Volume 12 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
Jun Xu, Qing Tang, Runhui Zhang, Haoyi Chen, Bee Luan Khoo, Xinguo Zhang, Yue Chen, Hong Yan, Jincheng Li, Huaze Shao, Lihong Liu. Sensitive detection of microRNAs using polyadenine-mediated fluorescent spherical nucleic acids and a microfluidic electrokinetic signal amplification chip[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 808-813. doi: 10.1016/j.jpha.2022.05.009
Citation: Jun Xu, Qing Tang, Runhui Zhang, Haoyi Chen, Bee Luan Khoo, Xinguo Zhang, Yue Chen, Hong Yan, Jincheng Li, Huaze Shao, Lihong Liu. Sensitive detection of microRNAs using polyadenine-mediated fluorescent spherical nucleic acids and a microfluidic electrokinetic signal amplification chip[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 808-813. doi: 10.1016/j.jpha.2022.05.009

Sensitive detection of microRNAs using polyadenine-mediated fluorescent spherical nucleic acids and a microfluidic electrokinetic signal amplification chip

doi: 10.1016/j.jpha.2022.05.009
Funds:

Science and Technology Innovation Strategic Special Project of Guangdong Province ("Climbing Program" Special Project

Grant No.: pdjh2022b0106)

Guangdong College Students Innovation and Entrepreneurship Training Program (Grant No.: S202112121154).

This work was supported financially by the National Natural Science Foundation of China (Grant No.: 81973282)

National College Students Innovation and Entrepreneurship Training Program (Grant No.: 202012121024)

Guangdong Basic and Applied Basic Research Foundation (Grant Nos.: 2018A030313843 and 2021A1515011493)

