. 30 (2020) 313-324
|
L. Rosenbaum, Facing Covid-19 in Italy-ethics, logistics, and therapeutics on the epidemic’s front line, N. Eng. J. Med. 382 (2020) 1873-1875
|
J.M. Sanders, M.L. Monogue, T.Z. Jodlowski, et al, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review, JAMA 323 (2020) 1824-1836
|
L.-s. Wang, Y.-r. Wang, D.-w. Ye, et al, A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence, Int. J. Antimicrob. Agents (2020) 105948
|
X. Xu, P. Chen, J. Wang, et al, Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci. 63 (2020) 457-460
|
N. Zhu, D. Zhang, W. Wang, et al, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727-733
|
K. Ratia, K.S. Saikatendu, B.D. Santarsiero, et al, Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme, PNAS USA 103 (2006) 5717-5722
|
Y.M. Baez-Santos, S.E.S. John, A.D. Mesecar, The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds, Antivir. Res. 115 (2015) 21-38
|
M.U. Mirza, S. Ahmad, I. Abdullah, et al, Identification of novel human USP2 inhibitor: might involve in SARS-CoV-2 papain-like (PLpro) protease deubiquitination activity, Preprints https://dx.doi.org/10.20944/preprints202005.0136.v1 (2020)
|
K. Ratia, S. Pegan, J. Takayama, et al, A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication, PNAS USA 105 (2008) 16119-16124
|
C. Wu, Y. Liu, Y. Yang, et al, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (2020) 766-788
|
D.S. Hui, E. I Azhar, T.A. Madani, et al, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infec. Dis. 91 (2020) 264-266
|
M. Tahir ul Qamar, F. Shahid, U. Ali, et al, Structural modeling and conserved epitopes prediction against SARS-COV-2 structural proteins for vaccine development, Research Square https://dx.doi.org/10.21203/rs.2.23973/v1 (2020)
|
C.I. Paules, H.D. Marston, A.S. Fauci, Coronavirus infections-more than just the common cold, JAMA 323 (2020) 707-708
|
M. Wang, R. Cao, L. Zhang, et al, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. (2020) 1-3
|
W. Liu, J.S. Morse, T. Lalonde, et al, Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV, ChemBioChem 21 (2020) 730-738
|
M. Tahir ul Qamar, A. Maryam, I. Muneer, et al, Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus, Sci. Rep. 9 (2019) 1-16
|
M. Tahir Ul Qamar, S. Saleem, U.A. Ashfaq, et al, Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study, J. Transl. Med. 17 (2019) 362
|
M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against Main protease, Nsp12 RNA-dependent RNA polymerase and Nsp13 helicase, J. Pharm. Anal. https://doi.org/10.1016/j.jpha.2020.04.008 (2020)
|
M.U. Mirza, N. Ikram, Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40, Int. J. Mol. Sci. 17 (2016) 1748
|
I. Muneer, M. Tahir Ul Qamar, K. Tusleem, et al, Discovery of selective inhibitors for cyclic AMP response element-binding protein: a combined ligand and structure-based resources pipeline, Anti-cancer Drugs 30 (2019) 363-373
|
H. Khalid, K.B. Landry, B. Ijaz, et al, Discovery of novel Hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase, Infect. Genet. Evol. (2020) 104371
|
N.A. Saleh, The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015) 1523-1529
|
M.U. Mirza, M. Vanmeert, A. Ali, et al, Perspectives towards antiviral drug discovery against Ebola virus, J. Med. Virol. 91 (2019) 2029-2048
|
M.U. Mirza, M. Vanmeert, M. Froeyen, et al, In silico structural elucidation of RNA-dependent RNA polymerase towards the identification of potential Crimean-Congo Hemorrhagic Fever Virus inhibitors, Sci. Rep. 9 (2019) 1-18
