Citation: | Nan Xu, Fanhe Meng, Binglun Zhang, Xing Yang, Haibo Wang, Fan Yang. Polysaccharides self-healing hydrogel for skin regeneration[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101447 |
[1] |
S. Jia, J. Huang, W. Lu, et al., Global hotspots and future directions for drugs to improve the skin flap survival: A bibliometric and visualized review, J. Pharm. Anal. 14 (2024), 100948.
|
[2] |
L. Canchy, D. Kerob, A. Demessant, et al., Wound healing and microbiome, an unexpected relationship, J. Eur. Acad. Dermatol. Venereol. 37 Suppl 3 (2023) 7-15.
|
[3] |
S. Latiyan, T.S. Kumar, M. Doble, et al., Perspectives of nanofibrous wound dressings based on glucans and galactans-A review, Int. J. Biol. Macromol. 244 (2023), 125358.
|
[4] |
M. Ansari, A. Darvishi, A review of the current state of natural biomaterials in wound healing applications, Front. Bioeng. Biotechnol. 12 (2024), 1309541.
|
[5] |
S. Dhivya, V.V. Padma, E. Santhini, Wound dressings-a review, BioMedicine. 5 (2015), 22.
|
[6] |
H. Cao, L. Duan, Y. Zhang, et al., Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity, Signal. Transduct. Target. Ther. 6 (2021), 426.
|
[7] |
W. Yuan, F. Wang, X. Qu, et al., In situ rapid synthesis of hydrogels based on a redox initiator and persistent free radicals, Nanoscale. Adv. 5 (2023) 1999-2009.
|
[8] |
A. Florowska, T. Florowski, B. Kruszewski, et al., Thermal and Modern, Non-Thermal Method Induction as a Factor of Modification of Inulin Hydrogel Properties, Foods.12 (2023), 4154.
|
[9] |
G.S. Major, H. Joukhdar, Y.S. Choi, et al., Photochemistry as a tool for dynamic modulation of hydrogel mechanics, Cell. Rep. Phys. Sci. 6 (2025), 102366.
|
[10] |
Z. Liu, R. Ma, W. Du, et al., Radiation-initiated high strength chitosan/lithium sulfonate double network hydrogel/aerogel with porosity and stability for efficient CO2 capture, RSC. Adv. 11 (2021) 20486-20497.
|
[11] |
Q. Wang, Y. Zhang, Y. Ma, et al., Nano-crosslinked dynamic hydrogels for biomedical applications, Mater. Today. Bio. 20 (2023), 100640.
|
[12] |
Z. Xu, Y. Chen, Y. Cao, et al., Tough hydrogels with different toughening mechanisms and applications, Int. J. Mol. Sci. 25 (2024), 2675.
|
[13] |
M.M. Rumon, A.A. Akib, S.D. Sarkar, et al., Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications, ACS. Polym. Au. 4 (2024) 463-486.
|
[14] |
Y. Huang, P.B. Jayathilaka, M.S. Islam, et al., Structural aspects controlling the mechanical and biological properties of tough, double network hydrogels, Acta. Biomater. 138 (2022) 301-312.
|
[15] |
X. Lin, X. Zhao, C. Xu, et al., Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms, J. Polym. Sci. 60 (2022) 2525-2542.
|
[16] |
J.L. Pablos, D. Lozano, M. Manzano, et al., Regenerative medicine: Hydrogels and mesoporous silica nanoparticles, Mater. Today. Bio. 29 (2024), 101342.
|
[17] |
S. Das, V. Kumar, R. Tiwari, et al., Recent advances in hydrogels for biomedical applications, Asian. J. Pharm. Clin. Res. 11 (2018) 62-68.
|
[18] |
B. Tao, C. Lin, Y. Deng, et al., Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy, J. Mater. Chem. B. 7 (2019) 2534-2548.
|
[19] |
L. Fan, X. Ge, Y. Qian, et al., Advances in synthesis and applications of self-healing hydrogels, Front. Bioeng. Biotechnol. 8 (2020), 654.
|
[20] |
D. Hardman, T. G. Thuruthel, F. Iida, Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications, NPG. Asia. Mater. 14 (2022), 11.
