Turn off MathJax
Article Contents
Nan Xu, Fanhe Meng, Binglun Zhang, Xing Yang, Haibo Wang, Fan Yang. Polysaccharides self-healing hydrogel for skin regeneration[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101447
Citation: Nan Xu, Fanhe Meng, Binglun Zhang, Xing Yang, Haibo Wang, Fan Yang. Polysaccharides self-healing hydrogel for skin regeneration[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101447

Polysaccharides self-healing hydrogel for skin regeneration

doi: 10.1016/j.jpha.2025.101447
  • Received Date: Apr. 15, 2025
  • Accepted Date: Sep. 08, 2025
  • Rev Recd Date: Sep. 05, 2025
  • Available Online: Sep. 10, 2025
  • Damaged skin is prone to infection and impaired healing, making efficient wound care materials critical. Polysaccharide-based self-healing hydrogels have demonstrated significant potential in skin regeneration due to their biocompatibility, biodegradability, and ability to mimic the extracellular matrix (ECM). This review summarizes the fabrication techniques, core polysaccharide materials, and challenges of these hydrogels. Hydrogel preparation primarily involves chemical cross-linking, physical cross-linking, and three-dimensional (3D) bioprinting. Chemical cross-linking confers high mechanical strength but limited self-healing capacity, while physical cross-linking enables rapid self-healing via dynamic non-covalent interactions, responsive to stimuli like pH and temperature. 3D bioprinting allows customizable tissue-like structures with precise control over cell distribution and bioactive molecule release. Key polysaccharides include alginate, chitosan, hyaluronic acid (HA), cellulose, and dextran. Alginate forms reversible networks via calcium ion cross-linking, suitable for wound dressings and tissue engineering. Chitosan, with amino and hydroxyl groups, exhibits antibacterial activity and promotes cell proliferation, widely used in infected wounds. HA achieves self-healing through dynamic covalent bonds, accelerating collagen deposition and angiogenesis. Cellulose derivatives employ boronic ester or Schiff base linkages for self-healing systems in injectable formulations. Dextran utilizes Diels-Alder reactions for self-healing under physiological conditions, ideal for drug delivery. Commercial products like HyStem® and Chitogel® have entered clinical use, integrating growth factors or antimicrobials to enhance wound healing. However, challenges persist, including insufficient mechanical strength, mismatched degradation rates with healing processes, long-term safety concerns, and scalability. Future directions focus on "smart" hydrogels, combined with clustered regularly interspaced short palindromic repeats (CRISPR) gene editing or artificial intelligence (AI)-optimized design, to enhance functionality and clinical translation.
  • loading
  • [1]
    S. Jia, J. Huang, W. Lu, et al., Global hotspots and future directions for drugs to improve the skin flap survival: A bibliometric and visualized review, J. Pharm. Anal. 14 (2024), 100948.
    [2]
    L. Canchy, D. Kerob, A. Demessant, et al., Wound healing and microbiome, an unexpected relationship, J. Eur. Acad. Dermatol. Venereol. 37 Suppl 3 (2023) 7-15.
    [3]
    S. Latiyan, T.S. Kumar, M. Doble, et al., Perspectives of nanofibrous wound dressings based on glucans and galactans-A review, Int. J. Biol. Macromol. 244 (2023), 125358.
    [4]
    M. Ansari, A. Darvishi, A review of the current state of natural biomaterials in wound healing applications, Front. Bioeng. Biotechnol. 12 (2024), 1309541.
    [5]
    S. Dhivya, V.V. Padma, E. Santhini, Wound dressings-a review, BioMedicine. 5 (2015), 22.
    [6]
    H. Cao, L. Duan, Y. Zhang, et al., Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity, Signal. Transduct. Target. Ther. 6 (2021), 426.
    [7]
    W. Yuan, F. Wang, X. Qu, et al., In situ rapid synthesis of hydrogels based on a redox initiator and persistent free radicals, Nanoscale. Adv. 5 (2023) 1999-2009.