|
S. Durdagi, M.T. ul Qamar, R.E. Salmas, et al, Investigating the molecular mechanism of staphylococcal DNA gyrase inhibitors: A combined ligand-based and structure-based resources pipeline, J. Mol. Graph. Model. 85 (2018) 122-129
|
M. Tahir ul Qamar, U.A. Ashfaq, K. Tusleem, et al, In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach, Pak. J. Pharm. Sci. 30 (2017) 2119-2137
|
J. Du, T.A. Cross, H.-X. Zhou, Recent progress in structure-based anti-influenza drug design, Drug Discov. Today 17 (2012) 1111-1120
|
P.B. Madrid, S. Chopra, I.D. Manger, et al, A systematic screen of FDA-approved drugs for inhibitors of biological threat agents, PLoS One 8 (2013) e60579
|
M.U. Mirza, N. Ikram, Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40, Int. J. Mol. Sci. 17 (2016)
|
A.C. Shurtleff, T.L. Nguyen, D.A. Kingery, et al, Therapeutics for filovirus infection: traditional approaches and progress towards in silico drug design, Expert Opin. Drug Discov. 7 (2012) 935-954
|
S.L. Leela, C. Srisawat, G.P. Sreekanth, et al, Drug repurposing of minocycline against dengue virus infection, Biochem. Biophys. Res. Commun. 478 (2016) 410-416
|
V. Luzhkov, E. Decroly, B. Canard, et al, Evaluation of adamantane derivatives as inhibitors of dengue virus mRNA cap methyltransferase by docking and molecular dynamics simulations, Mol. Inform. 32 (2013) 155-164
|
Q.Y. Wang, S.J. Patel, E. Vangrevelinghe, et al, A small-molecule dengue virus entry inhibitor, Antimicrob. Agents Chemother. 53 (2009) 1823-1831
|
Z. Zhou, M. Khaliq, J.-E. Suk, et al, Antiviral Compounds Discovered by Virtual Screening of Small− Molecule Libraries against Dengue Virus E Protein, ACS Chem. Biol. 3 (2008) 765-775
|
P. Parida, L.M. Nainwal, A. Das, et al, Potential of plant alkaloids as dengue ns3 protease inhibitors: Molecular docking and simulation approach, Bangladesh J. Pharmacol. 9 (2014) 262-267
|
M. Tahir ul Qamar, S. Kiran, U.A. Ashfaq, et al, Discovery of novel dengue NS2B/NS3 protease inhibitors using pharmacophore modeling and molecular docking based virtual screening of the zinc database, Int. J. Pharmacol. 12 (2016) 621-632
|
C. Nitsche, Strategies Towards Protease Inhibitors for Emerging Flaviviruses, Dengue and Zika: Control and Antiviral Treatment Strategies, Springer, 2018, pp. 175-186
|
A. Pattnaik, N. Palermo, B.R. Sahoo, et al, Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening, Antiviral Res. 151 (2018) 78-86
|
R. Ramajayam, K.-P. Tan, H.-G. Liu, et al, Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease, Bioorg. Med. Chem. Lett. 20 (2010) 3569-3572
|
L. Wang, B.-B. Bao, G.-Q. Song, et al, Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study, Eur. J. Med. Chem. 137 (2017) 450-461
|
M. Tahir ul Qamar, S.M. Alqahtani, M.A. Alamri, et al, Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. https://doi.org/10.1016/j.jpha.2020.03.009 (2020)
|
T. Hou, R. Yu, Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance, J. Med. Chem. 50 (2007) 1177-1188
|
J. Tu, J.J. Li, Z.J. Shan, et al, Exploring the binding mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus capsid combined 3D-QSAR and molecular dynamics, Antiviral Res. 137 (2017) 151-164
|
S. Anusuya, M.M. Gromiha, Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: molecular docking, molecular dynamics simulation, and binding free energy calculation, J. Biomol. Struct. Dyn. 35 (2017) 2895-2909
|
