Citation: | Feng He, Haijie Wang, Pengfei Du, Tengfei Li, Weiting Wang, Tianyu Tan, Yaobo Liu, Yanli Ma, Yuanshang Wang, A.M. Abd El-Aty. Personal glucose meters coupled with signal amplification technologies for quantitative detection of non-glucose targets: Recent progress and challenges in food safety hazards analysis[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 223-238. doi: 10.1016/j.jpha.2023.02.005 |
M.M. Aung, Y.S. Chang, Traceability in a food supply chain: safety and quality perspectives, Food Control 39 (2014) 172-184.
|
M.D. Kirk, S.M. Pires, R.E. Black, et al., World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis, PLoS Med. 12 (2015), e1001921.
|
W. Cheng, X. Tang, Y. Zhang, et al., Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances, Trends Food Sci. Technol. 112 (2021) 268-282.
|
M. Gallo, P. Ferranti, The evolution of analytical chemistry methods in foodomics, J. Chromatogr. A 1428 (2016) 3-15.
|
Q. Miao, W. Kong, S. Yang, et al., Rapid analysis of multi-pesticide residues in lotus seeds by a modified QuEChERS-based extraction and GC-ECD, Chemosphere 91 (2013) 955-962.
|
S. Lu, D. Wu, G. Li, et al., Facile and sensitive determination of N-nitrosamines in food samples by high-performance liquid chromatography via combining fluorescent labeling with dispersive liquid-liquid microextraction, Food Chem. 234 (2017) 408-415.
|
M.Y. Jung, J.H. Kang, H.J. Jung, et al., Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry, Food Chem. 240 (2018) 1179-1183.
|
A.K. Malik, C. Blasco, Y. Pico, Liquid chromatography-mass spectrometry in food safety, J. Chromatogr. A 1217 (2010) 4018-4040.
|
J. Djedjibegovic, T. Larssen, A. Skrbo, et al., Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS), Food Chem. 131 (2012) 469-476.
|
X. Chen, M. Lin, L. Sun, et al., Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates, Food Chem. 293 (2019) 271-277.
|
C.S.W. Miaw, M.M. Sena, S.V.C. de Souza, et al., Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies, Food Chem. 266 (2018) 254-261.
|
X. Cheng, A. Vella, M.J. Stasiewicz, Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy, Food Control 98 (2019) 253-261.
|
C. Dincer, R. Bruch, A. Kling, et al., Multiplexed point-of-care testing - xPOCT, Trends Biotechnol. 35 (2017) 728-742.
|
P.B. Luppa, C. Muller, A. Schlichtiger, et al., Point-of-care testing (POCT): current techniques and future perspectives, Trends Analyt. Chem. 30 (2011) 887-898.
|
J. Liu, Z. Geng, Z. Fan, et al., Point-of-care testing based on smartphone: the current state-of-the-art (2017-2018), Biosens. Bioelectron. 132 (2019) 17-37.
|
B. Bhavadharini, M.M. Mahalakshmi, K. Maheswari, et al., Use of capillary blood glucose for screening for gestational diabetes mellitus in resource-constrained settings, Acta Diabetol. 53 (2016) 91-97.
|
W. Tang, J. Yang, F. Wang, et al., Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide, Anal. Chim. Acta 1060 (2019) 97-102.
|
X. Xu, K. Liang, J. Zeng, Highly sensitive and portable mercury(ii) ion sensor using personal glucose meter, Anal. Methods 7 (2015) 81-85.
|
W. Xiao, Y. Gao, Y. Zhang, et al., Enhanced 3D paper-based devices with a personal glucose meter for highly sensitive and portable biosensing of silver ion, Biosens. Bioelectron. 137 (2019) 154-160.
|
Z. Xu, Z. Liu, M. Xiao, et al., A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions, Chem. Eng. J. 394 (2020), 124966.
|
S. Qiu, L. Yuan, Y. Wei, et al., DNA template-mediated click chemistry-based portable signal-on sensor for ochratoxin A detection, Food Chem. 297 (2019), 124929.
|
A.G.A. Aggidis, J.D. Newman, G.A. Aggidis, Investigating pipeline and state of the art blood glucose biosensors to formulate next steps, Biosens. Bioelectron. 74 (2015) 243-262.
