Hui Liu, Yue Zhang, Chengzhi Huang. Development of nitrogen and sulfur-doped carbon dots for cellular imaging[J]. Journal of Pharmaceutical Analysis, 2019, 9(2): 127-132.
Citation: Hui Liu, Yue Zhang, Chengzhi Huang. Development of nitrogen and sulfur-doped carbon dots for cellular imaging[J]. Journal of Pharmaceutical Analysis, 2019, 9(2): 127-132.

Development of nitrogen and sulfur-doped carbon dots for cellular imaging

  • Publish Date: Apr. 10, 2019
  • Heteroatom-doped carbon dots (CDs) have attracted extensive interest because of their improved elec-tronic and fluorescence properties with heteroatom doping. In this study, a new synthetic method for nitrogen (N) and sulfur (S) -doped CDs was developed via a hydrothermal method using methionine and citric acid as raw materials. The as-prepared CDs exhibit excellent optical properties and good bio-compatibility. The spherical N,S-doped CDs have an average diameter of 5 nm. They consist of C, O, N and S, and take on excellent water solubility due to the hydroxyl and carboxyl, amino groups on the surface. The CDs have a photoluminescence quantum yield of 13.8% using quinine sulfate as a reference; the average fluorescence lifetime of the CDs was 3.67 ns. The CDs solution present good photoluminescence properties, and the maximum excitation wavelength and emission wavelength locate at 330 nm and 405 nm, respectively. In addition, their fluorescence intensity almost does not change under the condi-tions of acid, alkali, and high salt, which indicated their anti-photobleaching property and good light stability. Based on the good biocompatibility and strong fluorescence emission of the CDs, they can be used as fluorescent imaging reagents.
  • Relative Articles

  • Cited by

    Periodical cited type(44)

