Olabisi Flora Davies-Bolorunduro, Isaac Adeyemi Adeleye, Moshood Olushola Akinleye, Peng George Wang. Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment[J]. Journal of Pharmaceutical Analysis, 2019, 9(3): 201-208.
Citation: Olabisi Flora Davies-Bolorunduro, Isaac Adeyemi Adeleye, Moshood Olushola Akinleye, Peng George Wang. Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment[J]. Journal of Pharmaceutical Analysis, 2019, 9(3): 201-208.

Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment

  • Publish Date: Jun. 10, 2019
  • Thirty-two actinomycetes strains were isolated from sediment samples from 12 different sites at Lagos Lagoon and identified using standard physiological and biochemical procedures as well as 16S rDNA gene sequence analysis. Secondary metabolites were extracted from the strains and their anticancer activity on the K562 (Human acute myelocytic leukemia), HeLa (cervical carcinoma), AGS (Human gastric), MCF-7 (breast adenocarcinoma) and HL-60 (Human acute promyelocytic leukemia) cell lines was determined. The metabolic extracts exhibited cytotoxicity with IC50 values ranging from 0.030 mg/mL to 4.4 mg/mL. The Streptomyces bingchenggensis ULS14 extract was cytotoxic against all the cell lines tested. The bioactivity-guided extraction and purification of the metabolic extracts from this strain yielded two purified anticancer compounds: ULDF4 and ULDF5. The structures of the extracted compounds were determined using spectroscopic analyses, including electrospray ionization mass spectrophotometer and nuclear magnetic resonance (1 Dimensional and 2 Dimensional), and were shown to be structurally similar to staurosporine and kigamicin. The IC50 of ULDF4 and ULDF5 against the HeLa cell line was 0.034 μg/mL and 0.075 μg/mL, respectively. This study is the first to reveal the anticancer potential of actinomycetes from Lagos Lagoon, which could be exploited for therapeutic purposes.
  • Relative Articles

  • Cited by

    Periodical cited type(43)