|
[21] |
X. Tian, Y. Wen, Z. Zhang, et al., Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing, Biomaterials. 318 (2025), 123134.
|
[22] |
T.C. Ho, C.C. Chang, H.P. Chan, et al., Hydrogels: Properties and applications in biomedicine, Molecules. 27 (2022), 2902.
|
[23] |
M. Beaumont, R. Tran, G. Vera, et al., Hydrogel-forming algae polysaccharides: From seaweed to biomedical applications, Biomacromolecules. 22 (2021) 1027-1052.
|
[24] |
S. Mantha, S. Pillai, P. Khayambashi, et al., Smart hydrogels in tissue engineering and regenerative medicine, Materials. 12 (2019), 3323.
|
[25] |
J. Guasch, C.A. Muth, J. Diemer, et al., Integrin-assisted T-cell activation on nanostructured hydrogels, Nano. Lett. 17 (2017) 6110-6116.
|
[26] |
M. Keshavarz, Q. Smith, Gelatin-mediated vascular self-assembly via a YAP-MMP signaling axis, Adv. Funct. Mater. 34 (2024), 2402360.
|
[27] |
S. Bashir, M. Hina, J. Iqbal, et al., Fundamental concepts of hydrogels: Synthesis, properties, and their applications, Polymers. 12 (2020), 2702.
|
[28] |
E.A. Kamoun, S.A. Loutfy, Y. Hussein, et al., Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review, Int. J. Biol. Macromol. 187 (2021) 755-768.
|
[29] |
N. Jabeen, M. Atif, Polysaccharides based biopolymers for biomedical applications: A review, Polym. Adv. Technol. 35 (2024), e6203.
|
[30] |
F. Sepe, A. Valentino, L. Marcolongo, et al., Marine-derived polysaccharide hydrogels as delivery platforms for natural bioactive compounds, Int. J. Mol. Sci. 26 (2025), 764.
|
[31] |
J. Han, Y. Cui, X. Han, et al., Super-soft DNA/dopamine-grafted-dextran hydrogel as dynamic wire for electric circuits switched by a microbial metabolism process, Adv. Sci. 7 (2020), 2000684.
|
[32] |
F. Damiri, A. Fatimi, Y. Liu, et al., Recent advances in 3D bioprinted polysaccharide hydrogels for biomedical applications: A comprehensive review, Carbohydr. Polym. 348 (2025), 122845.
|
[33] |
X. Jiang, F. Zeng, L. Zhang, et al., Engineered injectable cell-laden chitin/chitosan hydrogel with adhesion and biodegradability for calvarial defect regeneration, ACS. Appl. Mater. Interfaces. 15 (2023) 20761-20773.
|
[34] |
X. Xu, J. Xu, Z. Sun, et al., Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery, Des. Monomers. Polym. 27 (2024) 21-34.
|
[35] |
R. Parhi, Cross-linked hydrogel for pharmaceutical applications: A review, Adv. Pharm. Bull. 7 (2017) 515-530.
|
[36] |
J. Hu, W. Guan, P. Liu, et al., Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells, Stem. Cell. Rep. 9 (2017) 464-477.
|
[37] |
S. Copeland, K. Nugent, Persistent and unusual respiratory findings after prolonged glutaraldehyde exposure, Int. J. Occup. Environ. Med. 6 (2015) 177-183.
|
[38] |
F. Shi, Z. Chen, M. Yao, et al., Effects of glutaraldehyde and povidone-iodine on apoptosis of grass carp liver and hepatocytes, Ecotoxicol. Environ. Saf. 272 (2024), 116078.
|
[39] |
E. Badali, M. Hosseini, M. Mohajer, et al., Enzymatic crosslinked hydrogels for biomedical application, Polym. Sci. Ser. A. 63 (2021) S1-S22.
|
[40] |
B. Lv, L. Lu, L. Hu, et al., Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment, Theranostics. 13 (2023) 2015-2039.
|
[41] |
S. Cheng, H. Wang, X. Pan, et al., Dendritic hydrogels with robust inherent antibacterial properties for promoting bacteria-infected wound healing, ACS. Appl. Mater. Interfaces. 14 (2022) 11144-11155.
