Volume 15 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Bin Yang, Hongyan Yang, Jianlong Liang, Jiarou Chen, Chunhua Wang, Yuanyuan Wang, Jincai Wang, Wenhui Luo, Tao Deng, Jialiang Guo. A review on the screening methods for the discovery of natural antimicrobial peptides[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101046. doi: 10.1016/j.jpha.2024.101046
Citation: Bin Yang, Hongyan Yang, Jianlong Liang, Jiarou Chen, Chunhua Wang, Yuanyuan Wang, Jincai Wang, Wenhui Luo, Tao Deng, Jialiang Guo. A review on the screening methods for the discovery of natural antimicrobial peptides[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101046. doi: 10.1016/j.jpha.2024.101046

A review on the screening methods for the discovery of natural antimicrobial peptides

doi: 10.1016/j.jpha.2024.101046
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 82373835, 82304437, and 82173781), Regional Joint Fund Project of Guangdong Basic and Applied Basic Research Fund, China (Grant Nos.: 2023A1515110417 and 2023A1515140131), Regional Joint Fund-Key Project of Guangdong Basic and Applied Basic Research Fund, China (Grant No.: 2020B1515120033), the Key Field Projects of General Universities in Guangdong Province, China (Grant Nos.: 2020ZDZX2057 and 2022ZDZX2056), and Medical Scientific Research Foundation of Guangdong Province of China (Grant No.: A2022061).

  • Received Date: Apr. 02, 2024
  • Accepted Date: Jul. 16, 2024
  • Rev Recd Date: Jul. 08, 2024
  • Publish Date: Jul. 18, 2024
  • Natural antimicrobial peptides (AMPs) are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens. They have found extensive applications in the fields of medicine, food, and agriculture. However, efficiently screening AMPs from natural sources poses several challenges, including low efficiency and high antibiotic resistance. This review focuses on the action mechanisms of AMPs, both through membrane and non-membrane routes. We thoroughly examine various highly efficient AMP screening methods, including whole-bacterial adsorption binding, cell membrane chromatography (CMC), phospholipid membrane chromatography binding, membrane-mediated capillary electrophoresis (CE), colorimetric assays, thin layer chromatography (TLC), fluorescence-based screening, genetic sequencing-based analysis, computational mining of AMP databases, and virtual screening methods. Additionally, we discuss potential developmental applications for enhancing the efficiency of AMP discovery. This review provides a comprehensive framework for identifying AMPs within complex natural product systems.

  • loading
  • [1]
    M. Noto Guillen, C. Li, B. Rosener, et al., Antibacterial activity of nonantibiotics is orthogonal to standard antibiotics, Science 384 (2024) 93-100.
    [2]
    M.K. Gugger, P.J. Hergenrother, A new type of antibiotic targets a drug-resistant bacterium, Nature 625 (2024) 451-452.
    [3]
    C.O.K. Law, C. Huang, Q. Pan, et al., A small RNA transforms the multidrug resistance of Pseudomonas aeruginosa to drug susceptibility, Mol. Ther. Nucleic Acids 16 (2019) 218-228.
    [4]
    Z. Kmietowicz, Few novel antibiotics in the pipeline, WHO warns, BMJ 358 (2017), j4339.
    [5]
    M.E. Velazquez-Meza, M. Galarde-Lopez, B. Carrillo-Quiroz, et al., Antimicrobial resistance: One health approach, Vet. World 15 (2022) 743-749.
    [6]
    A. Nazli, D.L. He, D. Liao, et al., Strategies and progresses for enhancing targeted antibiotic delivery, Adv. Drug Deliv. Rev. 189 (2022), 114502.
    [7]
    N. Shaikh, A. Hoberman, T.R. Shope, et al., Identifying children likely to benefit from antibiotics for acute sinusitis: A randomized clinical trial, JAMA 330 (2023) 349-358.
