Citation: | Jun Xu, Qing Tang, Runhui Zhang, Haoyi Chen, Bee Luan Khoo, Xinguo Zhang, Yue Chen, Hong Yan, Jincheng Li, Huaze Shao, Lihong Liu. Sensitive detection of microRNAs using polyadenine-mediated fluorescent spherical nucleic acids and a microfluidic electrokinetic signal amplification chip[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 808-813. doi: 10.1016/j.jpha.2022.05.009 |
M.M. Fidler, F. Bray, I. Soerjomataram, The global cancer burden and human development: A review, Scand. J. Public Health 46(2018) 27-36.
|
P. Vychytilova-Faltejskova, L. Radova, M. Sachlova, et al., Serum-based microRNA signatures in early diagnosis and prognosis prediction of colon cancer, Carcinogenesis 37(2016) 941-950.
|
J. Ye, M. Xu, X. Tian, et al., Research advances in the detection of miRNA, J. Pharm. Anal. 9(2019) 217-226.
|
P. Pidíkova, R. Reis, I. Herichova, miRNA clusters with down-regulated expression in human colorectal cancer and their regulation, Int. J. Mol. Sci. 21(2020), 4633.
|
Y.-H. Zhang, M. Jin, J. Li, et al., Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer, Biochim. Biophys. Acta Mol. Basis Dis. 1866(2020), 165847.
|
B.J. Petri, C.M. Klinge, Regulation of breast cancer metastasis signaling by miRNAs, Cancer Metastasis Rev. 39(2020) 837-886.
|
I. Abramovic, M. Ulamec, A. Katusic Bojanac, et al., miRNA in prostate cancer: Challenges toward translation, Epigenomics 12(2020) 543-558.
|
E. Várallyay, J. Burgyán, Z. Havelda, MicroRNA detection by northern blotting using locked nucleic acid probes, Nat. Protoc. 3(2008) 190-196.
|
E.A. Hunt, D. Broyles, T. Head, et al., MicroRNA detection: Current technology and research strategies, Annu. Rev. Anal. Chem. 8(2015) 217-237.
|
L. Li, J. Feng, Y. Fan, et al., Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle, Anal. Chem. 87(2015) 4829-4835.
|
Y. Yang, J. Huang, X. Yang, et al., Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells, Anal. Chem. 88(2016) 5981-5987.
|
M. Bahram, T. Madrakian, S. Alizadeh, Simultaneous colorimetric determination of morphine and ibuprofen based on the aggregation of gold nanoparticles using partial least square, J. Pharm. Anal. 7(2017) 411-416.
|
P. Liang, J. Canoura, H. Yu, et al., Dithiothreitol-regulated coverage of oligonucleotide-modified gold nanoparticles to achieve optimized biosensor performance, ACS Appl. Mater. Interfaces 10(2018) 4233-4242.
|
H. Pei, F. Li, Y. Wan, et al., Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates, J. Am. Chem. Soc. 134(2012) 11876-11879.
|
D. Zhu, H. Pei, J. Chao, et al., Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes, Nanoscale 7(2015) 18671-18676.
|
A. Opdahl, D.Y. Petrovykh, H. Kimura-Suda, et al., Independent control of grafting density and conformation of single-stranded DNA brushes, Proc. Natl. Acad. Sci. U S A 104(2006) 9-14.
|
S.M. Schreiner, D.F. Shudy, A.L. Hatch, et al., Controlled and efficient hybridization achieved with DNA probes immobilized solely through preferential DNA-substrate interactions, Anal. Chem. 82(2010) 2803-2810.
|
L. Chen, J. Chao, X. Qu, et al., Probing cellular molecules with polyA-based engineered aptamer nanobeacon, ACS Appl. Mater. Interfaces 9(2017) 8014-8020.
|
M. Hu, C. Yuan, T. Tian, et al., Single-step, salt-aging-free, and thiol-free freezing construction of AuNP-based bioprobes for advancing CRISPR-based diagnostics, J. Am. Chem. Soc. 142(2020) 7506-7513.