S. Guan, T. Wang, Z. Kuai, et al, Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation, Sci. Rep. 7 (2017)
|
S. Bhakat, A.J. Martin, M.E. Soliman, An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine, Mol. BioSysT. 10 (2014) 2215-2228
|
B. Speelman, B.R. Brooks, C.B. Post, Molecular dynamics simulations of human rhinovirus and an antiviral compound, Biophys. J. 80 (2001) 121-129
|
M. Mottin, R.C. Braga, R.A. da Silva, et al, Molecular dynamics simulations of Zika virus NS3 helicase: Insights into RNA binding site activity, Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2017.03.070 (2017)
|
C. Zhang, T. Feng, J. Cheng, et al, Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design, Biochem. Biophys. Res. Commun. 492 (2017) 624-630
|
D. Pan, Y. Niu, W. Xue, et al, Computational study on the drug resistance mechanism of hepatitis C virus NS5B RNA-dependent RNA polymerase mutants to BMS-791325 by molecular dynamics simulation and binding free energy calculations, Chemometr. Intell. Lab. Syst. 154 (2016) 185-193
|
G. Leonis, T. Steinbrecher, M.G. Papadopoulos, A contribution to the drug resistance mechanism of Darunavir, Amprenavir, Indinavir, and Saquinavir complexes with HIV-1 protease due to flap mutation I50V: A systematic MM-PBSA and thermodynamic integration study, J. Chem. Info. Model. 53 (2013) 2141-2153
|
P. Pan, L. Li, Y. Li, et al, Insights into susceptibility of antiviral drugs against the E119G mutant of 2009 influenza A (H1N1) neuraminidase by molecular dynamics simulations and free energy calculations, Antiviral Res. 100 (2013) 356-364
|
C. McInnes, Virtual screening strategies in drug discovery, Curr. Opin. Chem. Biol. 11 (2007) 494-502
|
H.M. Berman, P.E. Bourne, J. Westbrook, et al, The protein data bank, Protein Structure, CRC Press, 2003, pp. 394-410
|
F. Sievers, A. Wilm, D. Dineen, et al, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Sys. Biol. 7 (2011)
|
W.L.J.C.N.o.p.c. DeLano, Pymol: An open-source molecular graphics tool, CCP4 Newsletter Protein Crystallograph. 40 (2002) 82-92
|
N.M. O’Boyle, M. Banck, C.A. James, et al, Open Babel: An open chemical toolbox, J. Cheminfo. 3 (2011) 33
|
S. Forli, R. Huey, M.E. Pique, et al, Computational protein-ligand docking and virtual drug screening with the AutoDock suite, Nature Prot. 11 (2016) 905
|
D. Systemes, BIOVIA, Discovery Studio Modeling Environment, Dassault Systemes Biovia: San Diego, CA, USA (2016)
|
S. Dallakyan, A.J. Olson, Small-Molecule Library Screening by Docking with PyRx, In: J. Hempel, C. Williams, C. Hong (eds), Chemical Biology, Methods in Molecular Biology, Vol 1263, Humana Press, New York, 2015, https://doi.org/10.1007/978-1-4939-2269-7_19
|
Q. Wang, J. He, D. Wu, et al, Interaction of α-cyperone with human serum albumin: Determination of the binding site by using Discovery Studio and via spectroscopic methods, J. Lumin. 164 (2015) 81-85
|
A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717
|
B. Gimenez, M. Santos, M. Ferrarini, et al, Evaluation of blockbuster drugs under the rule-of-five, Pharmazie-Int. J. Pharm. Sci. 65 (2010) 148-152
|
D.E.V. Pires, T.L. Blundell, D.B. Ascher, pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem. 58 (2015) 4066-4072
|
B. Hess, C. Kutzner, D. Van Der Spoel, et al, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory. Comput. 4 (2008) 435-447
|