|
Y. Xiang, Y. Lu, Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets, Nat. Chem. 3 (2011) 697-703.
|
G. Rousseau, R. Asmolov, L. Grammatico-Guillon, et al., Rapid detection of bacterial meningitis using a point-of-care glucometer, Eur. J. Emerg. Med. 26 (2019) 41-46.
|
R. Chavali, N.S. Kumar Gunda, S. Naicker, et al., Detection of Escherichia coli in potable water using personal glucose meters, Anal. Methods 6 (2014) 6223-6227.
|
D. Kwon, H. Lee, H. Yoo, et al., Facile method for enrofloxacin detection in milk using a personal glucose meter, Sens Actuators B Chem. 254 (2018) 935-939.
|
J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective, Biosens. Bioelectron. 20 (2005) 2435-2453.
|
L. Wu, G. Li, X. Xu, et al., Application of nano-ELISA in food analysis: recent advances and challenges, Trends Analyt. Chem. 113 (2019) 140-156.
|
G. Li, X. Zhang, F. Zheng, et al., Emerging nanosensing technologies for the detection of beta-agonists, Food Chem. 332 (2020), 127431.
|
D. Quesada-Gonzalez, A. Merkoci, Nanomaterial-based devices for point-of-care diagnostic applications, Chem. Soc. Rev. 47 (2018) 4697-4709.
|
D. Ratautas, E. Ramonas, L. Marcinkeviciene, et al., Wiring gold nanoparticles and redox enzymes: a self-sufficient nanocatalyst for the direct oxidation of carbohydrates with molecular oxygen, ChemCatChem 10 (2018) 971-974.
|
J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57 (2012) 724-803.
|
Y. Chen, S. Zhou, L. Li, et al., Nanomaterials-based sensitive electrochemiluminescence biosensing, Nano Today 12 (2017) 98-115.
|
Y.L. Zhou, M. Yang, K. Sun, et al., Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals, J. Am. Chem. Soc. 132 (2010) 6006-6013.
|
Y. Zhou, Z. Zhu, W. Huang, et al., Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption, Angew. Chem. Int. Ed. Engl. 50 (2011) 11456-11459.
|
Z. Li, Z. Zhu, W. Liu, et al., Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies, J. Am. Chem. Soc. 134 (2012) 3322-3325.
|
Y. Yang, A.M. Asiri, Z. Tang, et al., Graphene based materials for biomedical applications, Mater. Today 16 (2013) 365-373.
|
Y. Zhou, X.L. Tian, Y.S. Li, et al., An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II), Biosens. Bioelectron. 26 (2011) 3700-3704.
|
F. Sun, X. Sun, Y. Jia, et al., Ultrasensitive detection of prostate specific antigen using a personal glucose meter based on DNA-mediated immunoreaction, Analyst 144 (2019) 6019-6024.
|
J.G. Croissant, Y. Fatieiev, A. Almalik, et al., Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications, Adv. Healthc. Mater. 7 (2018), 1700831.
|
L. Ye, G. Zhao, W. Dou, An ultrasensitive sandwich immunoassay with a glucometer readout for portable and quantitative detection of Cronobacter sakazakii, Anal. Methods 9 (2017) 6286-6292.
|
Y. Luo, W. Dou, G. Zhao, Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles, Anal. Bioanal. Chem. 409 (2017) 4139-4147.
|
L. Ye, G. Zhao, W. Dou, An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/ SiO(2) nanocomposites and immune magnetic nanoparticles, Talanta 182 (2018) 354-362.
|
G. Bai, X. Xu, Q. Dai, et al., An electrochemical enzymatic nanoreactor based on dendritic mesoporous silica nanoparticles for living cell H2O2 detection, Analyst 144 (2019) 481-487.
|
Y. Wang, Y. Yang, T. Wu, et al., Dendritic porous silica nanoparticles with high-curvature structures for a dual-mode DNA sensor based on fluorometer and person glucose meter, Microchim. Acta 188 (2021), 407.
|
L. Yang, Y. Wang, C. Yao, et al., Highly sensitive and portable aptasensor by using enzymatic nanoreactors as labels, Microchem. J. 168 (2021), 106407.
|
Y. Chen, Y. Xianyu, X. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis, Acc. Chem. Res. 50 (2017) 310-319.
|
F. Li, R. Zhang, H. Kang, et al., Facile and sensitive detection of clenbuterol in pork using a personal glucose meter, Anal. Methods 9 (2017) 6507-6512.