    [8]
    H. Yang, R. Ma, J. Chen, et al., Discovery of melittin as triple-action agent: Broad-spectrum antibacterial, anti-biofilm, and potential anti-quorum sensing activities, Molecules 29 (2024), 558.
    [9]
    Y. Yan, Y. Li, Z. Zhang, et al., Advances of peptides for antibacterial applications, Colloids Surf. B Biointerfaces 202 (2021), 111682.
    [10]
    R. Geitani, C.A. Moubareck, Z. Xu, et al., Expression and roles of antimicrobial peptides in innate defense of airway mucosa: Potential implication in cystic fibrosis, Front. Immunol. 11 (2020), 1198.
    [11]
    N. Cortes-Penfield, N.T. Oliver, A. Hunter, et al., Daptomycin and combination daptomycin-ceftaroline as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia, Infect. Dis. (Lond.) 50 (2018) 643-647.
    [12]
    S.M.S. Ng, S.W. Teo, Y.E. Yong, et al., Preliminary investigations into developing all-D Omiganan for treating Mupirocin-resistant MRSA skin infections, Chem. Biol. Drug Des. 90 (2017) 1155-1160.
    [13]
    H.M. Lamb, L.R. Wiseman, Pexiganan acetate, Drugs 56 (1998) 1047-1052.
    [14]
    B.P. Lazzaro, M. Zasloff, J. Rolff, Antimicrobial peptides: Application informed by evolution, Science 368 (2020), eaau5480.
    [15]
    E. Holaskova, P. Galuszka, I. Frebort, et al., Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology, Biotechnol. Adv. 33 (2015) 1005-1023.
    [16]
    X. Chen, J. Han, X. Cai, et al., Antimicrobial peptides: Sustainable application informed by evolutionary constraints, Biotechnol. Adv. 60 (2022), 108012.
    [17]
    B.H. Gan, J. Gaynord, S.M. Rowe, et al., Correction: The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions, Chem. Soc. Rev. 51 (2022), 792.
    [18]
    H. Demirci, F. Murphy 4th, E. Murphy, et al., A structural basis for streptomycin-induced misreading of the genetic code, Nat. Commun. 4 (2013), 1355.
    [19]
    D. Hultmark, H. Steiner, T. Rasmuson, et al., Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia, Eur. J. Biochem. 106 (1980) 7-16.
    [20]
    Y. Liu, X. Zhang, Y. Liu, et al., Evolutionary multi-objective optimization in searching for various antimicrobial peptides feature, IEEE Comput. Intell. Mag. 18 (2023) 31-45.
    [21]
    M.A. Cole, T.F. Scott, C.M. Mello, Bactericidal hydrogels via surface functionalization with cecropin A, ACS Biomater. Sci. Eng. 2 (2016) 1894-1904.
    [22]
    H. Xue, Y. Tu, C. Xiong, et al., Recent progress in rapid screening methods for antibacterial peptides, Food Sci. 40 (2019) 334-339.
    [23]
    S.E. Blondelle, K. Lohner, Optimization and high-throughput screening of antimicrobial peptides, Curr. Pharm. Des. 16 (2010) 3204-3211.
    [24]
    J. Zou, H. Jiang, H. Cheng, et al., Strategies for screening, purification and characterization of bacteriocins, Int. J. Biol. Macromol. 117 (2018) 781-789.
    [25]
    Q. Wu, H. Ke, D. Li, et al., Recent progress in machine learning-based prediction of peptide activity for drug discovery, Curr. Top. Med. Chem. 19 (2019) 4-16.
    [26]
    C. Sun, Y. Li, S. Cao, et al., Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences, Int. J. Mol. Sci. 19 (2018), 2951.
    [27]
    G.M. Pipoly, G.R. Nathans, D. Chang, et al., Regulation of the interaction of purified human erythrocyte AMP deaminase and the human erythrocyte membrane, J. Clin. Invest. 63 (1979) 1066-1076.