M.A. Alamri, Pharmacoinformatics and molecular dynamic simulation studies to identify potential small-molecule inhibitors of WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of WNK kinases, Arabian J. Chem. 13 (2020) 5107-5117
|
E.C. Meng, E.F. Pettersen, G.S. Couch, et al, Tools for integrated sequence-structure analysis with UCSF Chimera, BMC Bioinfo. 7 (2006) 339
|
B.R. Miller Iii, T.D. McGee Jr, J.M. Swails, et al, MMPBSA. py: an efficient program for end-state free energy calculations, J. Chem. Theory. Comput. 8 (2012) 3314-3321
|
N. Ikram, M.U. Mirza, M. Vanmeert, et al, Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds, Biomol. 9 (2019) 124
|
K. Iman, M.U. Mirza, N. Mazhar, et al, In silico Structure-based Identification of Novel Acetylcholinesterase Inhibitors Against Alzheimer’s Disease, CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 17 (2018) 54-68
|
T. Hou, J. Wang, Y. Li, et al, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inform. Model. 51 (2011) 69-82
|
H.K. Srivastava, G.N. Sastry, Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches, J. Chem. Inform. Model. 52 (2012) 3088-3098
|
J.J. Tan, W. Zu Chen, C.X. Wang, Investigating interactions between HIV-1 gp41 and inhibitors by molecular dynamics simulation and MM-PBSA/GBSA calculations, J. Mol. Struct.: THEOCHEM 766 (2006) 77-82
|
J.F. Chan, K.-H. Chan, R.Y. Kao, et al, Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus, J. Infect. 67 (2013) 606-616
|
A.K. Ghosh, J. Takayama, K.V. Rao, et al, Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: design, synthesis, protein− ligand X-ray structure and biological evaluation, J. Med. Chem. 53 (2010) 4968-4979
|
M. Tahir ul Qamar, Z. Shokat, I. Muneer, et al, Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach, Vaccines 8 (2020)
|
M.A. Alamri, M. Tahir ul Qamar, M.U. Mirza, et al, Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro, J. Biomol. Struct. Dyn. https://dx.doi.org/10.1080/07391102.2020.1782768 (2020)
|
K. El Hage, P. Mondal, M. Meuwly, Free energy simulations for protein ligand binding and stability, Mol. Simulat. 44 (2018) 1044-1061
|
K. Liu, H. Kokubo, Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study, J. Chem. Inform. Model. 57 (2017) 2514-2522
|
K. Liu, E. Watanabe, H. Kokubo, Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations, J. Comput. Aided Mol. Des. 31 (2017) 201-211
|
M. Wieder, U. Perricone, S. Boresch, et al, Evaluating the stability of pharmacophore features using molecular dynamics simulations, Biochem. Biophys. Res. Commun. 470 (2016) 685-689
|
L. McGillewie, M.E. Soliman, The binding landscape of plasmepsin V and the implications for flap dynamics, Mol. BioSyst. 12 (2016) 1457-1467
|
T. Sindhu, P. Srinivasan, Exploring the binding properties of agonists interacting with human TGR5 using structural modeling, molecular docking and dynamics simulations, RSC Advan. 5 (2015) 14202-14213
|
T.J. Richmond, Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect, J. Mol. Biol. 178 (1984) 63-89
|
F. Chen, H. Liu, H. Sun, et al, Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking, Phys. Chem. Chem. Phys. 18 (2016) 22129-22139
|
S. Sirin, R. Kumar, C. Martinez, et al, A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring, J. Chem. Infor. Model. 54 (2014) 2334-2346
|
T. Hou, J. Wang, Y. Li, et al, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Infor. Model. 51 (2011) 69-82
|
H. Sun, L. Duan, F. Chen, et al, Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches, Phys. Chem. Chem. Phys. 20 (2018) 14450-14460
|