|
S. Gao, J. Hao, D. Su, et al., Facile and sensitive detection of norfloxacin in animal-derived foods using immuno-personal glucose meter, Eur. Food Res. Technol. 247 (2021) 2635-2644.
|
S. Chen, J. Zhang, N. Gan, et al., An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification, Microchim. Acta 182 (2014) 815-822.
|
S. Chen, N. Gan, H. Zhang, et al., A portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter, Anal. Bioanal. Chem. 407 (2015) 2499-2507.
|
L. Zhao, L. Teng, J. Zhang, et al., Point-of-care detection of microcystin-LR with a personal glucose meter in drinking water source, Chin. Chem. Lett. 30 (2019) 1035-1037.
|
R. Ye, C. Zhu, Y. Song, et al., One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk, Nanoscale 8 (2016) 18980-18986.
|
H. Bai, S. Bu, C. Wang, et al., Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout, Mikrochim. Acta 187 (2020), 220.
|
B.C. Vidal Jr, T.C. Deivaraj, J. Yang, et al., Stability and hybridization-driven aggregation of silver nanoparticle-oligonucleotide conjugates, New J. Chem. 29 (2005) 812-816.
|
A.R. Herdt, S.M. Drawz, Y. Kang, et al., DNA dissociation and degradation at gold nanoparticle surfaces, Colloids Surf. B Biointerfaces 51 (2006) 130-139.
|
F. Qiao, J. Liu, F. Li, et al., Antibody and DNA dual-labeled gold nanoparticles: stability and reactivity, Appl. Surf. Sci. 254 (2008) 2941-2946.
|
N.C. Seeman, H.F. Sleiman, DNA nanotechnology, Nat. Rev. Mater. 3 (2017), 17068.
|
Y. Zhao, X. Zuo, Q. Li, et al., Nucleic acids analysis, Sci. China Chem. 64 (2021) 171-203.
|
P. Du, M. Jin, G. Chen, et al., A competitive bio-barcode amplification immunoassay for small molecules based on nanoparticles, Sci. Rep. 6 (2016), 38114.
|
Y. Du, Y. Zhou, Y. Wen, et al., Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin, Mikrochim. Acta 186 (2019), 840.
|
X. Xiang, Y. Shang, F. Li, et al., A microfluidic genoserotyping strategy for fast and objective identification of common Salmonella serotypes isolated from retail food samples in China, Anal. Chim. Acta 1201 (2022), 339657.
|
J. Yin, Y. Liu, S. Wang, et al., Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification, Sens. Actuators B Chem. 256 (2018) 573-579.
|
Y. Wang, A.M. Abd El-Aty, G. Chen, et al., A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly, Microchim. Acta 189 (2022), 114.
|
Q. Guo, J. Han, S. Shan, et al., DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA, Biosens. Bioelectron. 86 (2016) 990-995.
|
H.Y. Kim, K.S. Park, H.G. Park, Glucose oxidase-like activity of cerium oxide nanoparticles: Use for personal glucose meter-based label-free target DNA detection, Theranostics 10 (2020) 4507-4514.
|
H. Qi, S. Yue, S. Bi, et al., Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors, Biosens. Bioelectron. 110 (2018) 207-217.
|
X. Xia, H. Yang, J. Cao, et al., Isothermal nucleic acid amplification for food safety analysis, Trends Analyt. Chem. 153 (2022), 116641.
|
Y. Yang, T. Wu, L.P. Xu, et al., Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy, Talanta 226 (2021), 122132.
|
Y. Gu, X. Yang, S. Hu, et al., Sensitive glucometer-based microfluidic immune-sensing platform via DNA signal amplification coupled with enzymatic reaction, Sens. Actuators B Chem. 329 (2021), 129055.
|
L. Guo, B. Lu, Q. Dong, et al., One-tube smart genetic testing via coupling isothermal amplification and three-way nucleic acid circuit to glucometers, Anal. Chim. Acta 1106 (2020) 191-198.
|
Y. Zhao, F. Chen, Q. Li, et al., Isothermal amplification of nucleic acids, Chem. Rev. 115 (2015) 12491-12545.
|
E.M. McConnell, I. Cozma, Q. Mou, et al., Biosensing with DNAzymes, Chem. Soc. Rev. 50 (2021) 8954-8994.