    [28]
    L.T. Nguyen, E.F. Haney, H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action, Trends Biotechnol. 29 (2011) 464-472.
    [29]
    G. Buda De Cesare, S.A. Cristy, D.A. Garsin, et al., Antimicrobial peptides: A new frontier in antifungal therapy, mBio 11 (2020) e02123-20.
    [30]
    S. Sun, G. Zhao, Y. Huang, et al., Enantiomeric effect of d-amino acid substitution on the mechanism of action of α-helical membrane-active peptides, Int. J. Mol. Sci. 19 (2017), 67.
    [31]
    P.C. Chiou, W.W. Hsu, Y. Chang, et al., Molecular packing of lipid membranes and action mechanisms of membrane-active peptides, Colloids Surf. B Biointerfaces 213 (2022), 112384.
    [32]
    Q. Zhang, Z. Yan, Y. Meng, et al., Antimicrobial peptides: Mechanism of action, activity and clinical potential, Mil. Med. Res. 8 (2021), 48.
    [33]
    Y. Huan, Q. Kong, H. Mou, et al., Antimicrobial peptides: Classification, design, application and research progress in multiple fields, Front. Microbiol. 11 (2020), 582779.
    [34]
    B.R. Dotson, D. Soltan, J. Schmidt, et al., The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin, BMC Plant Biol. 18 (2018), 165.
    [35]
    H. Zhang, C. Sun, N. Xu, et al., The current landscape of the antimicrobial peptide melittin and its therapeutic potential, Front. Immunol. 15 (2024), 1326033.
    [36]
    Q. Ma, Z. Yu, B. Han, et al., Expression and purification of lacticin Q by small ubiquitin-related modifier fusion in Escherichia coli, J. Microbiol. 50 (2012) 326-331.
    [37]
    D. Sengupta, H. Leontiadou, A.E. Mark, et al., Toroidal pores formed by antimicrobial peptides show significant disorder, Biochim. Biophys. Acta 1778 (2008) 2308-2317.
    [38]
    K.V.R. Reddy, R.D. Yedery, C. Aranha, Antimicrobial peptides: Premises and promises, Int. J. Antimicrob. Agents 24 (2004) 536-547.
    [39]
    I. Nagaoka, H. Tamura, J. Reich, Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis model, Int. J. Mol. Sci. 21 (2020), 5973.
    [40]
    S. Zhang, M. Ma, Z. Shao, et al., Structure and formation mechanism of antimicrobial peptides temporin B- and L-induced tubular membrane protrusion, Int. J. Mol. Sci. 22 (2021), 11015.
    [41]
    S. Li, Y. Wang, Z. Xue, et al., The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review, Trends Food Sci. Technol. 109 (2021) 103-115.
    [42]
    J.D.F. Hale, R.E.W. Hancock, Alternative mechanisms of action of cationic antimicrobial peptides on bacteria, Expert Rev. Anti Infect. Ther. 5 (2007) 951-959.
    [43]
    R. Dash, S. Bhattacharjya, Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action, Int. J. Mol. Sci. 22 (2021), 1522.
    [44]
    K.A. Brogden, Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3 (2005) 238-250.
    [45]
    G. Kragol, S. Lovas, G. Varadi, et al., The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding, Biochemistry 40 (2001) 3016-3026.
    [46]
    E.T. Uyterhoeven, C.H. Butler, D. Ko, et al., Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II, FEBS Lett. 582 (2008) 1715-1718.
    [47]
    G. Wu, X. Fan, L. Li, et al., Interaction of antimicrobial peptide s-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli, Int. J. Antimicrob. Agents 35 (2010) 250-254.
    [48]
    N.R. Braffman, F.J. Piscotta, J. Hauver, et al., Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin, Proc. Natl. Acad. Sci. U S A 116 (2019) 1273-1278.
    [49]
    A.T. Tucker, S.P. Leonard, C.D. DuBois, et al., Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries, Cell 172 (2018) 618-628.e13.
