Citation: | Xiqing Bian, Yida Zhang, Na Li, Menglin Shi, Xiaolin Chen, Hui-Lu Zhang, Jie Liu, Jian-Lin Wu. Ultrasensitive quantification of trace amines based on N-phosphorylation labeling chip 2D LC-QQQ/MS[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 315-322. doi: 10.1016/j.jpha.2023.02.003 |
T. Pradhan, H.S. Jung, J.H. Jang, et al., Chemical sensing of neurotransmitters, Chem. Soc. Rev. 43 (2014) 4684-4713.
|
S.W. Black, M.D. Schwartz, T.M. Chen, et al., Trace Amine-Associated Receptor 1 Agonists as Narcolepsy Therapeutics, Biol. Psychiatry 82 (2017) 623-633.
|
G. Rutigliano, A. Accorroni, R. Zucchi, The Case for TAAR1 as a Modulator of Central Nervous System Function, Front. Pharmacol. 8 (2018) 987.
|
D. Narang, S. Tomlinson, A. Holt, et al., Trace amines and their relevance to psychiatry and neurology: a brief overview, Klin. Psikofarmakol. B 21 (2011) 73-79.
|
S.J. Stohs, M. Shara, S.D. Ray, p-Synephrine, ephedrine, p-octopamine and m-synephrine: Comparative mechanistic, physiological and pharmacological properties, Phytother. Res. 34 (2020) 1838-1846.
|
T.L.R. Vogelsang, A. Vattai, E. Schmoeckel, et al., Trace Amine-Associated Receptor 1 (TAAR1) Is a Positive Prognosticator for Epithelial Ovarian Cancer, Int. J. Mol. Sci. 22 (2021) 8479.
|
F.-Q. Wu, T. Fang, L.-X. Yu, et al., ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α, J. Hepatol. 65 (2016) 314-324.
|
A.G. Singal, P. Lampertico, P. Nahon, Epidemiology and surveillance for hepatocellular carcinoma: New trends, J. Hepatol. 72 (2020) 250-261.
|
R.R. Gainetdinov, M.C. Hoener, M.D. Berry, Trace amines and their receptors, Pharmacol. Rev. 70 (2018) 549-620.
|
J.-M.T. Wong, P.A. Malec, O.S. Mabrouk, et al., Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples, J. Chromatogr. A 1446 (2016) 78-90.
|
P. Deng, Y. Zhan, X.Y. Chen, et al., Derivatization methods for quantitative bioanalysis by LC-MS/MS, Bioanalysis 4 (2012) 49-69.
|
H. Khan, Q. Ullah, A. Ahmad, et al., Methods of Trace Amine Analysis in Mammalian Brain, Trace Amines and Neurological Disorders, Elsevier, (2016), pp. 11-26.
|
P.F. Gao, X.F. Guo, H. Wang, et al., Determination of trace biogenic amines with 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)-difluoroboradiaza-s-indacene derivatization using high-performance liquid chromatography and fluorescence detection, J. Sep. Sci. 34 (2011) 1383-1390.
|
Y. Cai, Z. Sun, G. Chen, et al., Rapid analysis of biogenic amines from rice wine with isotope-coded derivatization followed by high performance liquid chromatography-tandem mass spectrometry, Food Chem. 192 (2016) 388-394.
|
N.Y. Shen, S.Y. Zheng, X.Q. Wang, Determination of Biogenic Amines in Pu-erh Tea with Precolumn Derivatization by High-Performance Liquid Chromatography, Food Anal. Methods 10 (2017) 1690-1698.
|
J. Plotka-Wasylka, V. Simeonov, J. Namiesnik, An in situ derivatization - dispersive liquid-liquid microextraction combined with gas-chromatography - mass spectrometry for determining biogenic amines in home-made fermented alcoholic drinks, J. Chromatogr. A 1453 (2016) 10-18.
|
X.W. Chen, D. Gao, F. Liu, et al., A novel quantification method for analysis of twenty natural amino acids in human serum based on N-phosphorylation labeling using reversed-phase liquid chromatography-tandem mass spectrometry, Anal. Chim. Acta 836 (2014) 61-71.
|
X. Gao, X. Bi, J.T. Wei, et al., N-phosphorylation labeling for analysis of twenty natural amino acids and small peptides by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Analyst 138 (2013) 2632-2639.