|
N. Khandan-Nasab, S. Askarian, A. Mohammadinejad, et al., Biosensors, microfluidics systems and lateral flow assays for circulating microRNA detection: A review, Anal. Biochem. 633(2021), 114406.
|
Y. Yang, E. Kannisto, S.K. Patnaik, et al., Ultrafast detection of exosomal RNAs via cationic lipoplex nanoparticles in a micromixer biochip for cancer diagnosis, ACS Appl. Nano Mater. 4(2021) 2806-2819.
|
R. Gao, Z. Lv, Y. Mao, et al., SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers, ACS Sens. 4(2019) 938-943.
|
C. Wang, Y. Wang, Y. Zhou, et al., High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices, Anal. Bioanal. Chem. 411(2019) 4007-4016.
|
L.S. Cheung, X. Wei, D. Martins, et al., Rapid detection of exosomal microRNA biomarkers by electrokinetic concentration for liquid biopsy on chip, Biomicrofluidics 12(2018), 014104.
|
W. Ouyang, S.H. Ko, D. Wu, et al., Microfluidic platform for assessment of therapeutic proteins using molecular charge modulation enhanced electrokinetic concentration assays, Anal. Chem. 88(2016) 9669-9677.
|
J. Niu, X. Hu, W. Ouyang, et al., Femtomolar detection of lipopolysaccharide in injectables and serum samples using aptamer-coupled reduced graphene oxide in a continuous injection-electrostacking biochip, Anal. Chem. 91(2019) 2360-2367.
|
L. Shi, W. Liu, B. Li, et al., Multichannel paper chip-based gas pressure bioassay for simultaneous detection of multiple microRNAs, ACS Appl. Mater. Interfaces 13(2021) 15008-15016.
|
J. Liu, Y. Lu, Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes, Nat. Protoc. 1(2006) 246-252.
|
T.L. Halo, K.M. McMahon, N.L. Angeloni, et al., NanoFlares for the detection, isolation, and culture of live tumor cells from human blood, Proc. Natl. Acad. Sci. U S A 111(2014) 17104-17109.
|
L.-Y. Zhai, M.-X. Li, W.-L. Pan, et al., In situ detection of plasma exosomal microRNA-1246 for breast cancer diagnostics by a Au nanoflare probe, ACS Appl. Mater. Interfaces 10(2018) 39478-39486.
|
D. Li, Z. Luo, H. An, et al., Poly-adenine regulated DNA density on AuNPs to construct efficient DNA walker for microRNA-21 detection, Talanta 217(2020), 121056.
|
J.H. Lee, Y.-A. Song, J. Han, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane, Lab Chip 8(2008) 596-601.
|
D. Zhu, D. Zhao, J. Huang, et al., Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA, Nanomedicine 14(2018) 1797-1807.
|
S.J. Kim, S.H. Ko, K.H. Kang, et al., Direct seawater desalination by ion concentration polarization, Nat. Nanotechnol. 5(2010) 297-301.
|
Z.K. Shihabi, Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis, Electrophoresis 23(2002) 1612-1617.
|
S.H. Ko, Y.-A. Song, S.J. Kim, et al., Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization, Lab Chip 12(2012) 4472-4482.
|
W. Zheng, L. Yao, J. Teng, et al., Lateral flow test for visual detection of multiple microRNAs, Sensor. Actuator. B Chem. 264(2018) 320-326.
|
R. Chinnappan, R. Mohammed, A. Yaqinuddin, et al., Highly sensitive multiplex detection of microRNA by competitive DNA strand displacement fluorescence assay, Talanta 200(2019) 487-493.
|
C.-H. Huang, T.-T. Huang, C.-H. Chiang, et al., A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21, Biosens. Bioelectron. 164(2020), 112320.
|
R. Salahandish, A. Ghaffarinejad, E. Omidinia, et al., Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene, Biosens. Bioelectron. 120(2018) 129-136.
|