|
[42] |
J. Wang, S. Zhuang, Chitosan-based materials: Preparation, modification and application, J. Clean. Prod. 355 (2022), 131825.
|
[43] |
H. Hirama, T. Kambe, K. Aketagawa, et al., Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface, Langmuir 29 (2013) 519-524.
|
[44] |
M. Kalulu, O. Oderinde, C. Mwanza, et al., Fabrication and characterization of multi-stimuli-responsive hydrogels with robust mechanical properties, good self-healing, and substrate adhesiveness using a traditional chemical crosslinker and initiator-free approach, Macromol. Chem. Phys. 226 (2025), p1.
|
[45] |
J. Manasi Esther, R. Solanki, M. Dhanka, et al., Self-healing, injectable chitosan-based hydrogels: Structure, properties and biological applications, Mater. Adv. 5 (2024) 5365-5393.
|
[46] |
U.D. Hemraz, E. Lam, R. Sunasee, Recent advances in cellulose nanocrystals-based antimicrobial agents, Carbohydr. Polym. 315 (2023), 120987.
|
[47] |
D. Gogoi, M. Kumar, J. Singh, A comprehensive review on hydrogel-based bio-ink development for tissue engineering scaffolds using 3D printing, Ann. 3D Print. Med. 15 (2024), 100159.
|
[48] |
H. Zhang, Y. Wang, Z. Zheng, et al., Strategies for improving the 3D printability of decellularized extracellular matrix bioink, Theranostics. 13 (2023) 2562-2587.
|
[49] |
A.C. Sousa, R. Alvites, B. Lopes, et al., Three-dimensional printing/bioprinting and cellular therapies for regenerative medicine: Current advances, J. Funct. Biomater. 16 (2025), 28.
|
[50] |
W. Fang, M. Yang, L. Wang, et al., Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges, Int. J. Bioprinting. 9 (2023), 759.
|
[51] |
W. Li, J. Li, C. Pan, et al., Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering, Mater. Today. Bio. 29 (2024), 101286.
|
[52] |
E.H. Fragal, V.H. Fragal, E.P. Silva, et al., Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications, Carbohydr. Polym. 292 (2022), 119665.
|
[53] |
R. Zhang, B. Yu, Y. Tian, et al., Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare, Appl. Mater. Today. 26 (2022), 101396.
|
[54] |
M. Nokab, J. Sayed, F. Witte, et al., A comparative analytical study for the different water pools present in alginate hydrogels: Qualitative vs. quantitative approaches, Food. Hydrocoll. 154 (2024), 110159.
|
[55] |
F. Ali, I. Khan, J Chen, et al., Emerging fabrication strategies of hydrogels and its applications, Gels 8 (2022), 205.
|
[56] |
M. Mohamadhoseini, Z. Mohamadnia, Alginate-based self-healing hydrogels assembled by dual cross-linking strategy: Fabrication and evaluation of mechanical properties, Int. J. Biol. Macromol. 191 (2021) 139-151.
|
[57] |
R. Ma, X. Shi, X. Wang, et al., Development of a tobramycin-loaded calcium alginate microsphere/chitosan composite sponge with antibacterial effects as a wound dressing, Biomed. Mater. 19 (2024), 045030.
|
[58] |
A. Pettignano, M. Haring, L. Bernardi, et al., Self-healing alginate-gelatin biohydrogels based on dynamic covalent chemistry: Elucidation of key parameters, Mater. Chem. Front. 1 (2017) 73-79.
|
[59] |
X. Wang, H.J. Zhang, Y. Yang, et al., Biopolymer-based self-healing hydrogels: A short review, Giant. 16 (2023), 100188.
|
[60] |
M. Chelu, J.M. Calderon Moreno, A.M. Musuc, et al., Natural regenerative hydrogels for wound healing, Gels. 10 (2024), 547.
|
[61] |
Z. Li, W. Dong, J. Ren, et al., Mechanically trained calcium alginate ionic hydrogels for enhanced abdominal wall defect repair, Adv. Funct. Mater. 35 (2025), 2419151.