    1. Zhang, Z.-L., Xu, H.-N., Gong, C.-M. et al. Microorganism-Derived Bisindole Alkaloids With Anticancer Potential and Their Mechanisms: A Comprehensive Review. Chemistry and Biodiversity, 2025. doi:10.1002/cbdv.202402398
    2. Elgendy, M.A., Ahmed, R.A., Hussein, A.A. et al. ANTIOXIDANT AND ANTICANCER ACTIVITY OF ACTIVE SECONDARY METABOLITES PRODUCED BY STREPTOMYCES GRISEORUBENS. Bulletin of Pharmaceutical Sciences. Assiut, 2024, 47(2): 1447-1458. doi:10.21608/bfsa.2024.297751.2163
    3. Abdellatif, A.A.M., Gebily, D.A.S., Elmaghraby, M.M.K. et al. Transforming Roles of Actinobacteria in Sustainable Agriculture: From Soil Health and Plant Productivity Perspective. Metabolomics, Proteomics and Gene Editing Approaches in Biofertilizer Industry: Volume II, 2024, 2: 299-338. doi:10.1007/978-981-97-2910-4_16
    4. Odchimar, N.M.O., Macalalad, M.A.B., Orosco, F.L. From antibiotic to antiviral: computational screening reveals a multi-targeting antibiotic from Streptomyces spp. against Nipah virus fusion proteins. Molecular Diversity, 2024. doi:10.1007/s11030-024-10932-7
    5. Retnowati, Y., Kandowangko, N.Y., Katili, A.S. et al. Diversity of actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas, 2024, 25(3): 907-915. doi:10.13057/biodiv/d250301
    6. Verma, J., Attri, S., Arora, S. et al. Antioxidant and chemoprotective potential of Streptomyces levis strain isolated from human gut. AMB Express, 2023, 13(1): 69. doi:10.1186/s13568-023-01570-7
    7. Saleem, M., Hassan, A., Li, F. et al. Bioprospecting of desert actinobacteria with special emphases on griseoviridin, mitomycin C and a new bacterial metabolite producing Streptomyces sp. PU-KB10–4. BMC Microbiology, 2023, 23(1): 69. doi:10.1186/s12866-023-02770-8
    8. Yao, H., Liu, S., Liu, T. et al. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World Journal of Microbiology and Biotechnology, 2023, 39(7): 172. doi:10.1007/s11274-023-03621-4
    9. Pringgenies, D., Setyati, W.A. Metabolites of Mangrove Sediment Bacteria from Semarang and Karimunjawa as Anti-Fungal and Antibacterial. Trends in Sciences, 2023, 20(5): 6474. doi:10.48048/tis.2023.6474
    10. Hussain, A., Bourguet-Kondracki, M.-L., Majeed, M. et al. Marine life as a source for breast cancer treatment: A comprehensive review. Biomedicine and Pharmacotherapy, 2023, 159: 114165. doi:10.1016/j.biopha.2022.114165
    11. Agarwal, S., Vivekanandan, S., Mooventhan, H. et al. Exploring the Bioactivity of Soil Streptomyces sp. BACSAS14: An In Vitro and In Silico Approach. Current Bioactive Compounds, 2023, 19(9): e020523216419. doi:10.2174/1573407219666230502111736
    12. Retnowati, Y., Katili, A.S. Antibacterial activity of sponge-associated bacteria from Torosiaje marine area, Gorontalo, Indonesia. Biodiversitas, 2023, 24(2): 1151-1156. doi:10.13057/biodiv/d240255
    13. Singh, R., Ali, M., Dubey, A.K. Anti-Candida attributes and in-silico drug-likeness properties of phenyl 2′β, 6′β-trimethyl cyclohexyl ketone and phenyl nonanyl ether produced by Streptomyces chrestomyceticus ADP4. Journal of Applied Microbiology, 2023, 134(1): lxac024. doi:10.1093/jambio/lxac024
    14. Kouroshnia, A., Zeinali, S., Irani, S. et al. Induction of apoptosis and cell cycle arrest in colorectal cancer cells by novel anticancer metabolites of Streptomyces sp. 801. Cancer Cell International, 2022, 22(1): 235. doi:10.1186/s12935-022-02656-1
    15. Sibero, M.T., Frederick, E.H., Lubis, K. et al. ANTIBACTERIAL, CYTOTOXICITY, AND BIOSYNTHETIC GENE CLUSTER ANALYSIS OF CORAL-ASSOCIATED ACTINOBACTERIA FROM MENJANGAN BESAR ISLAND, KARIMUNJAWA NATIONAL PARK. Rasayan Journal of Chemistry, 2022, 15(4): 2692-2702. doi:10.31788/RJC.2022.1548084
    16. Khoshakhlagh, A., Abroun, S., Aghaei, S.S. et al. Analysis of the A549 cell line affected by anticancer bioactive compounds of Actinomycetes isolated from saline soils. Archives of Microbiology, 2022, 204(10): 641. doi:10.1007/s00203-022-03258-1
    17. Pattnaik, S., Imchen, M., Kumavath, R. et al. Bioactive Microbial Metabolites in Cancer Therapeutics: Mining, Repurposing, and Their Molecular Targets. Current Microbiology, 2022, 79(10): 300. doi:10.1007/s00284-022-02990-7
    18. Mohammadi, M., Khaleghi, M., Shakeri, S. et al. Isolation of Actinobacteria Strains From Environmental Samples and Assessment of Their Bioactivity. 2022, 9(1): 8-15. doi:10.34172/ajcmi.2022.02
    19. Naligama, K.N., Weerasinghe, K.E., Halmillawewa, A.P. Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments, Sri Lanka. Polish Journal of Microbiology, 2022, 71(2): 191-204. doi:10.33073/PJM-2022-017
    20. Hu, Y., Chen, S., Yang, F. et al. Marine indole alkaloids—isolation, structure and bioactivities. Marine Drugs, 2021, 19(12): 658. doi:10.3390/md19120658
    21. Homero, U., Tortella, G., Sandoval, E. et al. Extracellular Polymeric Substances (EPS) produced by Streptomyces sp. biofilms: Chemical composition and anticancer properties. Microbiological Research, 2021, 253: 126877. doi:10.1016/j.micres.2021.126877
    22. Fahmy, N.M., Abdel-Tawab, A.M. Isolation and characterization of marine sponge–associated Streptomyces sp. NMF6 strain producing secondary metabolite(s) possessing antimicrobial, antioxidant, anticancer, and antiviral activities. Journal of Genetic Engineering and Biotechnology, 2021, 19(1): 102. doi:10.1186/s43141-021-00203-5