    [8]
    A. Florowska, T. Florowski, B. Kruszewski, et al., Thermal and Modern, Non-Thermal Method Induction as a Factor of Modification of Inulin Hydrogel Properties, Foods.12 (2023), 4154.
    [9]
    G.S. Major, H. Joukhdar, Y.S. Choi, et al., Photochemistry as a tool for dynamic modulation of hydrogel mechanics, Cell. Rep. Phys. Sci. 6 (2025), 102366.
    [10]
    Z. Liu, R. Ma, W. Du, et al., Radiation-initiated high strength chitosan/lithium sulfonate double network hydrogel/aerogel with porosity and stability for efficient CO2 capture, RSC. Adv. 11 (2021) 20486-20497.
    [11]
    Q. Wang, Y. Zhang, Y. Ma, et al., Nano-crosslinked dynamic hydrogels for biomedical applications, Mater. Today. Bio. 20 (2023), 100640.
    [12]
    Z. Xu, Y. Chen, Y. Cao, et al., Tough hydrogels with different toughening mechanisms and applications, Int. J. Mol. Sci. 25 (2024), 2675.
    [13]
    M.M. Rumon, A.A. Akib, S.D. Sarkar, et al., Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications, ACS. Polym. Au. 4 (2024) 463-486.
    [14]
    Y. Huang, P.B. Jayathilaka, M.S. Islam, et al., Structural aspects controlling the mechanical and biological properties of tough, double network hydrogels, Acta. Biomater. 138 (2022) 301-312.
    [15]
    X. Lin, X. Zhao, C. Xu, et al., Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms, J. Polym. Sci. 60 (2022) 2525-2542.
    [16]
    J.L. Pablos, D. Lozano, M. Manzano, et al., Regenerative medicine: Hydrogels and mesoporous silica nanoparticles, Mater. Today. Bio. 29 (2024), 101342.
    [17]
    S. Das, V. Kumar, R. Tiwari, et al., Recent advances in hydrogels for biomedical applications, Asian. J. Pharm. Clin. Res. 11 (2018) 62-68.
    [18]
    B. Tao, C. Lin, Y. Deng, et al., Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy, J. Mater. Chem. B. 7 (2019) 2534-2548.
    [19]
    L. Fan, X. Ge, Y. Qian, et al., Advances in synthesis and applications of self-healing hydrogels, Front. Bioeng. Biotechnol. 8 (2020), 654.
    [20]
    D. Hardman, T. G. Thuruthel, F. Iida, Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications, NPG. Asia. Mater. 14 (2022), 11.
    [21]
    X. Tian, Y. Wen, Z. Zhang, et al., Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing, Biomaterials. 318 (2025), 123134.
    [22]
    T.C. Ho, C.C. Chang, H.P. Chan, et al., Hydrogels: Properties and applications in biomedicine, Molecules. 27 (2022), 2902.
    [23]
    M. Beaumont, R. Tran, G. Vera, et al., Hydrogel-forming algae polysaccharides: From seaweed to biomedical applications, Biomacromolecules. 22 (2021) 1027-1052.
    [24]
    S. Mantha, S. Pillai, P. Khayambashi, et al., Smart hydrogels in tissue engineering and regenerative medicine, Materials. 12 (2019), 3323.
    [25]
    J. Guasch, C.A. Muth, J. Diemer, et al., Integrin-assisted T-cell activation on nanostructured hydrogels, Nano. Lett. 17 (2017) 6110-6116.
    [26]
    M. Keshavarz, Q. Smith, Gelatin-mediated vascular self-assembly via a YAP-MMP signaling axis, Adv. Funct. Mater. 34 (2024), 2402360.
    [27]
    S. Bashir, M. Hina, J. Iqbal, et al., Fundamental concepts of hydrogels: Synthesis, properties, and their applications, Polymers. 12 (2020), 2702.
    [28]
    E.A. Kamoun, S.A. Loutfy, Y. Hussein, et al., Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review, Int. J. Biol. Macromol. 187 (2021) 755-768.
