Volume 13 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Feng He, Haijie Wang, Pengfei Du, Tengfei Li, Weiting Wang, Tianyu Tan, Yaobo Liu, Yanli Ma, Yuanshang Wang, A.M. Abd El-Aty. Personal glucose meters coupled with signal amplification technologies for quantitative detection of non-glucose targets: Recent progress and challenges in food safety hazards analysis[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 223-238. doi: 10.1016/j.jpha.2023.02.005
Citation: Feng He, Haijie Wang, Pengfei Du, Tengfei Li, Weiting Wang, Tianyu Tan, Yaobo Liu, Yanli Ma, Yuanshang Wang, A.M. Abd El-Aty. Personal glucose meters coupled with signal amplification technologies for quantitative detection of non-glucose targets: Recent progress and challenges in food safety hazards analysis[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 223-238. doi: 10.1016/j.jpha.2023.02.005

Personal glucose meters coupled with signal amplification technologies for quantitative detection of non-glucose targets: Recent progress and challenges in food safety hazards analysis

doi: 10.1016/j.jpha.2023.02.005
Funds:

This work was supported by the Natural Science Foundation of Shandong Province (Grant No.: ZR2020QC250), China Agriculture Research System (Grant No.: CARS-38), Modern Agricultural Technology Industry System of Shandong Province (Grant No.: SDAIT-10-10), and Key Technology Research and Development Program of Shandong (Grant Nos.: 2021CXGC010809 and 2021TZXD012).

  • Received Date: Nov. 28, 2022
  • Accepted Date: Feb. 09, 2023
  • Rev Recd Date: Jan. 19, 2023
  • Publish Date: Feb. 16, 2023
  • Ensuring food safety is paramount worldwide. Developing effective detection methods to ensure food safety can be challenging owing to trace hazards, long detection time, and resource-poor sites, in addition to the matrix effects of food. Personal glucose meter (PGM), a classic point-of-care testing device, possesses unique application advantages, demonstrating promise in food safety. Currently, many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards. Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors, which is crucial for solving the challenges associated with the use of PGMs for food safety analysis. This review introduces the basic detection principle of a PGM-based sensing strategy, which consists of three key factors: target recognition, signal transduction, and signal output. Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies (nanomaterial-loaded multienzyme labeling, nucleic acid reaction, DNAzyme catalysis, responsive nanomaterial encapsulation, and others) in the field of food safety detection are reviewed. Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed. Despite the need for complex sample preparation and the lack of standardization in the field, using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
  • loading
  • M.M. Aung, Y.S. Chang, Traceability in a food supply chain: safety and quality perspectives, Food Control 39 (2014) 172-184.
    M.D. Kirk, S.M. Pires, R.E. Black, et al., World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis, PLoS Med. 12 (2015), e1001921.
    W. Cheng, X. Tang, Y. Zhang, et al., Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances, Trends Food Sci. Technol. 112 (2021) 268-282.
    M. Gallo, P. Ferranti, The evolution of analytical chemistry methods in foodomics, J. Chromatogr. A 1428 (2016) 3-15.
    Q. Miao, W. Kong, S. Yang, et al., Rapid analysis of multi-pesticide residues in lotus seeds by a modified QuEChERS-based extraction and GC-ECD, Chemosphere 91 (2013) 955-962.
    S. Lu, D. Wu, G. Li, et al., Facile and sensitive determination of N-nitrosamines in food samples by high-performance liquid chromatography via combining fluorescent labeling with dispersive liquid-liquid microextraction, Food Chem. 234 (2017) 408-415.
    M.Y. Jung, J.H. Kang, H.J. Jung, et al., Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry, Food Chem. 240 (2018) 1179-1183.
    A.K. Malik, C. Blasco, Y. Pico, Liquid chromatography-mass spectrometry in food safety, J. Chromatogr. A 1217 (2010) 4018-4040.