    [50]
    M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal. 6 (2016) 71-79.
    [51]
    Y. Wang, J.-S. Hu, H.-Q. Lin, et al., Herbalog: A tool for target-based identification of herbal drug efficacy through molecular docking, Phytomedicine 23 (2016) 1469-1474.
    [52]
    D.W. Song, S.H. Kim, H.H. Kim, et al., Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing, Acta Biomater. 39 (2016) 146-155.
    [53]
    G. Fei, A study on methods of antimicrobial peptides rapid selection and antimicrobial activity[Master’s thesis], Wuxi: JiangNan University, 2011.
    [54]
    Y. Tang, Y. Shi, W. Zhao, et al., Discovery of a novel antimicrobial peptide using membrane binding-based approach, Food Contr. 20 (2009) 149-156.
    [55]
    G. Hao, S.-H. Tang, S.-N. Li, Study on identification of antimicrobial peptides from trypsin hydrolysate of yak blood, Sci. Technol. Food Ind. 39 (2018) 121-125,131.
    [56]
    H. Zhao, J.P. Mattila, J.M. Holopainen, et al., Comparison of the membrane association of two antimicrobial peptides, Magainin 2 and indolicidin, Biophys. J. 81 (2001) 2979-2991.
    [57]
    L. Silvestro, K. Gupta, J.N. Weiser, et al., The concentration-dependent membrane activity of cecropin A, Biochemistry 38 (1999), 3850.
    [58]
    X. Chai, Y. Gu, L. Lv, et al., Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system, J. Pharm. Anal. 12 (2022) 725-732.
    [59]
    J. Guo, H. Lin, J. Wang, et al., Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products, J. Pharm. Biomed. Anal. 165 (2019) 182-197.
    [60]
    Q. Jia, Y. Lv, C. Miao, et al., A new MAS-related G protein-coupled receptor X2 cell membrane chromatography analysis model based on HALO-tag technology and its applications, Talanta 268 (2024), 125317.
    [61]
    M. Benesch, R. Lewis, R. McElhaney, Immobilized artificial membrane (IAM) liquid chromatography as a model for antimicrobial peptide partitioning into cell membranes: An evaluation, Eureka 1 (2010) 20-33.
    [62]
    J. Xiao, H. Zhang, L. Niu, et al., Efficient screening of a novel antimicrobial peptide from Jatropha curcas by cell membrane affinity chromatography, J. Agric. Food Chem. 59 (2011) 1145-1151.
    [63]
    J. Xiao, H. Zhang, An Escherichia coli cell membrane chromatography-offline LC-TOF-MS method for screening and identifying antimicrobial peptides from Jatropha curcas meal protein isolate hydrolysates, J. Biomol. Screen. 17 (2012) 752-760.
    [64]
    W. Tang, H. Yuan, H. Zhang, et al., An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method, Food Contr. 50 (2015) 413-422.
    [65]
    X. Wang, L. He, Z. Huang, et al., Isolation, identification and characterization of a novel antimicrobial peptide from Moringa oleifera seeds based on affinity adsorption, Food Chem. 398 (2023), 133923.
    [66]
    P. Zhu, W. Chen, Q. Wang, et al., Phosphatidylethanolamine functionalized biomimetic monolith for immobilized artificial membrane chromatography, J. Pharm. Anal. 12 (2022) 332-338.
    [67]
    L. Han, M. Zhang, Z. Xing, et al., Knockout of butyrophilin subfamily 1 member A1 (BTN1A1) alters lipid droplet formation and phospholipid composition in bovine mammary epithelial cells, J. Anim. Sci. Biotechnol. 11 (2020), 72.
    [68]
    J. Wang, J. Guo, D. Xu, et al., Development of biomimetic phospholipid membrane chromatography for drug discovery: A comprehensive review, Trac Trends Anal. Chem. 171 (2024), 117512.
    [69]
    W. Tang, H. Zhang, L. Wang, et al., Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction, Eur. Food Res. Technol. 237 (2013) 591-600.