    [29]
    N. Jabeen, M. Atif, Polysaccharides based biopolymers for biomedical applications: A review, Polym. Adv. Technol. 35 (2024), e6203.
    [30]
    F. Sepe, A. Valentino, L. Marcolongo, et al., Marine-derived polysaccharide hydrogels as delivery platforms for natural bioactive compounds, Int. J. Mol. Sci. 26 (2025), 764.
    [31]
    J. Han, Y. Cui, X. Han, et al., Super-soft DNA/dopamine-grafted-dextran hydrogel as dynamic wire for electric circuits switched by a microbial metabolism process, Adv. Sci. 7 (2020), 2000684.
    [32]
    F. Damiri, A. Fatimi, Y. Liu, et al., Recent advances in 3D bioprinted polysaccharide hydrogels for biomedical applications: A comprehensive review, Carbohydr. Polym. 348 (2025), 122845.
    [33]
    X. Jiang, F. Zeng, L. Zhang, et al., Engineered injectable cell-laden chitin/chitosan hydrogel with adhesion and biodegradability for calvarial defect regeneration, ACS. Appl. Mater. Interfaces. 15 (2023) 20761-20773.
    [34]
    X. Xu, J. Xu, Z. Sun, et al., Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery, Des. Monomers. Polym. 27 (2024) 21-34.
    [35]
    R. Parhi, Cross-linked hydrogel for pharmaceutical applications: A review, Adv. Pharm. Bull. 7 (2017) 515-530.
    [36]
    J. Hu, W. Guan, P. Liu, et al., Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells, Stem. Cell. Rep. 9 (2017) 464-477.
    [37]
    S. Copeland, K. Nugent, Persistent and unusual respiratory findings after prolonged glutaraldehyde exposure, Int. J. Occup. Environ. Med. 6 (2015) 177-183.
    [38]
    F. Shi, Z. Chen, M. Yao, et al., Effects of glutaraldehyde and povidone-iodine on apoptosis of grass carp liver and hepatocytes, Ecotoxicol. Environ. Saf. 272 (2024), 116078.
    [39]
    E. Badali, M. Hosseini, M. Mohajer, et al., Enzymatic crosslinked hydrogels for biomedical application, Polym. Sci. Ser. A. 63 (2021) S1-S22.
    [40]
    B. Lv, L. Lu, L. Hu, et al., Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment, Theranostics. 13 (2023) 2015-2039.
    [41]
    S. Cheng, H. Wang, X. Pan, et al., Dendritic hydrogels with robust inherent antibacterial properties for promoting bacteria-infected wound healing, ACS. Appl. Mater. Interfaces. 14 (2022) 11144-11155.
    [42]
    J. Wang, S. Zhuang, Chitosan-based materials: Preparation, modification and application, J. Clean. Prod. 355 (2022), 131825.
    [43]
    H. Hirama, T. Kambe, K. Aketagawa, et al., Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface, Langmuir 29 (2013) 519-524.
    [44]
    M. Kalulu, O. Oderinde, C. Mwanza, et al., Fabrication and characterization of multi-stimuli-responsive hydrogels with robust mechanical properties, good self-healing, and substrate adhesiveness using a traditional chemical crosslinker and initiator-free approach, Macromol. Chem. Phys. 226 (2025), p1.
    [45]
    J. Manasi Esther, R. Solanki, M. Dhanka, et al., Self-healing, injectable chitosan-based hydrogels: Structure, properties and biological applications, Mater. Adv. 5 (2024) 5365-5393.
    [46]
    U.D. Hemraz, E. Lam, R. Sunasee, Recent advances in cellulose nanocrystals-based antimicrobial agents, Carbohydr. Polym. 315 (2023), 120987.
    [47]
    D. Gogoi, M. Kumar, J. Singh, A comprehensive review on hydrogel-based bio-ink development for tissue engineering scaffolds using 3D printing, Ann. 3D Print. Med. 15 (2024), 100159.
    [48]
    H. Zhang, Y. Wang, Z. Zheng, et al., Strategies for improving the 3D printability of decellularized extracellular matrix bioink, Theranostics. 13 (2023) 2562-2587.