|
[62] |
N.G. Kim, S.C. Kim, T.H. Kim, et al., Ishophloroglucin A-based multifunctional oxidized alginate/gelatin hydrogel for accelerating wound healing, Int. J. Biol. Macromol. 245 (2023) 125484.
|
[63] |
M. Liu, Y. Huang, C. Tao, et al., Self-healing alginate hydrogel formed by dynamic benzoxaborolate chemistry protects retinal pigment epithelium cells against oxidative damage, Gels. 9 (2022), 24.
|
[64] |
S. Ansari, S. Pouraghaei Sevari, C. Chen, et al., RGD-modified alginate-GelMA hydrogel sheet containing gingival mesenchymal stem cells: A unique platform for wound healing and soft tissue regeneration, ACS. Biomater. Sci. Eng. 7 (2021) 3774-3782.
|
[65] |
F. Cadamuro, V. Ardenti, F. Nicotra, et al., Alginate-gelatin self-healing hydrogel produced via static-dynamic crosslinking, Molecules. 28 (2023), 2851.
|
[66] |
F. Hong, P. Qiu, Y. Wang, et al., Chitosan-based hydrogels: From preparation to applications, a review, Food. Chem. X. 21 (2024), 101095.
|
[67] |
X. Lai, Y. Zhao, Z. Shi, et al., Plant-derived paclitaxel-loaded ultra-small Fe3O4 nanoparticles for MR imaging-mediated antitumor therapy, Ind. Crops. Prod. 228 (2025), 120902.
|
[68] |
S. Pan, C. Zhu, Y. Wu, et al., Chitosan-based self-healing hydrogel: From fabrication to biomedical application, Polymers. 15 (2023), 3768.
|
[69] |
A.M. Craciun, S. Morariu, L. Marin, Self-healing chitosan hydrogels: Preparation and rheological characterization, Polymers. 14 (2022), 2570.
|
[70] |
S. Pramanik, A. Aggarwal, A. Kadi, et al., Chitosan alchemy: Transforming tissue engineering and wound healing, RSC. Adv. 14 (2024) 19219-19256.
|
[71] |
X. Ling, X. Wang, P. Ma, et al., Covalent immobilization of penicillin G acylase onto Fe3O4@Chitosan magnetic nanoparticles, J. Microbiol. Biotechnol. 26 (2016) 829-836.
|
[72] |
N.A. Elbialy, H.K. Elhakim, M.H. Mohamed, et al., Evaluation of the synergistic effect of chitosan metal ions (Cu2+/Co2+) in combination with antibiotics to counteract the effects on antibiotic resistant bacteria, RSC. Adv. 13 (2023) 17978-17990.
|
[73] |
L. Deng, B. Wang, W. Li, et al., Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing, Int. J. Biol. Macromol. 217 (2022) 77-87.
|
[74] |
J. Yang, Y. Chen, L. Zhao, et al., Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing, Compos. Part. B. Eng. 197 (2020), 108139.
|
[75] |
L. Wang, X. Ding, X. He, et al., Fabrication and Properties of Hydrogel Dressings Based on Genipin Crosslinked Chondroitin Sulfate and Chitosan, Polymers. 16 (2024), 2876.
|
[76] |
T. Khaliq, M. Sohail, M.U. Minhas, et al., Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections, Int. J. Biol. Macromol. 197 (2022) 157-168.
|
[77] |
C. Bayram, Carboxymethyl chitosan-glycerol multi-aldehyde based self-healing hydrogel system, Int. J. Biol. Macromol. 239 (2023), 124334.
|
[78] |
S. Hosseini, N. Eslahi, R. Jahanmardi, Self-healing nanocomposite hydrogels based on chitosan/modified polyethylene glycol/graphene, Mater. Today. Commun. 37 (2023), 107417.
|
[79] |
Q. Wu, L. Wang, P. Ding, et al., Mercaptolated chitosan/methacrylate gelatin composite hydrogel for potential wound healing applications, Compos. Commun. 35 (2022), 101344.
|
[80] |
C. Xu, W. Zhan, X. Tang, et al., Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages, Polym. Test. 66 (2018) 155-163.