    [70]
    H.S. Joo, Immobilized lipid affinity capture for antimicrobial peptides screening, Biotechnol. Bioprocess Eng. 23 (2018) 598-604.
    [71]
    W. Tang, H. Zhang, L. Wang, et al., Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis, Food Chem. 168 (2015) 115-123.
    [72]
    A. Alghalayini, A. Garcia, T. Berry, et al., The use of tethered bilayer lipid membranes to identify the mechanisms of antimicrobial peptide interactions with lipid bilayers, Antibiotics (Basel) 8 (2019), 12.
    [73]
    W. Tang, H. Zhang, L. Wang, et al., New cationic antimicrobial peptide screened from boiled-dried anchovies by immobilized bacterial membrane liposome chromatography, J. Agric. Food Chem. 62 (2014) 1564-1571.
    [74]
    J. Xiao, H. Zhang, S. Ding, Thermodynamics of antimicrobial peptide JCpep8 binding to living Staphylococcus aureus as a pseudo-stationary phase in capillary electrochromatography and consequences for antimicrobial activity, J. Agric. Food Chem. 60 (2012) 4535-4541.
    [75]
    W. Tang, C. Pu, M. Li, Interaction between antibacterial peptide Apep10 and Escherichia coli membrane lipids evaluated using liposome as pseudo-stationary phase, PLoS One 12 (2017), e0164594.
    [76]
    E. Dufort-Lefrancois, Exploring capillary electrophoresis methods for the affinity interaction of indolicidin and lipopolysaccharide[Master’s thesis], Canada: Royal Roads University, 2007.
    [77]
    J. McNutt, Using capillary electrophoresis to elucidate the interaction of sphingomyelin, indolicidin, and peptide 45[Bachelor's thesis], Canada: Thompson Rivers University, 2017.
    [78]
    P.S. Parihar, Determination of the octanol: water partition coefficient of indolicidin and indolicidin 45 using micellar electrokinetic chromatography[Bachelor’s thesis], Canada: Thompson Rivers University, 2020.
    [79]
    J.O. Mills, L.A. Holland, Membrane-mediated capillary electrophoresis: Interaction of cationic peptides with bicelles, Electrophoresis 25 (2004) 1237-1242.
    [80]
    T. Tumova, L. Monincova, O. Nesuta, et al., Determination of effective charges and ionic mobilities of polycationic antimicrobial peptides by capillary isotachophoresis and capillary zone electrophoresis, Electrophoresis 38 (2017) 2018-2024.
    [81]
    V. Solinova, P. Sazelova, A. Masova, et al., Application of capillary and free-flow zone electrophoresis for analysis and purification of antimicrobial β-alanyl-tyrosine from hemolymph of fleshfly Neobellieria bullata, Molecules 26 (2021), 5636.
    [82]
    M.D. Jovic, S. Agatonovic-Kustrin, P.M. Ristivojevic, et al., Bioassay-guided assessment of antioxidative, anti-inflammatory and antimicrobial activities of extracts from medicinal plants via high-performance thin-layer chromatography, Molecules 28 (2023), 7346.
    [83]
    R.R. Goodall, A.A. Levi, A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture, Nature 158 (1946), 675.
    [84]
    R. Fischer, H. Lautner, On the paper chromatographic detection of penicillin preparations, Arch. Pharm. Ber. Dtsch. Pharm. Ges. 294 (1961) 1-7.
    [85]
    B.J. Nicolaus, C. Coronelli, A. Binaghi, Microbiological determination of antibiotics by thin layer chromatograms, Experientia 17 (1961) 473-474.
    [86]
    P.R. Shetty, S.K. Buddana, V.B. Tatipamula, et al., Production of polypeptide antibiotic from Streptomyces parvulus and its antibacterial activity, Braz. J. Microbiol. 45 (2014) 303-312.