    [49]
    A.C. Sousa, R. Alvites, B. Lopes, et al., Three-dimensional printing/bioprinting and cellular therapies for regenerative medicine: Current advances, J. Funct. Biomater. 16 (2025), 28.
    [50]
    W. Fang, M. Yang, L. Wang, et al., Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges, Int. J. Bioprinting. 9 (2023), 759.
    [51]
    W. Li, J. Li, C. Pan, et al., Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering, Mater. Today. Bio. 29 (2024), 101286.
    [52]
    E.H. Fragal, V.H. Fragal, E.P. Silva, et al., Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications, Carbohydr. Polym. 292 (2022), 119665.
    [53]
    R. Zhang, B. Yu, Y. Tian, et al., Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare, Appl. Mater. Today. 26 (2022), 101396.
    [54]
    M. Nokab, J. Sayed, F. Witte, et al., A comparative analytical study for the different water pools present in alginate hydrogels: Qualitative vs. quantitative approaches, Food. Hydrocoll. 154 (2024), 110159.
    [55]
    F. Ali, I. Khan, J Chen, et al., Emerging fabrication strategies of hydrogels and its applications, Gels 8 (2022), 205.
    [56]
    M. Mohamadhoseini, Z. Mohamadnia, Alginate-based self-healing hydrogels assembled by dual cross-linking strategy: Fabrication and evaluation of mechanical properties, Int. J. Biol. Macromol. 191 (2021) 139-151.
    [57]
    R. Ma, X. Shi, X. Wang, et al., Development of a tobramycin-loaded calcium alginate microsphere/chitosan composite sponge with antibacterial effects as a wound dressing, Biomed. Mater. 19 (2024), 045030.
    [58]
    A. Pettignano, M. Haring, L. Bernardi, et al., Self-healing alginate-gelatin biohydrogels based on dynamic covalent chemistry: Elucidation of key parameters, Mater. Chem. Front. 1 (2017) 73-79.
    [59]
    X. Wang, H.J. Zhang, Y. Yang, et al., Biopolymer-based self-healing hydrogels: A short review, Giant. 16 (2023), 100188.
    [60]
    M. Chelu, J.M. Calderon Moreno, A.M. Musuc, et al., Natural regenerative hydrogels for wound healing, Gels. 10 (2024), 547.
    [61]
    Z. Li, W. Dong, J. Ren, et al., Mechanically trained calcium alginate ionic hydrogels for enhanced abdominal wall defect repair, Adv. Funct. Mater. 35 (2025), 2419151.
    [62]
    N.G. Kim, S.C. Kim, T.H. Kim, et al., Ishophloroglucin A-based multifunctional oxidized alginate/gelatin hydrogel for accelerating wound healing, Int. J. Biol. Macromol. 245 (2023) 125484.
    [63]
    M. Liu, Y. Huang, C. Tao, et al., Self-healing alginate hydrogel formed by dynamic benzoxaborolate chemistry protects retinal pigment epithelium cells against oxidative damage, Gels. 9 (2022), 24.
    [64]
    S. Ansari, S. Pouraghaei Sevari, C. Chen, et al., RGD-modified alginate-GelMA hydrogel sheet containing gingival mesenchymal stem cells: A unique platform for wound healing and soft tissue regeneration, ACS. Biomater. Sci. Eng. 7 (2021) 3774-3782.
    [65]
    F. Cadamuro, V. Ardenti, F. Nicotra, et al., Alginate-gelatin self-healing hydrogel produced via static-dynamic crosslinking, Molecules. 28 (2023), 2851.
    [66]
    F. Hong, P. Qiu, Y. Wang, et al., Chitosan-based hydrogels: From preparation to applications, a review, Food. Chem. X. 21 (2024), 101095.
    [67]
    X. Lai, Y. Zhao, Z. Shi, et al., Plant-derived paclitaxel-loaded ultra-small Fe3O4 nanoparticles for MR imaging-mediated antitumor therapy, Ind. Crops. Prod. 228 (2025), 120902.