|
[81] |
B. Baghaei, M. Skrifvars, All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications, Molecules. 25 (2020), 2836.
|
[82] |
C. Wu, J. Li, Y. Zhang, et al., Cellulose dissolution, modification, and the derived hydrogel: A review, ChemSusChem. 16 (2023), e202300518.
|
[83] |
L. Wang, F. Hao, S. Tian, et al., Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings, Carbohydr. Polym. 291 (2022), 119574.
|
[84] |
S.H. Zainal, N.H. Mohd, N. Suhaili, et al., Preparation of cellulose-based hydrogel: A review, J. Mater. Res. Technol. 10 (2021) 935-952.
|
[85] |
Y. Liu, F. Wang, Z. Hu, et al., Applications of cellulose-based flexible self-healing sensors for human health monitoring, Nano. Energy. 127 (2024), 109790.
|
[86] |
H. An, Y. Bo, D. Chen, et al., Cellulose-based self-healing hydrogel through boronic ester bonds with excellent biocompatibility and conductivity, RSC. Adv. 10 (2020) 11300-11310.
|
[87] |
J. Xu, Y. Liu, S.H. Hsu, Hydrogels based on schiff base linkages for biomedical applications, Molecules. 24 (2019), 3005.
|
[88] |
X. Ding, G. Li, C. Xiao, et al., Enhancing the stability of hydrogels by doubling the schiff base linkages, Macromol. Chem. Phys. 220 (2019), 1800484.
|
[89] |
R. Koshani, M.H. Nia, Z. Ataie, et al., Multifunctional self-healing hydrogels via nanoengineering of colloidal and polymeric cellulose, Int. J. Biol. Macromol. 259 (2024), 129181.
|
[90] |
Y. Tang, Z. Fang, H.J. Lee, Exploring applications and preparation techniques for cellulose hydrogels: A comprehensive review, Gels. 10 (2024), 365.
|
[91] |
W. Zheng, J. Gao, Z. Wei, et al., Facile fabrication of self-healing carboxymethyl cellulose hydrogels, Eur. Polym. J. 72 (2015) 514-522.
|
[92] |
K. Dixit, H. Bora, R. Chakrabarti, et al., Thermoresponsive keratin-methylcellulose self-healing injectable hydrogel accelerating full-thickness wound healing by promoting rapid epithelialization, Int. J. Biol. Macromol. 263 (2024), 130073.
|
[93] |
X. Wei, D. Chen, X. Zhao, et al., Underwater adhesive HPMC/SiW-PDMAEMA/Fe3+ hydrogel with self-healing, conductive, and reversible adhesive properties, ACS Appl. Polym. Mater. 3 (2021) 837-846.
|
[94] |
X. Tao, W. Ma, X. Han, et al., Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte, J. Fuel. Chem. Technol. 50 (2022) 304-313.
|
[95] |
K. Zhang, D. Wu, L. Chang, et al., Cellulose based self-healing hydrogel through Boronic Ester connections for wound healing and antitumor applications, Int. J. Biol. Macromol. 230 (2023), 123294.
|
[96] |
Y. Wang, G. Xiao, Y. Peng, et al., Effects of cellulose nanofibrils on dialdehyde carboxymethyl cellulose based dual responsive self-healing hydrogel, Cellulose. 26 (2019) 8813-8827.
|
[97] |
A. Luanda, V. Badalamoole, Past, present and future of biomedical applications of dextran-based hydrogels: A review, Int. J. Biol. Macromol. 228 (2023) 794-807.
|
[98] |
Z. Wei, J. Yang, X. Du, et al., Dextran-based self-healing hydrogels formed by reversible Diels-alder reaction under physiological conditions, Macromol. Rapid Commun. 34 (2013) 1464-1470.
|
[99] |
Z. Li, B. Li, X. Li, et al., Ultrafast in situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair, Carbohydr. Polym. 267 (2021), 118155.
|
[100] |
S. Wei, P. Xu, Z. Yao, et al., A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes, Acta. Biomater. 124 (2021) 205-218.
|
[101] |
B. Guo, J. Qu, X. Zhao, et al., Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration, Acta. Biomater. 84 (2019) 180-193.