    [87]
    E.M. Grzelak, C. Hwang, G. Cai, et al., Bioautography with TLC-MS/NMR for rapid discovery of anti-tuberculosis lead compounds from natural sources, ACS Infect. Dis. 2 (2016) 294-301.
    [88]
    M. Jaskiewicz, M. Orlowska, G. Olizarowicz, et al., Rapid screening of antimicrobial synthetic peptides, Int. J. Pept. Res. Ther. 22 (2016) 155-161.
    [89]
    M.S. Ramya, K. Sivasubramanian, S. Ravichandran, et al., Screening of antimicrobial compound from the sea slug Armina babai, Bangladesh J. Pharmacol. 9 (2014) 268-274.
    [90]
    A.O. Nkumah, C.T. Kehinde, B.B. Oluremi, et al., Peptide-rich extracts from leaves of Newbouldia laevis (P. Beauv.) Seem. ex. Bureau (Bignoniaceae) with antimicrobial and brine shrimp lethality activities, J. Pharm. Bioresources 21 (2024) 87-96.
    [91]
    V. Bastos, S. Pascoal, K. Lopes, et al., Cytotoxic effects of Chartergellus communis wasp venom peptide against melanoma cells, Biochimie 216 (2024) 99-107.
    [92]
    H. Nakashima, R. Pauwels, M. Baba, et al., Tetrazolium-based plaque assay for HIV-1 and HIV-2, and its use in the evaluation of antiviral compounds, J. Virol. Methods 26 (1989) 319-329.
    [93]
    R. Pauwels, J. Balzarini, M. Baba, et al., Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds, J. Virol. Methods 20 (1988) 309-321.
    [94]
    M. Di Napoli, G. Castagliuolo, S. Pio, et al., Study of the antimicrobial activity of the human peptide SQQ30 against pathogenic bacteria, Antibiotics (Basel) 13 (2024), 145.
    [95]
    C. Pannecouque, D. Daelemans, E. De Clercq, Tetrazolium-based colorimetric assay for the detection of HIV replication inhibitors: Revisited 20 years later, Nat. Protoc. 3 (2008) 427-434.
    [96]
    E. Ballard, R. Yucel, W.J.G. Melchers, et al., Antifungal activity of antimicrobial peptides and proteins against Aspergillus fumigatus, J. Fungi 6 (2020), 65.
    [97]
    R. Vince, M. Hua, J. Brownell, et al., Potent and selective activity of a new carbocyclic nucleoside analog (carbovir: NSC 614846) against human immunodeficiency virus in vitro, Biochem. Biophys. Res. Commun. 156 (1988) 1046-1053.
    [98]
    K.R. Gustafson, R.C. Sowder II, L.E. Henderson, et al., Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia, J. Am. Chem. Soc. 116 (1994) 9337-9338.
    [99]
    A.F. Mechesso, Y. Su, J. Xie, et al., Enhanced antimicrobial screening sensitivity enabled the identification of an ultrashort peptide KR-8 for engineering of LL-37mini to combat drug-resistant pathogens, ACS Infect. Dis. 9 (2023) 2215-2225.
    [100]
    A. Boaro, L. Ageitos, M.T. Torres, et al., Structure-function-guided design of synthetic peptides with anti-infective activity derived from wasp venom, Cell Rep. Phys. Sci. 4 (2023), 101459.
    [101]
    O.O. Ogbole, A. Nkumah, T.E. Akinleye, et al., Evaluation of multifunctional activity of bioactive peptide fractions from the leaves of Nauclea diderrichii (De Wild. and T. Durand) Merrill and Ixora brachypoda DC, Phytomed. Plus 1 (2021), 100019.
    [102]
    A. Robles-Fort, I. Garcia-Robles, W. Fernando, et al., Dual antimicrobial and antiproliferative activity of TcPaSK peptide derived from a Tribolium castaneum insect defensin, Microorganisms 9 (2021), 222.