    [68]
    S. Pan, C. Zhu, Y. Wu, et al., Chitosan-based self-healing hydrogel: From fabrication to biomedical application, Polymers. 15 (2023), 3768.
    [69]
    A.M. Craciun, S. Morariu, L. Marin, Self-healing chitosan hydrogels: Preparation and rheological characterization, Polymers. 14 (2022), 2570.
    [70]
    S. Pramanik, A. Aggarwal, A. Kadi, et al., Chitosan alchemy: Transforming tissue engineering and wound healing, RSC. Adv. 14 (2024) 19219-19256.
    [71]
    X. Ling, X. Wang, P. Ma, et al., Covalent immobilization of penicillin G acylase onto Fe3O4@Chitosan magnetic nanoparticles, J. Microbiol. Biotechnol. 26 (2016) 829-836.
    [72]
    N.A. Elbialy, H.K. Elhakim, M.H. Mohamed, et al., Evaluation of the synergistic effect of chitosan metal ions (Cu2+/Co2+) in combination with antibiotics to counteract the effects on antibiotic resistant bacteria, RSC. Adv. 13 (2023) 17978-17990.
    [73]
    L. Deng, B. Wang, W. Li, et al., Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing, Int. J. Biol. Macromol. 217 (2022) 77-87.
    [74]
    J. Yang, Y. Chen, L. Zhao, et al., Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing, Compos. Part. B. Eng. 197 (2020), 108139.
    [75]
    L. Wang, X. Ding, X. He, et al., Fabrication and Properties of Hydrogel Dressings Based on Genipin Crosslinked Chondroitin Sulfate and Chitosan, Polymers. 16 (2024), 2876.
    [76]
    T. Khaliq, M. Sohail, M.U. Minhas, et al., Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections, Int. J. Biol. Macromol. 197 (2022) 157-168.
    [77]
    C. Bayram, Carboxymethyl chitosan-glycerol multi-aldehyde based self-healing hydrogel system, Int. J. Biol. Macromol. 239 (2023), 124334.
    [78]
    S. Hosseini, N. Eslahi, R. Jahanmardi, Self-healing nanocomposite hydrogels based on chitosan/modified polyethylene glycol/graphene, Mater. Today. Commun. 37 (2023), 107417.
    [79]
    Q. Wu, L. Wang, P. Ding, et al., Mercaptolated chitosan/methacrylate gelatin composite hydrogel for potential wound healing applications, Compos. Commun. 35 (2022), 101344.
    [80]
    C. Xu, W. Zhan, X. Tang, et al., Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages, Polym. Test. 66 (2018) 155-163.
    [81]
    B. Baghaei, M. Skrifvars, All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications, Molecules. 25 (2020), 2836.
    [82]
    C. Wu, J. Li, Y. Zhang, et al., Cellulose dissolution, modification, and the derived hydrogel: A review, ChemSusChem. 16 (2023), e202300518.
    [83]
    L. Wang, F. Hao, S. Tian, et al., Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings, Carbohydr. Polym. 291 (2022), 119574.
    [84]
    S.H. Zainal, N.H. Mohd, N. Suhaili, et al., Preparation of cellulose-based hydrogel: A review, J. Mater. Res. Technol. 10 (2021) 935-952.
    [85]
    Y. Liu, F. Wang, Z. Hu, et al., Applications of cellulose-based flexible self-healing sensors for human health monitoring, Nano. Energy. 127 (2024), 109790.
    [86]
    H. An, Y. Bo, D. Chen, et al., Cellulose-based self-healing hydrogel through boronic ester bonds with excellent biocompatibility and conductivity, RSC. Adv. 10 (2020) 11300-11310.
    [87]
    J. Xu, Y. Liu, S.H. Hsu, Hydrogels based on schiff base linkages for biomedical applications, Molecules. 24 (2019), 3005.
    [88]
    X. Ding, G. Li, C. Xiao, et al., Enhancing the stability of hydrogels by doubling the schiff base linkages, Macromol. Chem. Phys. 220 (2019), 1800484.
