Citation: | Yuwei Zhou, Haoxiang Tang, Changchun Wu, Zixuan Zhang, Jinyi Wei, Rong Gong, Samarappuli Mudiyanselage Savini Gunarathne, Changcheng Xiang, Jian Huang. Enhancing polyreactivity prediction of preclinical antibodies through fine-tuned protein language models[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101448 |
[1] |
A.B. Kapingidza, K. Kowal, M. Chruszcz, Antigen-Antibody Complexes, Subcell Biochem. 94 (2020) 465-497.
|
[2] |
X. Lyu, Q. Zhao, J. Hui, et al., The global landscape of approved antibody therapies, Antib Ther. 5 (2022) 233-257.
|
[3] |
D.R. Goulet, W.M. Atkins, Considerations for the Design of Antibody-Based Therapeutics, J Pharm Sci. 109 (2020) 74-103.
|
[4] |
S. Crescioli, H. Kaplon, L. Wang, et al., Antibodies to watch in 2025, MAbs. 17 (2025) 2443538.
|
[5] |
Z. Elgundi, M. Reslan, E. Cruz, et al., The state-of-play and future of antibody therapeutics, Adv Drug Deliv Rev. 122 (2017) 2-19.
|
[6] |
S. Crescioli, H. Kaplon, A. Chenoweth, et al., Antibodies to watch in 2024, MAbs. 16 (2024) 2297450.
|
[7] |
Y. Xu, D. Wang, B. Mason, et al., Structure, heterogeneity and developability assessment of therapeutic antibodies, MAbs. 11 (2019) 239-264.
|
[8] |
W. Li, H. Lin, Z. Huang, et al., DOTAD: A Database of Therapeutic Antibody Developability, Interdiscip Sci. 16 (2024) 623-634.
|
[9] |
Y. Zhou, Z. Huang, W. Li, et al., Deep learning in preclinical antibody drug discovery and development, Methods. 218 (2023) 57-71.
|
[10] |
A. Datta-Mannan, J. Lu, D.R. Witcher, et al., The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies, MAbs. 7 (2015) 1084-1093.
|
[11] |
A. Datta-Mannan, A. Thangaraju, D. Leung, et al., Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics, MAbs. 7 (2015) 483-493.
|
[12] |
A. Amash, G. Volkers, P. Farber, et al., Developability considerations for bispecific and multispecific antibodies, MAbs. 16 (2024) 2394229.
|
[13] |
O. Cunningham, M. Scott, Z.S. Zhou, et al., Polyreactivity and polyspecificity in therapeutic antibody development: risk factors for failure in preclinical and clinical development campaigns, MAbs. 13 (2021) 1999195.
|
[14] |
Y. Teng, R. Guo, J. Sun, et al., Reactive capillary hemangiomas induced by camrelizumab (SHR-1210), an anti-PD-1 agent, Acta Oncol. 58 (2019) 388-389.
|
[15] |
H. Mo, J. Huang, J. Xu, et al., Safety, anti-tumour activity, and pharmacokinetics of fixed-dose SHR-1210, an anti-PD-1 antibody in advanced solid tumours: a dose-escalation, phase 1 study, Br J Cancer. 119 (2018) 538-545.
|
[16] |
W.J.J. Finlay, J.E. Coleman, J.S. Edwards, et al., Anti-PD1 'SHR-1210' aberrantly targets pro-angiogenic receptors and this polyspecificity can be ablated by paratope refinement, MAbs. 11 (2019) 26-44.
|
[17] |
M. Onda, S. Nagata, Y. Tsutsumi, et al., Lowering the isoelectric point of the Fv portion of recombinant immunotoxins leads to decreased nonspecific animal toxicity without affecting antitumor activity, Cancer Res. 61 (2001) 5070-5077.
|
[18] |
R.A. Norman, F. Ambrosetti, A. Bonvin, et al., Computational approaches to therapeutic antibody design: established methods and emerging trends, Brief Bioinform. 21 (2020) 1549-1567.
|
[19] |
M.I.J. Raybould, C.M. Deane, The Therapeutic Antibody Profiler for Computational Developability Assessment, Methods Mol Biol. 2313 (2022) 115-125.
|
[20] |
Y. Zhou, Z. Huang, Y. Gou, et al., AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains, Antib Ther. 6 (2023) 147-156.
|
[21] |
C.T. Boughter, M.T. Borowska, J.J. Guthmiller, et al., Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops, Elife. 9 (2020).
|
[22] |
E.P. Harvey, J.E. Shin, M.A. Skiba, et al., An in silico method to assess antibody fragment polyreactivity, Nat Commun. 13 (2022) 7554.
|
[23] |
H.T. Chen, Y. Zhang, J. Huang, et al., Human antibody polyreactivity is governed primarily by the heavy-chain complementarity-determining regions, Cell Rep. 43 (2024) 114801.
|
[24] |
H. Lim, K.T. No, Prediction of polyreactive and nonspecific single-chain fragment variables through structural biochemical features and protein language-based descriptors, BMC Bioinformatics. 23 (2022) 520.