|
[102] |
B. Fan, D. Torres Garcia, M. Salehi, et al., Dynamic covalent dextran hydrogels as injectable, self-adjuvating peptide vaccine depots, ACS. Chem. Biol. 18 (2023) 652-659.
|
[103] |
G. Sun, X. Zhang, Y.-I. Shen, et al., Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing, Proc. Natl. Acad. Sci. USA. 108 (2011) 20976−20981.
|
[104] |
L. Zhong, A.T. Banigo, B. Zoetebier, et al., Bioactive hydrogels based on tyramine and maleimide functionalized dextran for tissue engineering applications, Gels. 10 (2024), 566.
|
[105] |
M. Zhang, Y. Huang, W. Pan, et al., Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing, Carbohydr. Polym. 253 (2021), 117213.
|
[106] |
M.R. Hwang, J.O. Kim, J.H. Lee, et al., Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: Gel characterization and in vivo healing evaluation, AAPS. PharmSciTech. 11 (2010) 1092-1103.
|
[107] |
M. Alibolandi, M. Mohammadi, S.M. Taghdisi, et al., Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing, Int. J. Pharm. 532 (2017) 466-477.
|
[108] |
J. Fang, P. Li, X. Lu, et al., A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration, Acta. Biomater. 88 (2019) 503-513.
|
[109] |
S. Guan, K. Zhang, L. Cui, et al., Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration, Biomater. Adv. 133 (2022), 112604.
|
[110] |
S. Tiwari, P. Bahadur, Modified hyaluronic acid based materials for biomedical applications, Int. J. Biol. Macromol. 121 (2019) 556-571.
|
[111] |
L.A. Perez, R. Hernandez, J.M. Alonso, et al., Hyaluronic acid hydrogels crosslinked in physiological conditions: Synthesis and biomedical applications, Biomedicines. 9 (2021), 1113.
|
[112] |
M. Zhang, X. Chen, K. Yang, et al., Dual-crosslinked hyaluronic acid hydrogel with self-healing capacity and enhanced mechanical properties, Carbohydr. Polym. 301 (2023), 120372.
|
[113] |
M. Zhang, Q. Dong, K. Yang, et al., Hyaluronic acid hydrogels with excellent self-healing capacity and photo-enhanced mechanical properties for wound healing, Int. J. Biol. Macromol. 267 (2024), 131235.
|
[114] |
K. Yang, J. Yang, R. Chen, et al., Fast self-healing hyaluronic acid hydrogel with a double-dynamic network for skin wound repair, ACS. Appl. Mater. Interfaces. 16 (2024) 37569-37580.
|
[115] |
M. Gong, F. Yan, L. Yu, et al., A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy, Cell. Death. Dis. 13 (2022), 738.
|
[116] |
C. He, S. Bi, R. Zhang, et al., A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing, J. Control. Release. 370 (2024) 543-555.
|
[117] |
Y. Dong, M. Cui, J. Qu, et al., Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury, Acta. Biomater. 108 (2020) 56-66.
|
[118] |
P. Fan, S. Li, J. Yang, et al., Injectable, self-healing hyaluronic acid-based hydrogels for spinal cord injury repair, Int. J. Biol. Macromol. 263 (2024), 130333.
|
[119] |
W. Zhang, H. Wang, J. Pang, et al., Self-crosslinking hyaluronic acid-based hydrogel with promoting vascularization and ROS scavenging for wound healing, Int. J. Biol. Macromol. 278 (2024), 134570.
|
[120] |
D. Qureshi, S.K. Nayak, S. Maji, et al., Carrageenan: A wonder polymer from marine algae for potential drug delivery applications, Curr. Pharm. Des. 25 (2019) 1172-1186.
|
[121] |
L. Li, R. Ni, Y. Shao, et al., Carrageenan and its applications in drug delivery, Carbohydr. Polym. 103 (2014) 1-11.
|
[122] |
B.D. Karuppasamy, N.C. Reger, S. Munisamy, et al., Marine-based bioactive self-healing hydrogel with tunable properties for tissue engineering and regenerative medicine, J. Drug. Deliv. Sci. Technol. 101 (2024), 106267.