    [89]
    R. Koshani, M.H. Nia, Z. Ataie, et al., Multifunctional self-healing hydrogels via nanoengineering of colloidal and polymeric cellulose, Int. J. Biol. Macromol. 259 (2024), 129181.
    [90]
    Y. Tang, Z. Fang, H.J. Lee, Exploring applications and preparation techniques for cellulose hydrogels: A comprehensive review, Gels. 10 (2024), 365.
    [91]
    W. Zheng, J. Gao, Z. Wei, et al., Facile fabrication of self-healing carboxymethyl cellulose hydrogels, Eur. Polym. J. 72 (2015) 514-522.
    [92]
    K. Dixit, H. Bora, R. Chakrabarti, et al., Thermoresponsive keratin-methylcellulose self-healing injectable hydrogel accelerating full-thickness wound healing by promoting rapid epithelialization, Int. J. Biol. Macromol. 263 (2024), 130073.
    [93]
    X. Wei, D. Chen, X. Zhao, et al., Underwater adhesive HPMC/SiW-PDMAEMA/Fe3+ hydrogel with self-healing, conductive, and reversible adhesive properties, ACS Appl. Polym. Mater. 3 (2021) 837-846.
    [94]
    X. Tao, W. Ma, X. Han, et al., Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte, J. Fuel. Chem. Technol. 50 (2022) 304-313.
    [95]
    K. Zhang, D. Wu, L. Chang, et al., Cellulose based self-healing hydrogel through Boronic Ester connections for wound healing and antitumor applications, Int. J. Biol. Macromol. 230 (2023), 123294.
    [96]
    Y. Wang, G. Xiao, Y. Peng, et al., Effects of cellulose nanofibrils on dialdehyde carboxymethyl cellulose based dual responsive self-healing hydrogel, Cellulose. 26 (2019) 8813-8827.
    [97]
    A. Luanda, V. Badalamoole, Past, present and future of biomedical applications of dextran-based hydrogels: A review, Int. J. Biol. Macromol. 228 (2023) 794-807.
    [98]
    Z. Wei, J. Yang, X. Du, et al., Dextran-based self-healing hydrogels formed by reversible Diels-alder reaction under physiological conditions, Macromol. Rapid Commun. 34 (2013) 1464-1470.
    [99]
    Z. Li, B. Li, X. Li, et al., Ultrafast in situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair, Carbohydr. Polym. 267 (2021), 118155.
    [100]
    S. Wei, P. Xu, Z. Yao, et al., A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes, Acta. Biomater. 124 (2021) 205-218.
    [101]
    B. Guo, J. Qu, X. Zhao, et al., Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration, Acta. Biomater. 84 (2019) 180-193.
    [102]
    B. Fan, D. Torres Garcia, M. Salehi, et al., Dynamic covalent dextran hydrogels as injectable, self-adjuvating peptide vaccine depots, ACS. Chem. Biol. 18 (2023) 652-659.
    [103]
    G. Sun, X. Zhang, Y.-I. Shen, et al., Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing, Proc. Natl. Acad. Sci. USA. 108 (2011) 20976−20981.
    [104]
    L. Zhong, A.T. Banigo, B. Zoetebier, et al., Bioactive hydrogels based on tyramine and maleimide functionalized dextran for tissue engineering applications, Gels. 10 (2024), 566.
    [105]
    M. Zhang, Y. Huang, W. Pan, et al., Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing, Carbohydr. Polym. 253 (2021), 117213.
    [106]
    M.R. Hwang, J.O. Kim, J.H. Lee, et al., Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: Gel characterization and in vivo healing evaluation, AAPS. PharmSciTech. 11 (2010) 1092-1103.
    [107]
    M. Alibolandi, M. Mohammadi, S.M. Taghdisi, et al., Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing, Int. J. Pharm. 532 (2017) 466-477.
    [108]
    J. Fang, P. Li, X. Lu, et al., A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration, Acta. Biomater. 88 (2019) 503-513.