    23. Setyati, W.A., Pringgenies, D., Soenardjo, N. et al. Actinomycetes of secondary metabolite producers from mangrove sediments, Central Java, Indonesia. Veterinary World, 2021, 14(10): 2620-2624. doi:10.14202/vetworld.2021.2620-2624
    24. Mbaoji, F.N., Nweze, J.A., Yang, L. et al. Novel marine secondary metabolites worthy of development as anticancer agents: A review. Molecules, 2021, 26(19): 5769. doi:10.3390/molecules26195769
    25. Yang, W., Liang, G., Sun, Y. et al. Bioactive secondary metabolites from marine streptomyces griseorubens f8: Isolation, identification and biological activity assay. Journal of Marine Science and Engineering, 2021, 9(9): 978. doi:10.3390/jmse9090978
    26. Davies-Bolorunduro, O.F., Osuolale, O., Saibu, S. et al. Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon, 2021, 7(8): e07710. doi:10.1016/j.heliyon.2021.e07710
    27. Cheema, M.T., Ponomareva, L.V., Liu, T. et al. Taxonomic and Metabolomics Profiling of Actinobacteria Strains from Himalayan Collection Sites in Pakistan. Current Microbiology, 2021, 78(8): 3044-3057. doi:10.1007/s00284-021-02557-y
    28. García-Davis, S., Reyes, C.P., Lagunes, I. et al. Bioprospecting Antiproliferative Marine Microbiota From Submarine Volcano Tagoro. Frontiers in Marine Science, 2021, 8: 687701. doi:10.3389/fmars.2021.687701
    29. Jagannathan, S.V., Manemann, E.M., Rowe, S.E. et al. Marine actinomycetes, new sources of biotechnological products. Marine Drugs, 2021, 19(7): 365. doi:10.3390/md19070365
    30. Goel, N., Fatima, S.W., Kumar, S. et al. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports, 2021, 30: e00613. doi:10.1016/j.btre.2021.e00613
    31. Sharmili, S.A., Shanmugam, J., Gopal, M. Actinomycetes: Microbial drug factory. The Encyclopedia of Bacteriology Research Developments, 2021, 11: 915-938.
    32. Carroll, A.R., Copp, B.R., Davis, R.A. et al. Marine natural products. Natural Product Reports, 2021, 38(2): 362-413. doi:10.1039/d0np00089b
    33. Fadhilah, Q.G., Santoso, I., Yasman The antagonistic activity of marine actinomycetes from mangrove ecosystem against phytopathogenic fungi colletotrichum sp. ka. Biodiversitas, 2021, 22(2): 640-647. doi:10.13057/biodiv/d220216
    34. Pringgenies, D., Setyati, W.A. Antifungal strains and gene mapping of secondary metabolites in mangrove sediments from Semarang city and Karimunjawa islands, Indonesia. AIMS Microbiology, 2021, 7(4): 499-512. doi:10.3934/microbiol.2021030
    35. Davies-Bolorunduro, O.F., Ajayi, A., Adeleye, I.A. et al. Bioprospecting for antituberculosis natural products - A review. Open Chemistry, 2021, 19(1): 1074-1088. doi:10.1515/chem-2021-0095
    36. Anggelina, A.C., Pringgenies, D., Setyati, W.A. Presence of biosynthetic gene clusters (NRPS/PKS) in actinomycetes of mangrove sediment in Semarang and Karimunjawa, Indonesia. Environment and Natural Resources Journal, 2021, 19(5): 391-401. doi:10.32526/ennrj/19/202100050
    37. El-Metwally, M., Abdel-Mogib, M., Elfedawy, M. et al. Isolation, purification and structure elucidation of three new bioactive secondary metabolites from Streptomyces lividans AM. Biocell, 2021, 45(5): 1263-1271. doi:10.32604/BIOCELL.2021.013198
    38. Rozirwan, Muda, H.I., Ulqodry, T.Z. Short communication: Antibacterial potential of actinomycetes isolated from mangrove sediment in Tanjung api-api, South Sumatra, Indonesia. Biodiversitas, 2020, 21(12): 5723-5728. doi:10.13057/biodiv/d211232
    39. Nadar Rajivgandhi, G., Ramachandran, G., Chenthis Kanisha, C. et al. Anti-biofilm compound of 1, 4-diaza-2, 5-dioxo-3-isobutyl bicyclo[4.3.0]nonane from marine Nocardiopsis sp. DMS 2 (MH900226) against biofilm forming K. pneumoniae. Journal of King Saud University - Science, 2020, 32(8): 3495-3502. doi:10.1016/j.jksus.2020.10.012
    40. Nadar Rajivgandhi, G., Ramachandran, G., Li, J.-L. et al. Molecular identification and structural detection of anti-cancer compound from marine Streptomyces akiyoshiensis GRG 6 (KY457710) against MCF-7 breast cancer cells. Journal of King Saud University - Science, 2020, 32(8): 3463-3469. doi:10.1016/j.jksus.2020.10.008
    41. Shanthi Kumari, K., Shivakrishna, P., Al-Attar, A.M. et al. Antibacterial and cytotoxicity activities of bioactive compounds from Micrococcus species OUS9 isolated from sea water. Journal of King Saud University - Science, 2020, 32(6): 2818-2825. doi:10.1016/j.jksus.2020.07.003
    42. Bilal, M., Iqbal, H.M.N. Biologically active macromolecules: Extraction strategies, therapeutic potential and biomedical perspective. International Journal of Biological Macromolecules, 2020, 151: 1-18. doi:10.1016/j.ijbiomac.2020.02.037
    43. Aboulmagd, A.M., Hassan, H.M., Sayed, A.M. et al. Saccharomonosporine A inspiration; synthesis of potent analogues as potential PIM kinase inhibitors. RSC Advances, 2020, 10(12): 6752-6762. doi:10.1039/c9ra10216g

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.9 %FULLTEXT: 30.9 %META: 65.3 %META: 65.3 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %China: 60.6 %China: 60.6 %India: 2.5 %India: 2.5 %Iran (ISLAMIC Republic Of): 1.3 %Iran (ISLAMIC Republic Of): 1.3 %Nigeria: 3.0 %Nigeria: 3.0 %Other: 1.3 %Other: 1.3 %Thailand: 1.3 %Thailand: 1.3 %United States: 25.4 %United States: 25.4 %其他ChinaIndiaIran (ISLAMIC Republic Of)NigeriaOtherThailandUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (153) PDF downloads(9) Cited by(44)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return