|
[25] |
X. Yu, K. Vangjeli, A. Prakash, et al., Protein language models enable prediction of polyreactivity of monospecific, bispecific, and heavy-chain-only antibodies, Antib Ther. 7 (2024) 199-208.
|
[26] |
S.K.S. Chu, K. Narang, J.B. Siegel, Protein stability prediction by fine-tuning a protein language model on a mega-scale dataset, PLoS Comput Biol. 20 (2024) e1012248.
|
[27] |
J.A. Ruffolo, J.J. Gray, J. Sulam.Deciphering antibody affinity maturation with language models and weakly supervised learning, arXiv. 2021. https://doi.org/10.48550/arXiv.2112.07782.
|
[28] |
J. Barton, J.D. Galson, J. Leem.Enhancing Antibody Language Models with Structural Information, arXiv. 2023. https://doi.org/10.1101/2023.12.12.569610.
|
[29] |
H. Kenlay, F.A. Dreyer, A. Kovaltsuk, et al., Large scale paired antibody language models, PLoS Comput Biol. 20 (2024) e1012646.
|
[30] |
Z. Lin, H. Akin, R. Rao, et al., Evolutionary-scale prediction of atomic-level protein structure with a language model, Science. 379 (2023) 1123-1130.
|
[31] |
A. Elnaggar, M. Heinzinger, C. Dallago, et al., ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning, IEEE Trans Pattern Anal Mach Intell. 44 (2022) 7112-7127.
|
[32] |
T. Jain, T. Sun, S. Durand, et al., Biophysical properties of the clinical-stage antibody landscape, Proc Natl Acad Sci U S A. 114 (2017) 944-949.
|
[33] |
M. Bailly, C. Mieczkowski, V. Juan, et al., Predicting Antibody Developability Profiles Through Early Stage Discovery Screening, MAbs. 12 (2020) 1743053.
|
[34] |
J. Dunbar, C.M. Deane, ANARCI: antigen receptor numbering and receptor classification, Bioinformatics. 32 (2016) 298-300.
|
[35] |
G.E. Crooks, G. Hon, J.M. Chandonia, et al., WebLogo: a sequence logo generator, Genome Res. 14 (2004) 1188-1190.
|
[36] |
A. Schoch, H. Kettenberger, O. Mundigl, et al., Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics, Proc Natl Acad Sci U S A. 112 (2015) 5997-6002.
|
[37] |
A.V. Sadybekov, V. Katritch, Computational approaches streamlining drug discovery, Nature. 616 (2023) 673-685.
|
[38] |
Y. Zhou, S. Xie, Y. Yang, et al., SSH2.0: A Better Tool for Predicting the Hydrophobic Interaction Risk of Monoclonal Antibody, Front Genet. 13 (2022) 842127.
|
[39] |
T. Jain, T. Boland, M. Vasquez, Identifying developability risks for clinical progression of antibodies using high-throughput in vitro and in silico approaches, MAbs. 15 (2023) 2200540.
|
[40] |
L. Berglund, E. Bjorling, P. Oksvold, et al., A genecentric Human Protein Atlas for expression profiles based on antibodies, Mol Cell Proteomics. 7 (2008) 2019-2027.
|
[41] |
M.L. Fernandez-Quintero, J.R. Loeffler, L.M. Bacher, et al., Local and Global Rigidification Upon Antibody Affinity Maturation, Front Mol Biosci. 7 (2020) 182.
|
[42] |
M.T. Borowska, C.T. Boughter, J.J. Bunker, et al., Biochemical and biophysical characterization of natural polyreactivity in antibodies, Cell Rep. 42 (2023) 113190.
|
[43] |
S. Elias, C. Wrzodek, C.M. Deane, et al., Prediction of polyspecificity from antibody sequence data by machine learning, Front Bioinform. 3 (2023) 1286883.
|
[44] |
S. Birtalan, Y. Zhang, F.A. Fellouse, et al., The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies, J Mol Biol. 377 (2008) 1518-1528.
|
[45] |
R. Akbar, H. Bashour, P. Rawat, et al., Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies, MAbs. 14 (2022) 2008790.
|
[46] |
S. Elias, C. Wrzodek, C.M. Deane, et al., Prediction of polyspecificity from antibody sequence data by machine learning, Front Bioinform. 3 (2023) 1286883.
|
[47] |
J. Dunbar, K. Krawczyk, J. Leem, et al., SAbDab: the structural antibody database, Nucleic Acids Res. 42 (2014) D1140-1146.
|
[48] |
M.I.J. Raybould, C. Marks, A.P. Lewis, et al., Thera-SAbDab: the Therapeutic Structural Antibody Database, Nucleic Acids Res. 48 (2020) D383-D388.
|
[49] |
M. Lecerf, A. Kanyavuz, S. Lacroix-Desmazes, et al., Sequence features of variable region determining physicochemical properties and polyreactivity of therapeutic antibodies, Mol Immunol. 112 (2019) 338-346.
|