|
[123] |
H. Zhang, X. Lin, X. Cao, et al., Developing natural polymers for skin wound healing, Bioact. Mater. 33 (2024) 355-376.
|
[124] |
Y. Haririan, A. Asefnejad, Biopolymer hydrogels and synergistic blends for tailored wound healing, Int. J. Biol. Macromol. 279 (2024), 135519.
|
[125] |
X. Qi, Y. Xiang, Y. Li, et al., An ATP-activated spatiotemporally controlled hydrogel prodrug system for treating multidrug-resistant bacteria-infected pressure ulcers, Bioact. Mater. 45 (2025) 301-321.
|
[126] |
MercK, HyStem™ Hyaluronic Acid Based Hydrogels for 3D Cell Culture Applications.
|
[127] |
Chitogel, Chitogel.
|
[128] |
SAMS, Algiderm Ag+.
|
[129] |
Anika, Hyalomatrix Hyaluronic Acid Wound Device.
|
[130] |
SmithNephew, ALGISITE◊ M.
|
[131] |
FarmaWeb, HYALOFILL F.
|
[132] |
Primex, ChitoCare® Medical Devices: Wound Healing Gel.
|
[133] |
S.H. Aswathy, U. Narendrakumar, I. Manjubala, Commercial hydrogels for biomedical applications, Heliyon 6 (2020), e03719.
|
[134] |
M.C.A.a. Vida, 3M™ Nu-Gel™ Alginate Hydrogel.
|
[135] |
Coloplast, Purilon® Gel
|
[136] |
R. Das, N. Suryawanshi, N. Burnase, et al., Classification and bibliometric analysis of hydrogels in periodontitis treatment: Trends, mechanisms, advantages, and future research directions, Dent. Mater. 41 (2025) 81-89.
|
[137] |
A.A. Nizam, S. Masri, N.I. Fadilah, et al., Current insight of peptide-based hydrogels for chronic wound healing applications: A concise review, Pharmaceuticals. 18 (2025), 58.
|
[138] |
G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue. Eng. Part. B. Rev. 14 (2008) 149-165.
|
[139] |
M.M. Perera, N. Ayres, Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels, Polym. Chem. 11 (2020) 1410-1423.
|
[140] |
K. Guo, Z. Liu, W. Wang, et al., Chitosan oligosaccharide inhibits skull resorption induced by lipopolysaccharides in mice, BMC. Oral. Health. 19 (2019), 263.
|
[141] |
X. Du, Y. Hou, L. Wu, et al., An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure, J. Mater. Chem. B. 8 (2020) 5682-5693.
|
[142] |
P. Ren, D. Wei, M. Liang, et al., Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ, Int. J. Biol. Macromol. 212 (2022) 67-84.
|
[143] |
P. Lu, D. Ruan, M. Huang, et al., Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions, Signal. Transduct. Target. Ther. 9 (2024), 166.
|
[144] |
V. Brumberg, T. Astrelina, T. Malivanova, et al., Modern wound dressings: Hydrogel dressings, Biomedicines. 9 (2021), 1235.
|
[145] |
G. Olteanu, S.M. Neacsu, F.A. Joița, et al., Advancements in regenerative hydrogels in skin wound treatment: A comprehensive review, Int. J. Mol. Sci. 25 (2024), 3849.
|
[146] |
Z. Aliakbar Ahovan, Z. Esmaeili, B.S. Eftekhari, et al., Antibacterial smart hydrogels: New hope for infectious wound management, Mater. Today. Bio. 17 (2022), 100499.
|
[147] |
M. Suhail, H. Ullah, Q.L. Vu, et al., Preparation of pH-responsive hydrogels based on chondroitin sulfate/alginate for oral drug delivery, Pharmaceutics. 14 (2022), 2110.
|
[148] |
Y. Zhang, C. Gao, X. Li, et al., Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion, Carbohydr. Polym. 101 (2014) 171-178.
|
[149] |
W. Zhou, T. Bai, L. Wang, et al., Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration, Bioact. Mater. 20 (2023) 64-80.
|
[150] |
R. Cui, L. Zhang, R. Ou, et al., Polysaccharide-based hydrogels for wound dressing: Design considerations and clinical applications, Front. Bioeng. Biotechnol. 10 (2022), 845735.
|