|
H. Yin, H. Kuang, L. Liu, et al., A ligation DNAzyme-induced magnetic nanoparticles assembly for ultrasensitive detection of copper ions, ACS Appl. Mater. Interfaces 6 (2014) 4752-4757.
|
C. Liu, Y. Hu, Q. Pan, et al., A microRNA-triggered self-powered DNAzyme walker operating in living cells, Biosens. Bioelectron. 136 (2019) 31-37.
|
Y.F. Li, R.R. Breaker, Phosphorylating DNA with DNA, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 2746-2751.
|
B.M. Brandsen, A.R. Hesser, M.A. Castner, et al., DNA-catalyzed hydrolysis of esters and aromatic amides, J. Am. Chem. Soc. 135 (2013) 16014-16017.
|
J. Ming, W. Fan, T.-F. Jiang, et al., Portable and sensitive detection of copper(II) ion based on personal glucose meters and a ligation DNAzyme releasing strategy, Sens. Actuators B Chem. 240 (2017) 1091-1098.
|
Y. Xiang, Y. Lu, An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter, Chem. Commun. 49 (2013) 585-587.
|
X. Yang, D. Shi, S. Zhu, et al., Portable aptasensor of aflatoxin B1 in bread based on a personal glucose meter and DNA walking machine, ACS Sens. 3 (2018) 1368-1375.
|
S. Zhang, Y. Luan, M. Xiong, et al., DNAzyme amplified aptasensing platform for ochratoxin A detection using a personal glucose meter, ACS Appl. Mater. Interfaces 13 (2021) 9472-9481.
|
L. Zeng, J. Gong, P. Rong, et al., A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device, Talanta 198 (2019) 412-416.
|
X. Fu, K. Xu, J. Ye, et al., Glucoamylase-labeled nanogold flowers for in situ enhanced sensitivity of a glucometer-based enzyme immunoassay, Anal. Methods 7 (2015) 507-512.
|
S. Taebi, M. Keyhanfar, A. Noorbakhsh, A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter, J. Immunol. Methods 458 (2018) 26-32.
|
B. Lin, D. Liu, J. Yan, et al., Enzyme-encapsulated liposome-linked immunosorbent assay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers, ACS Appl. Mater. Interfaces 8 (2016) 6890-6897.
|
Z. Wang, Z. Chen, N. Gao, et al., Transmutation of personal glucose meters into portable and highly sensitive microbial pathogen detection platform, Small 11 (2015) 4970-4975.
|
A. Reddy, F. Maley, Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase, J. Biol. Chem. 271 (1996) 13953-13957.
|
F. Yin, R. Cai, S. Gui, et al., A portable and quantitative detection of microRNA-21 based on cascade enzymatic reactions with dual signal outputs, Talanta 235 (2021), 122802.
|
D. Tang, Y. Lin, Q. Zhou, et al., Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection, Anal. Chem. 86 (2014) 11451-11458.
|
Z. Gao, D. Tang, M. Xu, et al., Nanoparticle-based pseudo hapten for target-responsive cargo release from a magnetic mesoporous silica nanocontainer, Chem. Commun. 50 (2014) 6256-6258.
|
L. Fu, J. Zhuang, W. Lai, et al., Portable and quantitative monitoring of heavy metal ions using DNAzyme-capped mesoporous silica nanoparticles with a glucometer readout, J. Mater. Chem. B 1 (2013) 6123-6128.
|
X. Liang, L. Wang, D. Wang, et al., Portable and quantitative monitoring of mercury ions using DNA-gated mesoporous silica nanoparticles using a glucometer readout, Chem. Commun. 52 (2016) 2192-2194.
|
J. Tang, Y. Huang, H. Liu, et al., Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers, Biosens. Bioelectron. 79 (2016) 508-514.
|
D. Nie, Z. Zhang, D. Guo, et al., A flexible assay strategy for non-glucose targets based on sulfhydryl-terminated liposomes combined with personal glucometer, Biosens. Bioelectron. 175 (2021), 112884.
|
Y. Shao, H. Jia, T. Cao, et al., Supramolecular hydrogels based on DNA self-assembly, Acc. Chem. Res. 50 (2017) 659-668.
|
P.L. Wang, L.H. Xie, E.A. Joseph, et al., Metal-organic frameworks for food safety, Chem. Rev. 119 (2019) 10638-10690.