    [109]
    S. Guan, K. Zhang, L. Cui, et al., Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration, Biomater. Adv. 133 (2022), 112604.
    [110]
    S. Tiwari, P. Bahadur, Modified hyaluronic acid based materials for biomedical applications, Int. J. Biol. Macromol. 121 (2019) 556-571.
    [111]
    L.A. Perez, R. Hernandez, J.M. Alonso, et al., Hyaluronic acid hydrogels crosslinked in physiological conditions: Synthesis and biomedical applications, Biomedicines. 9 (2021), 1113.
    [112]
    M. Zhang, X. Chen, K. Yang, et al., Dual-crosslinked hyaluronic acid hydrogel with self-healing capacity and enhanced mechanical properties, Carbohydr. Polym. 301 (2023), 120372.
    [113]
    M. Zhang, Q. Dong, K. Yang, et al., Hyaluronic acid hydrogels with excellent self-healing capacity and photo-enhanced mechanical properties for wound healing, Int. J. Biol. Macromol. 267 (2024), 131235.
    [114]
    K. Yang, J. Yang, R. Chen, et al., Fast self-healing hyaluronic acid hydrogel with a double-dynamic network for skin wound repair, ACS. Appl. Mater. Interfaces. 16 (2024) 37569-37580.
    [115]
    M. Gong, F. Yan, L. Yu, et al., A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy, Cell. Death. Dis. 13 (2022), 738.
    [116]
    C. He, S. Bi, R. Zhang, et al., A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing, J. Control. Release. 370 (2024) 543-555.
    [117]
    Y. Dong, M. Cui, J. Qu, et al., Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury, Acta. Biomater. 108 (2020) 56-66.
    [118]
    P. Fan, S. Li, J. Yang, et al., Injectable, self-healing hyaluronic acid-based hydrogels for spinal cord injury repair, Int. J. Biol. Macromol. 263 (2024), 130333.
    [119]
    W. Zhang, H. Wang, J. Pang, et al., Self-crosslinking hyaluronic acid-based hydrogel with promoting vascularization and ROS scavenging for wound healing, Int. J. Biol. Macromol. 278 (2024), 134570.
    [120]
    D. Qureshi, S.K. Nayak, S. Maji, et al., Carrageenan: A wonder polymer from marine algae for potential drug delivery applications, Curr. Pharm. Des. 25 (2019) 1172-1186.
    [121]
    L. Li, R. Ni, Y. Shao, et al., Carrageenan and its applications in drug delivery, Carbohydr. Polym. 103 (2014) 1-11.
    [122]
    B.D. Karuppasamy, N.C. Reger, S. Munisamy, et al., Marine-based bioactive self-healing hydrogel with tunable properties for tissue engineering and regenerative medicine, J. Drug. Deliv. Sci. Technol. 101 (2024), 106267.
    [123]
    H. Zhang, X. Lin, X. Cao, et al., Developing natural polymers for skin wound healing, Bioact. Mater. 33 (2024) 355-376.
    [124]
    Y. Haririan, A. Asefnejad, Biopolymer hydrogels and synergistic blends for tailored wound healing, Int. J. Biol. Macromol. 279 (2024), 135519.
    [125]
    X. Qi, Y. Xiang, Y. Li, et al., An ATP-activated spatiotemporally controlled hydrogel prodrug system for treating multidrug-resistant bacteria-infected pressure ulcers, Bioact. Mater. 45 (2025) 301-321.
    [126]
    MercK, HyStem™ Hyaluronic Acid Based Hydrogels for 3D Cell Culture Applications. https://www.sigmaaldrich.com/BR/pt/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/3d-cell-culture/hystem-3d-hydrogels. (Accessed 22 July 2025).
    [127]
    Chitogel, Chitogel. https://www.chitogel.com/us/contact/.(Accessed 22 July 2025).
    [128]
    SAMS, Algiderm Ag+. https://samshealthcarebd.com/product/algiderm-ag/.(Accessed 22 July 2025).