M.-H. Lin, D.C. Moses, C.-H. Hsieh, et al, Disulfiram can inhibit mers and sars coronavirus papain-like proteases via different modes, Antiviral Res. 150 (2018) 155-163
|
G. Li, E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV), Nature Rev. Drug Discov. 19 (2020) 149-150
|
T. Bobrowski, V. Alves, C.C. Melo-Filho, et al, Computational models identify several FDA approved or experimental drugs as putative agents against SARS-CoV-2, ChemRxiv. https://doi.org/10.26434/chemrxiv.12153594.v1 (2020)
|
F. Hu, J. Jiang, P. Yin, Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model, arXiv preprint https://arxiv.org/abs/2003.00728 (2020)
|
J.F. Chan, K.-H. Chan, R.Y. Kao, et al, Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus, J. Infect. 67 (2013) 606-616
|
J.F.-W. Chan, Y. Yao, M.-L. Yeung, et al, Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset, J. Infect. Dis. 212 (2015) 1904-1913
|
Y.M. Arabi, A. Alothman, H.H. Balkhy, et al, Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial, Trials 19 (2018) 81
|
T.P. Sheahan, A.C. Sims, S.R. Leist, et al, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nature Commun. 11 (2020) 1-14
|
C. Chu, V. Cheng, I. Hung, et al, Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings, Thorax 59 (2004) 252-256
|
V. Nukoolkarn, V.S. Lee, M. Malaisree, et al, Molecular dynamic simulations analysis of ritronavir and lopinavir as SARS-CoV 3CLpro inhibitors, J. Theor. Biol. 254 (2008) 861-867
|
L.J. Stockman, R. Bellamy, P. Garner, SARS: systematic review of treatment effects, PLoS Med. 3 (2006)
|
T.T. Yao, J.D. Qian, W.Y. Zhu, et al, A Systematic Review of Lopinavir Therapy for SARS Coronavirus and MERS Coronavirus-A Possible Reference for Coronavirus Disease-19 Treatment Option, J. Med. Virol. 92 (2020) 556-563
|
I.F.-N. Hung, K.-C. Lung, E.Y.-K. Tso, et al, Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial, Lancet 395 (2020) 1695-1704
|
S. Moro, G. Bolcato, M. Bissaro, et al, Targeting the Coronavirus SARS-CoV-2: computational insights into the mechanism of action of the protease inhibitors Lopinavir, Ritonavir, and Nelfinavir, Research Square https://dx.doi.org/10.21203/rs.3.rs-20948/v1 (2020)
|
M. Hurst, D. Faulds, Lopinavir, Drugs 60 (2000) 1371-1379
|
H. Lee, H. Lei, B.D. Santarsiero, et al, Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV, ACS Chem. Biol. 10 (2015) 1456-1465
|
L. Cregar-Hernandez, G.-S. Jiao, A.T. Johnson, et al, Small molecule pan-dengue and West Nile virus NS3 protease inhibitors, Antiviral Chem. Chemother. 21 (2011) 209-217
|
B. Lin, S. He, H.J. Yim, et al, Evaluation of antiviral drug synergy in an infectious HCV system, Antiviral Ther. 21 (2016) 595
|
D.A. DeGoey, J.T. Randolph, D. Liu, et al, Discovery of ABT-267, a pan-genotypic inhibitor of HCV NS5A, J. Med. Chem. 57 (2014) 2047-2057
|
A.M. Lam, E. Murakami, C. Espiritu, et al, PSI-7851, a pronucleotide of β-D-2′-deoxy-2′-fluoro-2′-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication, Antimicrobial Agents Chemother. 54 (2010) 3187-3196
|
M. Belema, N.A. Meanwell, Discovery of daclatasvir, a pan-genotypic hepatitis C virus NS5A replication complex inhibitor with potent clinical effect, J. Med. Chem. https://doi.org/10.1021/jm500335h (2014)
|
H. Nakata, S.M. Steinberg, Y. Koh, et al, Potent synergistic anti-human immunodeficiency virus (HIV) effects using combinations of the CCR5 inhibitor aplaviroc with other anti-HIV drugs, Antimicrobial Agents Chemother. 52 (2008) 2111-2119
|