  • Received Date: Feb. 05, 2022
  • Accepted Date: May 27, 2022
  • Rev Recd Date: May 24, 2022
  • Publish Date: Jun. 01, 2022
  • The identification of tumor-related microRNAs (miRNAs) exhibits excellent promise for the early diagnosis of cancer and other bioanalytical applications. Therefore, we developed a sensitive and efficient biosensor using polyadenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) for miRNA analysis based on strand displacement reactions on gold nanoparticle (AuNP) surfaces and electrokinetic signal amplification (ESA) on a microfluidic chip. In this FSNA, polyA-DNA biosensor was anchored on AuNP surfaces via intrinsic affinity between adenine and Au. The upright conformational polyA-DNA recognition block hybridized with 6-carboxyfluorescein-labeled reporter-DNA, resulting in fluorescence quenching of FSNA probes induced by AuNP-based resonance energy transfer. Reporter DNA was replaced in the presence of target miRNA, leading to the recovery of reporter-DNA fluorescence. Subsequently, reporter-DNAs were accumulated and detected in the front of with Nafion membrane in the microchannel by ESA. Our method showed high selectivity and sensitivity with a limit of detection of 1.3 pM. This method could also be used to detect miRNA-21 in human serum and urine samples, with recoveries of 104.0%–113.3% and 104.9%–108.0%, respectively. Furthermore, we constructed a chip with three parallel channels for the simultaneous detection of multiple tumor-related miRNAs (miRNA-21, miRNA-141, and miRNA-375), which increased the detection efficiency. Our universal method can be applied to other DNA/RNA analyses by altering recognition sequences.
  • loading
  • M.M. Fidler, F. Bray, I. Soerjomataram, The global cancer burden and human development: A review, Scand. J. Public Health 46(2018) 27-36.
    P. Vychytilova-Faltejskova, L. Radova, M. Sachlova, et al., Serum-based microRNA signatures in early diagnosis and prognosis prediction of colon cancer, Carcinogenesis 37(2016) 941-950.
    J. Ye, M. Xu, X. Tian, et al., Research advances in the detection of miRNA, J. Pharm. Anal. 9(2019) 217-226.
    P. Pidíkova, R. Reis, I. Herichova, miRNA clusters with down-regulated expression in human colorectal cancer and their regulation, Int. J. Mol. Sci. 21(2020), 4633.
    Y.-H. Zhang, M. Jin, J. Li, et al., Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer, Biochim. Biophys. Acta Mol. Basis Dis. 1866(2020), 165847.
    B.J. Petri, C.M. Klinge, Regulation of breast cancer metastasis signaling by miRNAs, Cancer Metastasis Rev. 39(2020) 837-886.
    I. Abramovic, M. Ulamec, A. Katusic Bojanac, et al., miRNA in prostate cancer: Challenges toward translation, Epigenomics 12(2020) 543-558.
    E. Várallyay, J. Burgyán, Z. Havelda, MicroRNA detection by northern blotting using locked nucleic acid probes, Nat. Protoc. 3(2008) 190-196.
    E.A. Hunt, D. Broyles, T. Head, et al., MicroRNA detection: Current technology and research strategies, Annu. Rev. Anal. Chem. 8(2015) 217-237.
    L. Li, J. Feng, Y. Fan, et al., Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle, Anal. Chem. 87(2015) 4829-4835.
    Y. Yang, J. Huang, X. Yang, et al., Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells, Anal. Chem. 88(2016) 5981-5987.
    M. Bahram, T. Madrakian, S. Alizadeh, Simultaneous colorimetric determination of morphine and ibuprofen based on the aggregation of gold nanoparticles using partial least square, J. Pharm. Anal. 7(2017) 411-416.
    P. Liang, J. Canoura, H. Yu, et al., Dithiothreitol-regulated coverage of oligonucleotide-modified gold nanoparticles to achieve optimized biosensor performance, ACS Appl. Mater. Interfaces 10(2018) 4233-4242.
    H. Pei, F. Li, Y. Wan, et al., Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates, J. Am. Chem. Soc. 134(2012) 11876-11879.
    D. Zhu, H. Pei, J. Chao, et al., Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes, Nanoscale 7(2015) 18671-18676.
    A. Opdahl, D.Y. Petrovykh, H. Kimura-Suda, et al., Independent control of grafting density and conformation of single-stranded DNA brushes, Proc. Natl. Acad. Sci. U S A 104(2006) 9-14.
    S.M. Schreiner, D.F. Shudy, A.L. Hatch, et al., Controlled and efficient hybridization achieved with DNA probes immobilized solely through preferential DNA-substrate interactions, Anal. Chem. 82(2010) 2803-2810.
    L. Chen, J. Chao, X. Qu, et al., Probing cellular molecules with polyA-based engineered aptamer nanobeacon, ACS Appl. Mater. Interfaces 9(2017) 8014-8020.
    M. Hu, C. Yuan, T. Tian, et al., Single-step, salt-aging-free, and thiol-free freezing construction of AuNP-based bioprobes for advancing CRISPR-based diagnostics, J. Am. Chem. Soc. 142(2020) 7506-7513.
    N. Khandan-Nasab, S. Askarian, A. Mohammadinejad, et al., Biosensors, microfluidics systems and lateral flow assays for circulating microRNA detection: A review, Anal. Biochem. 633(2021), 114406.
    Y. Yang, E. Kannisto, S.K. Patnaik, et al., Ultrafast detection of exosomal RNAs via cationic lipoplex nanoparticles in a micromixer biochip for cancer diagnosis, ACS Appl. Nano Mater. 4(2021) 2806-2819.
    R. Gao, Z. Lv, Y. Mao, et al., SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers, ACS Sens. 4(2019) 938-943.
    C. Wang, Y. Wang, Y. Zhou, et al., High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices, Anal. Bioanal. Chem. 411(2019) 4007-4016.
    L.S. Cheung, X. Wei, D. Martins, et al., Rapid detection of exosomal microRNA biomarkers by electrokinetic concentration for liquid biopsy on chip, Biomicrofluidics 12(2018), 014104.
    W. Ouyang, S.H. Ko, D. Wu, et al., Microfluidic platform for assessment of therapeutic proteins using molecular charge modulation enhanced electrokinetic concentration assays, Anal. Chem. 88(2016) 9669-9677.
    J. Niu, X. Hu, W. Ouyang, et al., Femtomolar detection of lipopolysaccharide in injectables and serum samples using aptamer-coupled reduced graphene oxide in a continuous injection-electrostacking biochip, Anal. Chem. 91(2019) 2360-2367.
    L. Shi, W. Liu, B. Li, et al., Multichannel paper chip-based gas pressure bioassay for simultaneous detection of multiple microRNAs, ACS Appl. Mater. Interfaces 13(2021) 15008-15016.
    J. Liu, Y. Lu, Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes, Nat. Protoc. 1(2006) 246-252.
    T.L. Halo, K.M. McMahon, N.L. Angeloni, et al., NanoFlares for the detection, isolation, and culture of live tumor cells from human blood, Proc. Natl. Acad. Sci. U S A 111(2014) 17104-17109.
    L.-Y. Zhai, M.-X. Li, W.-L. Pan, et al., In situ detection of plasma exosomal microRNA-1246 for breast cancer diagnostics by a Au nanoflare probe, ACS Appl. Mater. Interfaces 10(2018) 39478-39486.
    D. Li, Z. Luo, H. An, et al., Poly-adenine regulated DNA density on AuNPs to construct efficient DNA walker for microRNA-21 detection, Talanta 217(2020), 121056.
    J.H. Lee, Y.-A. Song, J. Han, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane, Lab Chip 8(2008) 596-601.
    D. Zhu, D. Zhao, J. Huang, et al., Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA, Nanomedicine 14(2018) 1797-1807.
    S.J. Kim, S.H. Ko, K.H. Kang, et al., Direct seawater desalination by ion concentration polarization, Nat. Nanotechnol. 5(2010) 297-301.
    Z.K. Shihabi, Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis, Electrophoresis 23(2002) 1612-1617.
    S.H. Ko, Y.-A. Song, S.J. Kim, et al., Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization, Lab Chip 12(2012) 4472-4482.
    W. Zheng, L. Yao, J. Teng, et al., Lateral flow test for visual detection of multiple microRNAs, Sensor. Actuator. B Chem. 264(2018) 320-326.
    R. Chinnappan, R. Mohammed, A. Yaqinuddin, et al., Highly sensitive multiplex detection of microRNA by competitive DNA strand displacement fluorescence assay, Talanta 200(2019) 487-493.
    C.-H. Huang, T.-T. Huang, C.-H. Chiang, et al., A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21, Biosens. Bioelectron. 164(2020), 112320.
    R. Salahandish, A. Ghaffarinejad, E. Omidinia, et al., Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene, Biosens. Bioelectron. 120(2018) 129-136.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (223) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return