|
L. Yan, Z. Zhu, Y. Zou, et al., Target-responsive "sweet" hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets, J. Am. Chem. Soc. 135 (2013) 3748-3751.
|
Y. Cao, F. Mo, Y. Liu, et al., Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter, Biosens. Bioelectron. 198 (2022), 113819.
|
N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal-organic frameworks, Chem. Rev. 114 (2014) 10575-10612.
|
N. Liu, D. Nie, Z. Zhao, et al., Ultrasensitive immunoassays based on biotin-streptavidin amplified system for quantitative determination of family zearalenones, Food Control 57 (2015) 202-209.
|
Y. Shao, H. Duan, S. Zhou, et al., Biotin-streptavidin system-mediated ratiometric multiplex immunochromatographic assay for simultaneous and accurate quantification of three mycotoxins, J. Agric. Food Chem. 67 (2019) 9022-9031.
|
C.M. Dundas, D. Demonte, S. Park, Streptavidin-biotin technology: Improvements and innovations in chemical and biological applications, Appl. Microbiol. Biotechnol. 97 (2013) 9343-9353.
|
P.C. Weber, D.H. Ohlendorf, J.J. Wendoloski, et al., Structural origins of high-affinity biotin binding to streptavidin, Science 243 (1989) 85-88.
|
P. Tiwary, Molecular determinants and bottlenecks in the dissociation dynamics of biotin-streptavidin, J. Phys. Chem. B 121 (2017) 10841-10849.
|
F. Li, X. Li, N. Zhu, et al., An aptasensor for the detection of ampicillin in milk using a personal glucose meter, Anal. Methods 12 (2020) 3376-3381.
|
D. Huang, Z. Shi, J. Qian, et al., A CRISPR-Cas12a-derived biosensor enabling portable personal glucose meter readout for quantitative detection of SARS-CoV-2, Biotechnol. Bioeng. 118 (2021) 1587-1596.
|
C. Zhou, D. Huang, Z. Wang, et al., CRISPR Cas12a-based "sweet" biosensor coupled with personal glucose meter readout for the point-of-care testing of Salmonella, J. Food Sci. 87 (2022) 4137-4147.
|
D. Huang, Z. Shi, J. Qian, et al., A CRISPR-Cas12a-derived biosensor enabling portable personal glucose meter readout for quantitative detection of SARS-CoV-2, Biotechnol. Bioeng. 118 (2021) 1587-1596.
|
L. Yin, S. Man, S. Ye, et al., CRISPR-Cas based virus detection: recent advances and perspectives, Biosens. Bioelectron. 193 (2021), 113541.
|
B. Fang, Z. Jia, C. Liu, et al., A versatile CRISPR Cas12a-based point-of-care biosensor enabling convenient glucometer readout for ultrasensitive detection of pathogen nucleic acids, Talanta 249 (2022), 123657.
|
R.D. Peavy, D.D. Metcalfe, Understanding the mechanisms of anaphylaxis, Curr. Opin. Allergy Clin. Immunol. 8 (2008) 310-315.
|
S. Morais, L.A. Tortajada-Genaro, A. Maquieira, et al., Biosensors for food allergy detection according to specific IgE levels in serum, Trends Analyt. Chem. 127 (2020), 115904.
|
J.K. Ahn, H.Y. Kim, C.Y. Lee, et al., Label-free and washing-free alkaline phosphatase assay using a personal glucose meter, J. Biol. Eng. 13 (2019), 51.
|
H. Han, J. Park, J.K. Ahn, Immunoglobulin E detection method based on cascade enzymatic reaction utilizing portable personal glucose meter, Sensors (Basel) 21 (2021), 6396.
|
Y. Zhao, X. Chen, S. Lin, et al., Integrated immunochromatographic strip with glucometer readout for rapid quantification of phosphorylated proteins, Anal. Chim. Acta 964 (2017) 1-6.
|
H. Huang, G. Zhao, W. Dou, Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay, Biosens. Bioelectron. 107 (2018) 266-271.
|
J. Zhang, Y. Xiang, M. Wang, et al., Dose-dependent response of personal glucose meters to nicotinamide coenzymes: Applications to point-of-care diagnostics of many non-glucose targets in a single step, Angew. Chem. Int. Ed. Engl. 55 (2016) 732-736.
|