|
J. Chen, Y. Chen, P. Gong, et al., Novel phosphoryl derivatization method for peptide sequencing by electrospray ionization mass spectrometry, Rapid Commun. Mass Spectrom. 16 (2002) 531-536.
|
X. Hu, X. Bian, W.Y. Gu, et al., Stand out from matrix: Ultra-sensitive LC-MS/MS method for determination of histamine in complex biological samples using derivatization and solid phase extraction, Talanta 225 (2021) 122056.
|
M. Dams, J.L. Dores-Sousa, R.J. Lamers, et al., High-Resolution Nano-Liquid Chromatography with Tandem Mass Spectrometric Detection for the Bottom-Up Analysis of Complex Proteomic Samples, Chromatographia 82 (2019) 101-110.
|
S.K. Piendl, C.R. Raddatz, N.T. Hartner, et al., 2D in Seconds: Coupling of Chip-HPLC with Ion Mobility Spectrometry, Anal. Chem. 91 (2019) 7613-7620.
|
V. Daskova, J. Buter, A.K. Schoonen, et al., Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angew. Chem. Int. Ed. Engl. 60 (2021) 11120-11126.
|
F. Gosetti, E. Mazzucco, M.C. Gennaro, et al., Simultaneous determination of sixteen underivatized biogenic amines in human urine by HPLC-MS/MS, Anal. Bioanal. Chem. 405 (2013) 907-916.
|
Y. Fu, Z. Zhou, Y. Li, et al., High-sensitivity detection of biogenic amines with multiple reaction monitoring in fish based on benzoyl chloride derivatization, J. Chromatogr. A 1465 (2016) 30-37.
|
S. Tufi, M. Lamoree, J. de Boer, et al., Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. A 1395 (2015) 79-87.
|
X.F. Guo, J.Y. Wang, H. Wang, et al., Simultaneous determination of primary and secondary phenethylamines in biological samples by high-performance liquid chromatographic method with fluorescence detection, J. Chromatogr. B 967 (2014) 69-74.
|
J. Zheng, R. Mandal, D.S. Wishart, A sensitive, high-throughput LC-MS/MS method for measuring catecholamines in low volume serum, Anal. Chim. Acta 1037 (2018) 159-167.
|
E.H. McIlhenny, K.E. Pipkin, L.J. Standish, et al., Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography-electrospray ionization-tandem mass spectrometry, J. Chromatogr. A 1216 (2009) 8960-8968.
|
M. van Faassen, R. Bischoff, K. Eijkelenkamp, et al., In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines, Anal. Chem. 92 (2020) 9072-9078.
|
Q. Liu, J.S. Cobb, J.L. Johnson, et al., Performance Comparisons of Nano-LC Systems, Electrospray Sources and LC-MS-MS Platforms, J. Chromatogr. Sci. 52 (2014) 120-127.
|
J.M. Llovet, R. Montal, D. Sia, et al., Molecular therapies and precision medicine for hepatocellular carcinoma, Nat. Rev. Clin. Oncol. 15 (2018) 599-616.
|
L. Xie, Y. Zeng, Z. Dai, et al., Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death, Int. J. Biol. Sci. 14 (2018) 577.
|
Q. Wang, C. Bin, Q. Xue, et al., GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis, Cell Death Dis. 12 (2021) 426.
|
M. Stepien, T. Duarte-Salles, V. Fedirko, et al., Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: Findings from a prospective cohort study, Int. J. Cancer 138 (2016) 348-360.
|
S.J. Stohs, M.J. Hartman, A Review of the Receptor Binding and Pharmacological Effects of N-methyltyramine, Phytother. Res. 29 (2015) 14-16.
|
S. Dhakal, I. Macreadie, Potential contributions of trace amines in Alzheimer's disease and therapeutic prospects, Neural. Regen. Res. 16 (2021) 1394-1396.
|
S.-W. Han, Y.-R. Choi, J.-S. Shin, Biocatalytic Decarboxylation of Aromatic l-Amino Acids with In Situ Removal of Both Products for Enhanced Production of Biogenic Amines, Catal. Letters 151 (2021) 2996-3003.
|
E. Gonzalez-Lopez, K.E. Vrana, Dopamine beta-hydroxylase and its genetic variants in human health and disease, J. Neurochem. 152 (2020) 157-181.
|