    J. Djedjibegovic, T. Larssen, A. Skrbo, et al., Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS), Food Chem. 131 (2012) 469-476.
    X. Chen, M. Lin, L. Sun, et al., Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates, Food Chem. 293 (2019) 271-277.
    C.S.W. Miaw, M.M. Sena, S.V.C. de Souza, et al., Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies, Food Chem. 266 (2018) 254-261.
    X. Cheng, A. Vella, M.J. Stasiewicz, Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy, Food Control 98 (2019) 253-261.
    C. Dincer, R. Bruch, A. Kling, et al., Multiplexed point-of-care testing - xPOCT, Trends Biotechnol. 35 (2017) 728-742.
    P.B. Luppa, C. Muller, A. Schlichtiger, et al., Point-of-care testing (POCT): current techniques and future perspectives, Trends Analyt. Chem. 30 (2011) 887-898.
    J. Liu, Z. Geng, Z. Fan, et al., Point-of-care testing based on smartphone: the current state-of-the-art (2017-2018), Biosens. Bioelectron. 132 (2019) 17-37.
    B. Bhavadharini, M.M. Mahalakshmi, K. Maheswari, et al., Use of capillary blood glucose for screening for gestational diabetes mellitus in resource-constrained settings, Acta Diabetol. 53 (2016) 91-97.
    W. Tang, J. Yang, F. Wang, et al., Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide, Anal. Chim. Acta 1060 (2019) 97-102.
    X. Xu, K. Liang, J. Zeng, Highly sensitive and portable mercury(ii) ion sensor using personal glucose meter, Anal. Methods 7 (2015) 81-85.
    W. Xiao, Y. Gao, Y. Zhang, et al., Enhanced 3D paper-based devices with a personal glucose meter for highly sensitive and portable biosensing of silver ion, Biosens. Bioelectron. 137 (2019) 154-160.
    Z. Xu, Z. Liu, M. Xiao, et al., A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions, Chem. Eng. J. 394 (2020), 124966.
    S. Qiu, L. Yuan, Y. Wei, et al., DNA template-mediated click chemistry-based portable signal-on sensor for ochratoxin A detection, Food Chem. 297 (2019), 124929.
    A.G.A. Aggidis, J.D. Newman, G.A. Aggidis, Investigating pipeline and state of the art blood glucose biosensors to formulate next steps, Biosens. Bioelectron. 74 (2015) 243-262.
    Y. Xiang, Y. Lu, Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets, Nat. Chem. 3 (2011) 697-703.
    G. Rousseau, R. Asmolov, L. Grammatico-Guillon, et al., Rapid detection of bacterial meningitis using a point-of-care glucometer, Eur. J. Emerg. Med. 26 (2019) 41-46.
    R. Chavali, N.S. Kumar Gunda, S. Naicker, et al., Detection of Escherichia coli in potable water using personal glucose meters, Anal. Methods 6 (2014) 6223-6227.
    D. Kwon, H. Lee, H. Yoo, et al., Facile method for enrofloxacin detection in milk using a personal glucose meter, Sens Actuators B Chem. 254 (2018) 935-939.
    J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective, Biosens. Bioelectron. 20 (2005) 2435-2453.
    L. Wu, G. Li, X. Xu, et al., Application of nano-ELISA in food analysis: recent advances and challenges, Trends Analyt. Chem. 113 (2019) 140-156.
    G. Li, X. Zhang, F. Zheng, et al., Emerging nanosensing technologies for the detection of beta-agonists, Food Chem. 332 (2020), 127431.
    D. Quesada-Gonzalez, A. Merkoci, Nanomaterial-based devices for point-of-care diagnostic applications, Chem. Soc. Rev. 47 (2018) 4697-4709.
    D. Ratautas, E. Ramonas, L. Marcinkeviciene, et al., Wiring gold nanoparticles and redox enzymes: a self-sufficient nanocatalyst for the direct oxidation of carbohydrates with molecular oxygen, ChemCatChem 10 (2018) 971-974.
