Volume 11 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
O. Sreekanth Reddy, M.C.S. Subha, T. Jithendra, C. Madhavi, K. Chowdoji Rao. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 191-199. doi: 10.1016/j.jpha.2020.07.002
Citation: O. Sreekanth Reddy, M.C.S. Subha, T. Jithendra, C. Madhavi, K. Chowdoji Rao. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 191-199. doi: 10.1016/j.jpha.2020.07.002

Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery

doi: 10.1016/j.jpha.2020.07.002
Funds:

The authors C. Madhavi and K. Chowdoji Rao thank UGC–BSR, New Delhi, India, for the financial support provided.

  • Received Date: May 30, 2019
  • Accepted Date: Jul. 05, 2020
  • Rev Recd Date: Sep. 30, 2019
  • Publish Date: Aug. 04, 2020
  • The aim of the present work is fabrication of dual cross linked sodium alginate (SA)/montmorillonite (MMT) microbeads as a potential drug vehicle for extended release of curcumin (CUR). The microbeads were prepared using in situ ion-exchange followed by simple ionotropic gelation technique. The developed beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X-RD) and scanning electron microscopy (SEM). The effect of MMT on encapsulation efficiency of CUR and intercalation kinetics was investigated. Dynamic swelling study and in vitro release study were investigated in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C. Results suggested that both the swelling and in vitro release studies were influenced by the pH of test media, which might be suitable for intestinal drug delivery. The release mechanism was analyzed by fitting the release data into Korsmeyer-Peppas equation.
  • loading
  • S. Ganguly, P.P. Maity, S. Mondal, et al., Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery, Mater. Sci. Eng. C 92 (2018) 34-51. https://doi.org/10.1016/j.msec.2018.06.034
    K. Varaprasad, G.M. Raghavendra, T. Jayaramudu, et al., A mini review on hydrogels classification and recent developments in miscellaneous applications, Mater. Sci. Eng. C 79 (2017) 951-978. https://doi.org/10.1016/j.msec.2017.05.096
    X. Sun, J. Shi, X. Xu, et al., Chitosan coated alginate/poly(N isopropylacrylamide) beads for dual responsive drug delivery, Int. J. Biol. Macromol. 59 (2013) 273-281. https://doi.org/10.1016/j.ijbiomac.2013.04.066
    I. Constantinidis, S.C. Grant, S. Celper, et al., Non-invasive evaluation of alginate/poly-l-Lysine/Alginate microcapsules by magnetic resonance microscopy, Biomaterials. 28(15) (2007) 2438-2445. https://doi.org/10.1016/j.biomaterials.2007.01.012
    M.I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications, Appl. Clay Sci. 46 (2009) 73-80. https://doi.org/10.1016/j.clay.2009.07.017
    S. Hua, H. Yang, A. Wang, A pH-sensitive nanocomposite microsphere based on chitosan and montmorillonite with in vitro reduction of the burst release effect, Drug Dev. Ind. Pharm. 36(9) (2010) 1106-1114. https://doi.org/10.3109/03639041003677798
    R.I. Iliescu, E. Andronescu, C.D. Ghitulica, et al., Montmorillonite-alginate nanocomposite as a drug delivery system-incorporation and in vitro release of irinotecan, Int. J. Pharm. 463 (2014) 184-192. https://doi.org/10.1016/j.ijpharm.2013.08.043
    J. Choy, S. Choi, J. Oh, et al., Clay minerals and layered double hydroxides for novel biological applications, Appl. Clay Sci. 36 (2007) 122-132. https://doi.org/10.1016/j.clay.2006.07.007
    Y. Huang, Q. Tao, D. Hou, et al., A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride, Int. J. Nanomed. 12 (2017) 1731-1745. https://dx.doi.org/10.2147%2FIJN.S122747
    V.V. Krupskaya, S.V. Zakusin, E.A. Tyupina, et al., Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions, Minerals. 7 (2017) 49-63. https://doi.org/10.3390/min7040049
    T. Li, L. Zhao, Z. Zheng, et al., Design and preparation acid-activated montmorillonite sustained-release drug delivery system for dexibuprofen in vitro and in vivo evaluations, Appl. Clay Sci. 163 (2018) 178-185. https://doi.org/10.1016/j.clay.2018.07.026
    V. Anand, R. Kandarapu, S. Garg, Ion-exchange resins: carrying drug delivery forward, Drug Discovery Today. 6 (2001) 905-914. https://doi.org/10.1016/S1359-6446(01)01922-5