    [103]
    M. Mohammadi, A. Moradi Hasan-Abad, P. Dehghani, et al., Dicentracin-like from Asian Sea bass fish and moronecidine-like from hippocampus comes: Two candidate antimicrobial peptides against leishmanina major infection, Int. J. Pept. Res. Ther. 27 (2021) 769-778.
    [104]
    D.I. Njoku, Q. Guo, W. Dai, et al., The multipurpose application of resazurin in micro-analytical techniques: Trends from the microbial, catalysis and single molecule detection assays, Trac Trends Anal. Chem. 167 (2023), 117288.
    [105]
    A.Y. Coban, O. Darka, N. Tasdelen Fisgin, et al., The resazurin microplate method for rapid detection of vancomycin resistance in enterococci, J. Chemother. 17 (2005) 361-366.
    [106]
    R. Karyne, G. Curty Lechuga, A.L. Almeida Souza, et al., Pan-drug resistant Acinetobacter baumannii, but not other strains, are resistant to the bee venom peptide mellitin, Antibiotics (Basel) 9 (2020), 178.
    [107]
    A. Rodriguez, E.M. Martell-Huguet, M. Gonzalez-Garcia, et al., Identification and characterization of three new antimicrobial peptides from the marine mollusk Nerita versicolor (Gmelin, 1791), Int. J. Mol. Sci. 24 (2023), 3852.
    [108]
    J. Wang, T. Yuan, X. He, et al., Production, characterization, and application of phage-derived PK34 recombinant anti-microbial peptide, Appl. Microbiol. Biotechnol. 107 (2023) 163-174.
    [109]
    J. Zhao, K. Sugihara, Analysis of PDA dose curves for the extraction of antimicrobial peptide properties, J. Phys. Chem. B 125 (2021) 12206-12213.
    [110]
    L. Yang, Z. Tian, L. Zhou, et al., In vitro antifungal activity of a novel antimicrobial peptide AMP-17 against planktonic cells and biofilms of Cryptococcus neoformans, Infect. Drug Resist. 15 (2022) 233-248.
    [111]
    G. Boix-Lemonche, M. Lekka, B. Skerlavaj, A rapid fluorescence-based microplate assay to investigate the interaction of membrane active antimicrobial peptides with whole gram-positive bacteria, Antibiotics 9 (2020), 92.
    [112]
    A.B. Schafer, M. Wenzel, A how-to guide for mode of action analysis of antimicrobial peptides, Front. Cell. Infect. Microbiol. 10 (2020), 540898.
    [113]
    W. Liu, L. Miao, X. Li, et al., Development of fluorescent probes targeting the cell wall of pathogenic bacteria, Coord. Chem. Rev. 429 (2021), 213646.
    [114]
    M. Kodedova, H. Sychrova, High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides’ activity on various yeast species, J. Biotechnol. 233 (2016) 26-33.
    [115]
    N. Nuti, P. Rottmann, A. Stucki, et al., A multiplexed cell-free assay to screen for antimicrobial peptides in double emulsion droplets, Angew. Chem. Int. Ed. Engl. 61 (2022), e202114632.
    [116]
    J.H. Jhong, L. Yao, Y. Pang, et al., dbAMP 2.0: Updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data, Nucleic Acids Res. 50 (2022) D460-D470.
    [117]
    K. Boone, C. Wisdom, K. Camarda, et al., Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides, BMC Bioinformatics 22 (2021), 239.
    [118]
    Y. Yi, Y. Lv, X. You, et al., High throughput screening of small immune peptides and antimicrobial peptides from the Fish-T1K database, Genomics 111 (2019) 215-221.
    [119]
    Y. Yi, X. You, C. Bian, et al., High-throughput identification of antimicrobial peptides from amphibious mudskippers, Mar. Drugs 15 (2017), 364.
    [120]
    A. Pandi, D. Adam, A. Zare, et al., Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides, Nat. Commun. 14 (2023), 7197.