    [129]
    Anika, Hyalomatrix Hyaluronic Acid Wound Device. https://anika.com/medical/products/hyalomatrix/.(Accessed 22 July 2025).
    [130]
    SmithNephew, ALGISITE◊ M. https://www.medicalexpo.com.cn/prod/smith-nephew/product-70896-1172705.html. (Accessed 22 July 2025).
    [131]
    FarmaWeb, HYALOFILL F. https://farma-web.it/hyalofill-f-med-5x5cm-3pz. (Accessed 22 July 2025).
    [132]
    Primex, ChitoCare® Medical Devices: Wound Healing Gel. https://www.primex.is/articles/chitocare-medical-devices-wound-healing-gel. (Accessed 22 July 2025).
    [133]
    S.H. Aswathy, U. Narendrakumar, I. Manjubala, Commercial hydrogels for biomedical applications, Heliyon 6 (2020), e03719.
    [134]
    M.C.A.a. Vida, 3M™ Nu-Gel™ Alginate Hydrogel. https://www.3m.com.br/3M/pt_BR/p/d/v101264595/.(Accessed 22 July 2025).
    [135]
    Coloplast, Purilon® Gel https://produtos.coloplast.com.br/coloplast/ferida/purilon-gel/.(Accessed 22 July 2025).
    [136]
    R. Das, N. Suryawanshi, N. Burnase, et al., Classification and bibliometric analysis of hydrogels in periodontitis treatment: Trends, mechanisms, advantages, and future research directions, Dent. Mater. 41 (2025) 81-89.
    [137]
    A.A. Nizam, S. Masri, N.I. Fadilah, et al., Current insight of peptide-based hydrogels for chronic wound healing applications: A concise review, Pharmaceuticals. 18 (2025), 58.
    [138]
    G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue. Eng. Part. B. Rev. 14 (2008) 149-165.
    [139]
    M.M. Perera, N. Ayres, Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels, Polym. Chem. 11 (2020) 1410-1423.
    [140]
    K. Guo, Z. Liu, W. Wang, et al., Chitosan oligosaccharide inhibits skull resorption induced by lipopolysaccharides in mice, BMC. Oral. Health. 19 (2019), 263.
    [141]
    X. Du, Y. Hou, L. Wu, et al., An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure, J. Mater. Chem. B. 8 (2020) 5682-5693.
    [142]
    P. Ren, D. Wei, M. Liang, et al., Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ, Int. J. Biol. Macromol. 212 (2022) 67-84.
    [143]
    P. Lu, D. Ruan, M. Huang, et al., Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions, Signal. Transduct. Target. Ther. 9 (2024), 166.
    [144]
    V. Brumberg, T. Astrelina, T. Malivanova, et al., Modern wound dressings: Hydrogel dressings, Biomedicines. 9 (2021), 1235.
    [145]
    G. Olteanu, S.M. Neacsu, F.A. Joița, et al., Advancements in regenerative hydrogels in skin wound treatment: A comprehensive review, Int. J. Mol. Sci. 25 (2024), 3849.
    [146]
    Z. Aliakbar Ahovan, Z. Esmaeili, B.S. Eftekhari, et al., Antibacterial smart hydrogels: New hope for infectious wound management, Mater. Today. Bio. 17 (2022), 100499.
    [147]
    M. Suhail, H. Ullah, Q.L. Vu, et al., Preparation of pH-responsive hydrogels based on chondroitin sulfate/alginate for oral drug delivery, Pharmaceutics. 14 (2022), 2110.
    [148]
    Y. Zhang, C. Gao, X. Li, et al., Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion, Carbohydr. Polym. 101 (2014) 171-178.
    [149]
    W. Zhou, T. Bai, L. Wang, et al., Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration, Bioact. Mater. 20 (2023) 64-80.
    [150]
    R. Cui, L. Zhang, R. Ou, et al., Polysaccharide-based hydrogels for wound dressing: Design considerations and clinical applications, Front. Bioeng. Biotechnol. 10 (2022), 845735.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (25) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return