    J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57 (2012) 724-803.
    Y. Chen, S. Zhou, L. Li, et al., Nanomaterials-based sensitive electrochemiluminescence biosensing, Nano Today 12 (2017) 98-115.
    Y.L. Zhou, M. Yang, K. Sun, et al., Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals, J. Am. Chem. Soc. 132 (2010) 6006-6013.
    Y. Zhou, Z. Zhu, W. Huang, et al., Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption, Angew. Chem. Int. Ed. Engl. 50 (2011) 11456-11459.
    Z. Li, Z. Zhu, W. Liu, et al., Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies, J. Am. Chem. Soc. 134 (2012) 3322-3325.
    Y. Yang, A.M. Asiri, Z. Tang, et al., Graphene based materials for biomedical applications, Mater. Today 16 (2013) 365-373.
    Y. Zhou, X.L. Tian, Y.S. Li, et al., An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II), Biosens. Bioelectron. 26 (2011) 3700-3704.
    F. Sun, X. Sun, Y. Jia, et al., Ultrasensitive detection of prostate specific antigen using a personal glucose meter based on DNA-mediated immunoreaction, Analyst 144 (2019) 6019-6024.
    J.G. Croissant, Y. Fatieiev, A. Almalik, et al., Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications, Adv. Healthc. Mater. 7 (2018), 1700831.
    L. Ye, G. Zhao, W. Dou, An ultrasensitive sandwich immunoassay with a glucometer readout for portable and quantitative detection of Cronobacter sakazakii, Anal. Methods 9 (2017) 6286-6292.
    Y. Luo, W. Dou, G. Zhao, Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles, Anal. Bioanal. Chem. 409 (2017) 4139-4147.
    L. Ye, G. Zhao, W. Dou, An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/ SiO(2) nanocomposites and immune magnetic nanoparticles, Talanta 182 (2018) 354-362.
    G. Bai, X. Xu, Q. Dai, et al., An electrochemical enzymatic nanoreactor based on dendritic mesoporous silica nanoparticles for living cell H2O2 detection, Analyst 144 (2019) 481-487.
    Y. Wang, Y. Yang, T. Wu, et al., Dendritic porous silica nanoparticles with high-curvature structures for a dual-mode DNA sensor based on fluorometer and person glucose meter, Microchim. Acta 188 (2021), 407.
    L. Yang, Y. Wang, C. Yao, et al., Highly sensitive and portable aptasensor by using enzymatic nanoreactors as labels, Microchem. J. 168 (2021), 106407.
    Y. Chen, Y. Xianyu, X. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis, Acc. Chem. Res. 50 (2017) 310-319.
    F. Li, R. Zhang, H. Kang, et al., Facile and sensitive detection of clenbuterol in pork using a personal glucose meter, Anal. Methods 9 (2017) 6507-6512.
    S. Gao, J. Hao, D. Su, et al., Facile and sensitive detection of norfloxacin in animal-derived foods using immuno-personal glucose meter, Eur. Food Res. Technol. 247 (2021) 2635-2644.
    S. Chen, J. Zhang, N. Gan, et al., An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification, Microchim. Acta 182 (2014) 815-822.
    S. Chen, N. Gan, H. Zhang, et al., A portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter, Anal. Bioanal. Chem. 407 (2015) 2499-2507.
    L. Zhao, L. Teng, J. Zhang, et al., Point-of-care detection of microcystin-LR with a personal glucose meter in drinking water source, Chin. Chem. Lett. 30 (2019) 1035-1037.
    R. Ye, C. Zhu, Y. Song, et al., One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk, Nanoscale 8 (2016) 18980-18986.
    H. Bai, S. Bu, C. Wang, et al., Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout, Mikrochim. Acta 187 (2020), 220.
    B.C. Vidal Jr, T.C. Deivaraj, J. Yang, et al., Stability and hybridization-driven aggregation of silver nanoparticle-oligonucleotide conjugates, New J. Chem. 29 (2005) 812-816.