    C. Aguzzi, P. Cerezo, C. Viseras, et al., Use of clays as drug delivery systems: Possibilities and limitations, Appl. Clay Sci. 36 (2007) 22-36. https://doi.org/10.1016/j.clay.2006.06.015
    K.M. Reddy, V.R. Babu, K.S.V.K. Rao, et al., Temperature Sensitive Semi-IPN Microspheres from Sodium Alginate and N-Isopropylacrylamide for Controlled Release of 5-Fluorouracil, J. Appl. Polym. Sci. 107 (2008) 2820-2829. https://doi.org/10.1002/app.27305
    P.R.S. Reddy, K.M. Rao, K.S.V.K. Rao, et al., Synthesis of Alginate Based Silver Nanocomposite Hydrogels for Biomedical Applications, Macromol. Res. 22(8) (2014) 832-842. https://doi.org/10.1007/s13233-014-2117-7
    T. Wu, J. Huang, Y. Jiang, et al., Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity, Food Chem. 240 (2017) 361-369. https://doi.org/10.1016/j.foodchem.2017.07.052
    G.T. Grant, E.R. Morris, D.A. Rees, et al., Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Lett. 32(1) (1973) 195-198. https://doi.org/10.1016/0014-5793(73)80770-7
    N.M. Sanchez-Ballestera, I. Soulairola, B. Bernard, et al., Flexible heteroionic calcium-magnesium alginate beads for controlled drug release, Carbohydr. Polym. 207 (2019) 224-229. https://doi.org/10.1016/j.carbpol.2018.11.096
    B.D. Kevadiya, G.V. Joshi, H.A. Patel, et al., Montmorillonite-Alginate Nanocomposites as a Drug Delivery System: Intercalation and In Vitro Release of Vitamin B1 and Vitamin B6, J. Biomater. Appl. 25(2) (2010) 161-177. https://doi.org/10.1177%2F0885328209344003
    H. Bera, S.R. Ippagunta, S. Kumar, et al., Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery, Mater. Sci. Eng. C 76 (2017) 715-726. https://doi.org/10.1016/j.msec.2017.03.074
    S. Jain, M. Datta, Montmorillonite-alginate microspheres as a delivery vehicle for oral extended release of Venlafaxine hydrochloride, J. Drug Deliv. Sci. Tec. 33 (2016) 149-156. https://doi.org/10.1016/j.jddst.2016.04.002
    K.M. Rao, K.S.V.K. Rao, G. Ramanjaneyulu, et al., Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery, Int. J. Pharm. 478 (2015) 788-795. https://doi.org/10.1016/j.ijpharm.2014.12.001
    E.S. Behbahani, M. Ghaedi, M. Abbaspour, et al., Curcumin loaded nanostructured lipid carriers: in vitro digestion and release studies, Polyhedron. 164 (2019) 113-122. https://doi.org/10.1016/j.poly.2019.02.002
    J. Sun, C. Bi, H.M. Chan, et al., Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability, Colloids Surf. B. 111 (2013) 367-375. https://doi.org/10.1016/j.colsurfb.2013.06.032
    H.W. Chen, H.C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br. J. Pharmacol. 124 (1998) 1029-1040. https://doi.org/10.1038/sj.bjp.0701914
    S. Kar, B. Kundu, R.L. Reis, et al., Curcumin ameliorates the targeted delivery of methotrexate intercalated montmorillonite clay to cancer cells, Eur. J. Pharm. Sci. 135 (2019) 91-102. https://doi.org/10.1016/j.ejps.2019.05.006
    H.H. Tonnesen, J. Karlsen, Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution, Z. Lebensm. Unters. Forsch. 180 (1985) 402-404. https://doi.org/10.1007/BF01027775
    H.A. Patel, R.S. Somani, H.C. Bajaj, et al., Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability, Appl. Clay Sci. 35 (2007) 194-200. https://doi.org/10.1016/j.clay.2006.09.012
    R. Abdeen, N. Salahuddin, Modified Chitosan-Clay Nanocomposite as a Drug Delivery System Intercalation and In Vitro Release of Ibuprofen, J. Chem. 576370 (2013) 1-9. https://doi.org/10.1155/2013/576370
    M.A. Guler, M.K. Gok, A.K. Figen, et al., Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels, Appl. Clay Sci. 112-113 (2015) 44-52. https://doi.org/10.1016/j.clay.2015.04.019
    X. Zheng, J. Dou, J. Yuan, et al., Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite, J. Environ. Sci. 56 (2007) 12-24. https://doi.org/10.1016/j.jes.2016.08.019
    P. Del Gaudio, P. Colombo, G. Colombo, et al., Mechanisms of formation and disintegration of alginate beads obtained by prilling, Int. J. Pharm. 302(1-2) (2005) 1-9. https://doi.org/10.1016/j.ijpharm.2005.05.041
    K.S.V.K. Rao, Ildoo Chung, K.M. Reddy, et al., PMMA-Based Microgels for Controlled Release of an Anticancer Drug, J. Appl. Polym. Sci. 111 (2009) 845-853. https://doi.org/10.1002/app.29057
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (270) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return