Citation: | Chao Liu, Xiaoxiao Zhu, Yiyao Lu, Xianqin Zhang, Xu Jia, Tai Yang. Potential treatment with Chinese and Western medicine targeting NSP14 of SARS-CoV-2[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 272-277. doi: 10.1016/j.jpha.2020.08.002 |
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367(6483) (2020) 1260-1263. https://doi: 10.1126/science.abb2507
|
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30(4) (2020) 343-355. https://doi: 10.1038/s41422-020-0305-x
|
Rabaan AA, Al-Ahmed SH, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med. 28 (2020) 174-184
|
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382 (2020) 727-733. https://doi: 10.1056/NEJMoa2001017
|
Ferron F, Subissi L, Silveira De Morais AT, et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci U S A. 115 (2018) E162-E171. https://doi: 10.1073/pnas.1718806115
|
Snijder EJ, Decroly E, Ziebuhr J. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Adv Virus Res. 96 (2016) 59-126. https://doi: 10.1016/bs.aivir.2016.08.008
|
I. Sola, F. Almazán, S. Zúñiga, et al., Continuous and discontinuous RNA synthesis in coronaviruses, Annu. Rev. Virol. 2 (2015) 265-288
|
Ma Y, Wu L, Shaw N, et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci U S A. 112 (2015) 9436-9441. https://doi: 10.1073/pnas.1508686112
|
Decroly E, Ferron F, Lescar J, Canard B. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol. 10 (2011) 51-65. Published 2011 Dec 5. https://doi: 10.1038/nrmicro2675
|
Hage-Melim LIDS, Federico LB, de Oliveira NKS, et al. Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19 [published online ahead of print, 2020 Jun 11]. Life Sci. 256 (2020) 117963. https://doi: 10.1016/j.lfs.2020.117963
|
Pant S, Singh M, Ravichandiran V, Murty USN, Srivastava HK. Peptide-like and small-molecule inhibitors against Covid-19 [published online ahead of print, 2020 May]. J. Biomol. Struct. Dyn. (2020) 1-10. https://doi: 10.1080/07391102.2020.1757510
|
Choy KT, Wong AY, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 178 (2020) 104786. https://doi: 10.1016/j.antiviral.2020.104786
|
Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: the reality and challenges. J. Microbiol. Immunol. Infect. 53 (2020) 436-443. https://doi: 10.1016/j.jmii.2020.03.034
|
Chen P, Jiang M, Hu T, Liu Q, Chen XS, Guo D. Biochemical characterization of exoribonuclease encoded by SARS coronavirus. J. Biochem. Mol. Biol. 40 (2007) 649-655. https://doi: 10.5483/bmbrep.2007.40.5.649
|
Hamdan S, Carr PD, Brown SE, Ollis DL, Dixon NE. Structural basis for proofreading during replication of the Escherichia coli chromosome. Structure. 10 (2002) 535-546. https://doi: 10.1016/s0969-2126(02)00738-4
|
Kitchen VS, Skinner C, Ariyoshi K, et al. Safety and activity of saquinavir in HIV infection. Lancet. 345(1995) 952-955. https://doi: 10.1016/s0140-6736(95)90699-1
|
la Porte CJ. Saquinavir, the pioneer antiretroviral protease inhibitor. Expert Opin Drug Metab Toxicol. 5(2009) 1313-1322. https://doi: 10.1517/17425250903273160
|
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J. 18(2020) 784-790. https://doi: 10.1016/j.csbj.2020.03.025
|
Karioti A, Bilia AR. Hypericins as potential leads for new therapeutics. Int J Mol Sci. 11(2010) 562-594. https://doi: 10.3390/ijms11020562
|
Lenard J, Rabson A, Vanderoef R. Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci U S A. 90(1993) 158-162. https://doi: 10.1073/pnas.90.1.158
|
Zhang GH, Wang Q, Chen JJ, Zhang XM, Tam SC, Zheng YT. The anti-HIV-1 effect of scutellarin. Biochem Biophys Res Commun. 334(2005) 812-816. https://doi: 10.1016/j.bbrc.2005.06.166
|
Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res. 97(2013) 41-48. https://doi: 10.1016/j.antiviral.2012.10.004
|
Hour MJ, Huang SH, Chang CY, et al. Baicalein, Ethyl Acetate, and Chloroform Extracts of Scutellaria baicalensis Inhibit the Neuraminidase Activity of Pandemic 2009 H1N1 and Seasonal Influenza A Viruses. Evid Based Complement Alternat Med. 2013 (2013) 750803. https://doi: 10.1155/2013/750803
|
Keum Y S, L.J.M., Yu M S, et al., Inhibition of SARS Coronavirus Helicase by Baicalein. Bulletin of the Korean Chemical Society, 34(2013) 3187-3188. https://DOI: dx.doi.org/10.5012/bkcs.2013.34.11.3187
|
Kato F, Ishida Y, Oishi S, et al. Novel antiviral activity of bromocriptine against dengue virus replication. Antiviral Res. 131(2016) 141-147. https://doi: 10.1016/j.antiviral.2016.04.014
|
Chan JF, Chik KK, Yuan S, et al. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res. 141(2017) 29-37. https://doi: 10.1016/j.antiviral.2017.02.002
|