    A.R. Herdt, S.M. Drawz, Y. Kang, et al., DNA dissociation and degradation at gold nanoparticle surfaces, Colloids Surf. B Biointerfaces 51 (2006) 130-139.
    F. Qiao, J. Liu, F. Li, et al., Antibody and DNA dual-labeled gold nanoparticles: stability and reactivity, Appl. Surf. Sci. 254 (2008) 2941-2946.
    N.C. Seeman, H.F. Sleiman, DNA nanotechnology, Nat. Rev. Mater. 3 (2017), 17068.
    Y. Zhao, X. Zuo, Q. Li, et al., Nucleic acids analysis, Sci. China Chem. 64 (2021) 171-203.
    P. Du, M. Jin, G. Chen, et al., A competitive bio-barcode amplification immunoassay for small molecules based on nanoparticles, Sci. Rep. 6 (2016), 38114.
    Y. Du, Y. Zhou, Y. Wen, et al., Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin, Mikrochim. Acta 186 (2019), 840.
    X. Xiang, Y. Shang, F. Li, et al., A microfluidic genoserotyping strategy for fast and objective identification of common Salmonella serotypes isolated from retail food samples in China, Anal. Chim. Acta 1201 (2022), 339657.
    J. Yin, Y. Liu, S. Wang, et al., Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification, Sens. Actuators B Chem. 256 (2018) 573-579.
    Y. Wang, A.M. Abd El-Aty, G. Chen, et al., A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly, Microchim. Acta 189 (2022), 114.
    Q. Guo, J. Han, S. Shan, et al., DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA, Biosens. Bioelectron. 86 (2016) 990-995.
    H.Y. Kim, K.S. Park, H.G. Park, Glucose oxidase-like activity of cerium oxide nanoparticles: Use for personal glucose meter-based label-free target DNA detection, Theranostics 10 (2020) 4507-4514.
    H. Qi, S. Yue, S. Bi, et al., Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors, Biosens. Bioelectron. 110 (2018) 207-217.
    X. Xia, H. Yang, J. Cao, et al., Isothermal nucleic acid amplification for food safety analysis, Trends Analyt. Chem. 153 (2022), 116641.
    Y. Yang, T. Wu, L.P. Xu, et al., Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy, Talanta 226 (2021), 122132.
    Y. Gu, X. Yang, S. Hu, et al., Sensitive glucometer-based microfluidic immune-sensing platform via DNA signal amplification coupled with enzymatic reaction, Sens. Actuators B Chem. 329 (2021), 129055.
    L. Guo, B. Lu, Q. Dong, et al., One-tube smart genetic testing via coupling isothermal amplification and three-way nucleic acid circuit to glucometers, Anal. Chim. Acta 1106 (2020) 191-198.
    Y. Zhao, F. Chen, Q. Li, et al., Isothermal amplification of nucleic acids, Chem. Rev. 115 (2015) 12491-12545.
    E.M. McConnell, I. Cozma, Q. Mou, et al., Biosensing with DNAzymes, Chem. Soc. Rev. 50 (2021) 8954-8994.
    H. Yin, H. Kuang, L. Liu, et al., A ligation DNAzyme-induced magnetic nanoparticles assembly for ultrasensitive detection of copper ions, ACS Appl. Mater. Interfaces 6 (2014) 4752-4757.
    C. Liu, Y. Hu, Q. Pan, et al., A microRNA-triggered self-powered DNAzyme walker operating in living cells, Biosens. Bioelectron. 136 (2019) 31-37.
    Y.F. Li, R.R. Breaker, Phosphorylating DNA with DNA, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 2746-2751.
    B.M. Brandsen, A.R. Hesser, M.A. Castner, et al., DNA-catalyzed hydrolysis of esters and aromatic amides, J. Am. Chem. Soc. 135 (2013) 16014-16017.