    [121]
    P. Das, T. Sercu, K. Wadhawan, et al., Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations, Nat. Biomed. Eng. 5 (2021) 613-623.
    [122]
    S. Clark, T.A. Jowitt, L.K. Harris, et al., The lexicon of antimicrobial peptides: A complete set of arginine and tryptophan sequences, Commun. Biol. 4 (2021), 605.
    [123]
    S. Ramazi, N. Mohammadi, A. Allahverdi, et al., A review on antimicrobial peptides databases and the computational tools, Database (Oxford) 2022 (2022), baac011.
    [124]
    J. Huang, Y. Xu, Y. Xue, et al., Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences, Nat. Biomed. Eng. 7 (2023) 797-810.
    [125]
    H. Zhang, K.M. Saravanan, Y. Wei, et al., Deep learning-based bioactive therapeutic peptide generation and screening, J. Chem. Inf. Model. 63 (2023) 835-845.
    [126]
    J. Menousek, B. Mishra, M.L. Hanke, et al., Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300, Int. J. Antimicrob. Agents 39 (2012) 402-406.
    [127]
    Y. Ma, Z. Guo, B. Xia, et al., Identification of antimicrobial peptides from the human gut microbiome using deep learning, Nat. Biotechnol. 40 (2022) 921-931.
    [128]
    J. Yan, P. Bhadra, A. Li, et al., Deep-AmPEP30: Improve short antimicrobial peptides prediction with deep learning, Mol. Ther. Nucleic Acids 20 (2020) 882-894.
    [129]
    C. Wang, S. Garlick, M. Zloh, Deep learning for novel antimicrobial peptide design, Biomolecules 11 (2021), 471.
    [130]
    F. Wan, F. Wong, J.J. Collins, et al., Machine learning for antimicrobial peptide identification and design, Nat. Rev. Bioeng. 2 (2024) 392-407.
    [131]
    G. Liu, D. Yu, M. Fan, et al., Antimicrobial resistance crisis: Could artificial intelligence be the solution? Mil. Med. Res. 11 (2024), 7.
    [132]
    G. Wang, The antimicrobial peptide database is 20 years old: Recent developments and future directions, Protein Sci. 32 (2023), e4778.
    [133]
    B. Mayer, D. Kringel, J. Lotsch, Artificial intelligence and machine learning in clinical pharmacological research, Expert Rev. Clin. Pharmacol. 17 (2024) 79-91.
    [134]
    B.K. Shoichet, Virtual screening of chemical libraries, Nature 432 (2004) 862-865.
    [135]
    Z. Liu, L. Zhang, J. Wang, et al., Virtual screening and biological evaluation of anti-biofilm agents targeting LuxS in the quorum sensing system, Nat. Prod. Commun. 16 (2021) 1-10.
    [136]
    H. Li, Y. Chen, J. Cai, et al., Identification, screening and antibacterial mechanism analysis of novel antimicrobial peptides from sturgeon (Acipenser ruthenus) spermary, Mar. Drugs 21 (2023), 386.
    [137]
    N. Balmeh, S. Mahmoudi, N.A. Fard, Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease, Inform. Med. Unlocked 23 (2021), 100515.
    [138]
    M.L. Heymich, U. Friedlein, M. Trollmann, et al., Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens, Food Chem. 347 (2021), 128917.
    [139]
    T.N.G. Handley, W. Li, N.G. Welch, et al., Evaluation of potential DnaK modulating proline-rich antimicrobial peptides identified by computational screening, Front. Chem. 10 (2022), 875233.
    [140]
    C. Gorgulla, A. Boeszoermenyi, Z.-F. Wang, et al., An open-source drug discovery platform enables ultra-large virtual screens, Nature 580 (2020) 663-668.
    [141]
    A. Varela-Rial, M. Majewski, G. De Fabritiis, Structure based virtual screening: Fast and slow, Wires Comput. Mol. Sci. 12 (2022), e1544.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (200) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return