    J. Ming, W. Fan, T.-F. Jiang, et al., Portable and sensitive detection of copper(II) ion based on personal glucose meters and a ligation DNAzyme releasing strategy, Sens. Actuators B Chem. 240 (2017) 1091-1098.
    Y. Xiang, Y. Lu, An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter, Chem. Commun. 49 (2013) 585-587.
    X. Yang, D. Shi, S. Zhu, et al., Portable aptasensor of aflatoxin B1 in bread based on a personal glucose meter and DNA walking machine, ACS Sens. 3 (2018) 1368-1375.
    S. Zhang, Y. Luan, M. Xiong, et al., DNAzyme amplified aptasensing platform for ochratoxin A detection using a personal glucose meter, ACS Appl. Mater. Interfaces 13 (2021) 9472-9481.
    L. Zeng, J. Gong, P. Rong, et al., A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device, Talanta 198 (2019) 412-416.
    X. Fu, K. Xu, J. Ye, et al., Glucoamylase-labeled nanogold flowers for in situ enhanced sensitivity of a glucometer-based enzyme immunoassay, Anal. Methods 7 (2015) 507-512.
    S. Taebi, M. Keyhanfar, A. Noorbakhsh, A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter, J. Immunol. Methods 458 (2018) 26-32.
    B. Lin, D. Liu, J. Yan, et al., Enzyme-encapsulated liposome-linked immunosorbent assay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers, ACS Appl. Mater. Interfaces 8 (2016) 6890-6897.
    Z. Wang, Z. Chen, N. Gao, et al., Transmutation of personal glucose meters into portable and highly sensitive microbial pathogen detection platform, Small 11 (2015) 4970-4975.
    A. Reddy, F. Maley, Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase, J. Biol. Chem. 271 (1996) 13953-13957.
    F. Yin, R. Cai, S. Gui, et al., A portable and quantitative detection of microRNA-21 based on cascade enzymatic reactions with dual signal outputs, Talanta 235 (2021), 122802.
    D. Tang, Y. Lin, Q. Zhou, et al., Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection, Anal. Chem. 86 (2014) 11451-11458.
    Z. Gao, D. Tang, M. Xu, et al., Nanoparticle-based pseudo hapten for target-responsive cargo release from a magnetic mesoporous silica nanocontainer, Chem. Commun. 50 (2014) 6256-6258.
    L. Fu, J. Zhuang, W. Lai, et al., Portable and quantitative monitoring of heavy metal ions using DNAzyme-capped mesoporous silica nanoparticles with a glucometer readout, J. Mater. Chem. B 1 (2013) 6123-6128.
    X. Liang, L. Wang, D. Wang, et al., Portable and quantitative monitoring of mercury ions using DNA-gated mesoporous silica nanoparticles using a glucometer readout, Chem. Commun. 52 (2016) 2192-2194.
    J. Tang, Y. Huang, H. Liu, et al., Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers, Biosens. Bioelectron. 79 (2016) 508-514.
    D. Nie, Z. Zhang, D. Guo, et al., A flexible assay strategy for non-glucose targets based on sulfhydryl-terminated liposomes combined with personal glucometer, Biosens. Bioelectron. 175 (2021), 112884.
    Y. Shao, H. Jia, T. Cao, et al., Supramolecular hydrogels based on DNA self-assembly, Acc. Chem. Res. 50 (2017) 659-668.
    P.L. Wang, L.H. Xie, E.A. Joseph, et al., Metal-organic frameworks for food safety, Chem. Rev. 119 (2019) 10638-10690.
    L. Yan, Z. Zhu, Y. Zou, et al., Target-responsive "sweet" hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets, J. Am. Chem. Soc. 135 (2013) 3748-3751.
    Y. Cao, F. Mo, Y. Liu, et al., Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter, Biosens. Bioelectron. 198 (2022), 113819.
    N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal-organic frameworks, Chem. Rev. 114 (2014) 10575-10612.
    N. Liu, D. Nie, Z. Zhao, et al., Ultrasensitive immunoassays based on biotin-streptavidin amplified system for quantitative determination of family zearalenones, Food Control 57 (2015) 202-209.
    Y. Shao, H. Duan, S. Zhou, et al., Biotin-streptavidin system-mediated ratiometric multiplex immunochromatographic assay for simultaneous and accurate quantification of three mycotoxins, J. Agric. Food Chem. 67 (2019) 9022-9031.
    C.M. Dundas, D. Demonte, S. Park, Streptavidin-biotin technology: Improvements and innovations in chemical and biological applications, Appl. Microbiol. Biotechnol. 97 (2013) 9343-9353.
    P.C. Weber, D.H. Ohlendorf, J.J. Wendoloski, et al., Structural origins of high-affinity biotin binding to streptavidin, Science 243 (1989) 85-88.
    P. Tiwary, Molecular determinants and bottlenecks in the dissociation dynamics of biotin-streptavidin, J. Phys. Chem. B 121 (2017) 10841-10849.
    F. Li, X. Li, N. Zhu, et al., An aptasensor for the detection of ampicillin in milk using a personal glucose meter, Anal. Methods 12 (2020) 3376-3381.
    D. Huang, Z. Shi, J. Qian, et al., A CRISPR-Cas12a-derived biosensor enabling portable personal glucose meter readout for quantitative detection of SARS-CoV-2, Biotechnol. Bioeng. 118 (2021) 1587-1596.
    C. Zhou, D. Huang, Z. Wang, et al., CRISPR Cas12a-based "sweet" biosensor coupled with personal glucose meter readout for the point-of-care testing of Salmonella, J. Food Sci. 87 (2022) 4137-4147.
    D. Huang, Z. Shi, J. Qian, et al., A CRISPR-Cas12a-derived biosensor enabling portable personal glucose meter readout for quantitative detection of SARS-CoV-2, Biotechnol. Bioeng. 118 (2021) 1587-1596.
    L. Yin, S. Man, S. Ye, et al., CRISPR-Cas based virus detection: recent advances and perspectives, Biosens. Bioelectron. 193 (2021), 113541.
    B. Fang, Z. Jia, C. Liu, et al., A versatile CRISPR Cas12a-based point-of-care biosensor enabling convenient glucometer readout for ultrasensitive detection of pathogen nucleic acids, Talanta 249 (2022), 123657.
    R.D. Peavy, D.D. Metcalfe, Understanding the mechanisms of anaphylaxis, Curr. Opin. Allergy Clin. Immunol. 8 (2008) 310-315.
    S. Morais, L.A. Tortajada-Genaro, A. Maquieira, et al., Biosensors for food allergy detection according to specific IgE levels in serum, Trends Analyt. Chem. 127 (2020), 115904.
    J.K. Ahn, H.Y. Kim, C.Y. Lee, et al., Label-free and washing-free alkaline phosphatase assay using a personal glucose meter, J. Biol. Eng. 13 (2019), 51.
    H. Han, J. Park, J.K. Ahn, Immunoglobulin E detection method based on cascade enzymatic reaction utilizing portable personal glucose meter, Sensors (Basel) 21 (2021), 6396.
    Y. Zhao, X. Chen, S. Lin, et al., Integrated immunochromatographic strip with glucometer readout for rapid quantification of phosphorylated proteins, Anal. Chim. Acta 964 (2017) 1-6.
    H. Huang, G. Zhao, W. Dou, Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay, Biosens. Bioelectron. 107 (2018) 266-271.
    J. Zhang, Y. Xiang, M. Wang, et al., Dose-dependent response of personal glucose meters to nicotinamide coenzymes: Applications to point-of-care diagnostics of many non-glucose targets in a single step, Angew. Chem. Int. Ed. Engl. 55 (2016) 732-736.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (524) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return