    1. Hamid, M., Humaidi, S., Wijoyo, H. et al. Solvothermal synthesized N–S doped carbon dots derived from cavendish banana peel (Musa paradisiaca) for detection of Fe(III) and Pb(II). Case Studies in Chemical and Environmental Engineering, 2024. doi:10.1016/j.cscee.2024.100832
    2. Khan, M.J., Karim, Z., Pongchaikul, P. et al. Nitrogen and sulfur doped carbon dots coupled cellulose nanofibers: A surface functionalized nanocellulose membranes for air filtration. Journal of the Taiwan Institute of Chemical Engineers, 2024. doi:10.1016/j.jtice.2023.105324
    3. Wang, X., Fan, X., Zhang, B. et al. Fast fluorescent blood sugar sensing using phenylboronic acid functionalized N, S-doped carbon dots. Carbon Letters, 2024, 34(5): 1355-1366. doi:10.1007/s42823-024-00696-3
    4. Xu, D., Guo, D., Zhang, J. et al. Innovative tumor interstitial fluid-triggered carbon dot-docetaxel nanoassemblies for targeted drug delivery and imaging of HER2-positive breast cancer. International Journal of Pharmaceutics, 2024. doi:10.1016/j.ijpharm.2024.124145
    5. Gu, C., Jiao, Y., Gao, Y. et al. Synthesis of nitrogen-doped fluorescent carbon dots for determination of nickel ions and morin from aqueous solution simultaneously. Microchemical Journal, 2024. doi:10.1016/j.microc.2024.110317
    6. Mansour, F.R., Hamid, M.A.A., Gamal, A. et al. Nitrogen sulfur co doped carbon quantum dots as fluorescent probe for quantitative determination of monosodium glutamate in food samples. Journal of Food Composition and Analysis, 2024. doi:10.1016/j.jfca.2024.105972
    7. Li, J., Feng, Z., Zhou, S. et al. Activating the room-temperature phosphorescence of carbon dots for the dual-signal detection of tetracycline and information encryption. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024. doi:10.1016/j.saa.2023.123592
    8. Zhang, R., Fu, F., Cao, J. et al. Nitrogen-Doped Bifunctional Carbon Dots: Photoluminescence Investigation, and Fluorescent Recognition Applications. ChemistrySelect, 2024, 9(4): e202302791. doi:10.1002/slct.202302791
    9. Sousa, H.B.A., Prior, J.A.V. The Role of Carbon Quantum Dots in Environmental Protection. Advanced Materials Technologies, 2024. doi:10.1002/admt.202301073
    10. Khan, R., Qureshi, A., Azhar, M. et al. Recent Progress of Fluorescent Carbon Dots and Graphene Quantum Dots for Biosensors: Synthesis of Solution Methods and their Medical Applications. Journal of Fluorescence, 2024. doi:10.1007/s10895-024-03809-3
    11. Jing, H.H., Shati, A.A., Alfaifi, M.Y. et al. The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. Journal of Advanced Research, 2024. doi:10.1016/j.jare.2024.01.034
    12. Adeola, A.O., Clermont-Paquette, A., Piekny, A. et al. Advances in the design and use of carbon dots for analytical and biomedical applications. Nanotechnology, 2024, 35(1): 012001. doi:10.1088/1361-6528/acfdaf
    13. Pongchaikul, P., Hajidariyor, T., Khetlai, N. et al. Nanostructured N/S doped carbon dots/mesoporous silica nanoparticles and PVA composite hydrogel fabrication for anti-microbial and anti-biofilm application. International Journal of Pharmaceutics: X, 2023. doi:10.1016/j.ijpx.2023.100209
    14. Tang, Y., Xu, Q., Zhu, P. et al. Utilizing machine learning to expedite the fabrication and biological application of carbon dots. Materials Advances, 2023, 4(23): 5974-5997. doi:10.1039/d3ma00443k
    15. Zhang, J., Wang, J., Ouyang, F. et al. A smartphone-integrated portable platform based on polychromatic ratiometric fluorescent paper sensors for visual quantitative determination of norfloxacin. Analytica Chimica Acta, 2023. doi:10.1016/j.aca.2023.341837
    16. Miao, C., Zhou, X., Huang, X. et al. Effectively synthesized functional Si-doped carbon dots with the applications in tyrosinase detection and lysosomal imaging. Analytica Chimica Acta, 2023. doi:10.1016/j.aca.2023.341789
    17. Yan, F., Li, J., Zhao, X. et al. Unveiling Unconventional Luminescence Behavior of Multicolor Carbon Dots Derived from Phenylenediamine. Journal of Physical Chemistry Letters, 2023, 14(26): 5975-5984. doi:10.1021/acs.jpclett.3c01497
    18. Mohandoss, S., Ahmad, N., Khan, M.R. et al. Nitrogen and sulfur co-doped photoluminescent carbon dots for highly selective and sensitive detection of Ag+ and Hg2+ ions in aqueous media: Applications in bioimaging and real sample analysis. Environmental Research, 2023. doi:10.1016/j.envres.2023.115898
    19. Chen, B.B., Wang, Y., Liu, M.L. et al. Bandgap Engineering of Scandium Microspheres for Anti-Counterfeiting and Multicolor Imaging. Advanced Optical Materials, 2023, 11(9): 2202850. doi:10.1002/adom.202202850
    20. Atchudan, R., Gangadaran, P., Perumal, S. et al. Green Synthesis of Multicolor Emissive Nitrogen-Doped Carbon Dots for Bioimaging of Human Cancer Cells. Journal of Cluster Science, 2023, 34(3): 1583-1594. doi:10.1007/s10876-022-02337-z
    21. Atchudan, R., Perumal, S., Jebakumar Immanuel Edison, T.N. et al. Biowaste-Derived Heteroatom-Doped Porous Carbon as a Sustainable Electrocatalyst for Hydrogen Evolution Reaction. Catalysts, 2023, 13(3): 542. doi:10.3390/catal13030542
    22. Sonaimuthu, M., Ganesan, S., Anand, S. et al. Multiple heteroatom dopant carbon dots as a novel photoluminescent probe for the sensitive detection of Cu2+ and Fe3+ ions in living cells and environmental sample analysis. Environmental Research, 2023. doi:10.1016/j.envres.2022.115106
    23. Mohammady Maklavany, D., Rouzitalab, Z., Mohammad Amini, A. et al. One-step approach to Quaternary (B, N, P, S)-Doped hierarchical porous carbon derived from Quercus Brantii for highly selective and efficient CO2 Capture: A combined experimental and extensive DFT study. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2022.139950
    24. Padmapriya, A., Krishnaveni, R., Kalaivani, R.A. et al. Synthesis, Characterization and Applications of Plain and Non-Metal Doped, Biomass-Derived Carbon Quantum Dots: A Short Review. Asian Journal of Chemistry, 2022, 34(12): 3048-3058. doi:10.14233/ajchem.2022.24044
    25. Sánchez-Rodriguez, C.E., Tovar-Martinez, E., Reyes-Reyes, M. et al. Synthesis of hollow carbon spheres by chemical activation of carbon nanoparticles for their use in electrochemical capacitor. Carbon Trends, 2022. doi:10.1016/j.cartre.2022.100220
    26. Jadhav, R.W., Khobrekar, P.P., Bugde, S.T. et al. Nanoarchitectonics of neomycin-derived fluorescent carbon dots for selective detection of Fe3+ ions. Analytical Methods, 2022, 14(34): 3289-3298. doi:10.1039/d2ay01040b
    27. Martínez-Periñán, E., Martínez-Sobrino, Á., Bravo, I. et al. Neutral Red-carbon nanodots for selective fluorescent DNA sensing. Analytical and Bioanalytical Chemistry, 2022, 414(18): 5537-5548. doi:10.1007/s00216-022-03980-1
    28. Saengsrichan, A., Saikate, C., Silasana, P. et al. The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe3+ Ion. International Journal of Molecular Sciences, 2022, 23(9): 5001. doi:10.3390/ijms23095001
    29. Abdelhamid, H.N.. Carbon dots-based fluorescence spectroscopy for metal ion sensing. Carbon Dots in Analytical Chemistry: Detection and Imaging, 2022. doi:10.1016/B978-0-323-98350-1.00025-6
    30. Belal, F., Mabrouk, M., Hammad, S. et al. One-pot synthesis of fluorescent nitrogen and sulfur–carbon quantum dots as a sensitive nanosensor for trimetazidine determination. Luminescence, 2021, 36(6): 1435-1443. doi:10.1002/bio.4083
    31. Bi, X., Li, L., Liu, X. et al. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chemistry, 2021. doi:10.1016/j.foodchem.2021.129171
    32. Wu, Z., Chen, R., Pan, S. et al. A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection. Microchemical Journal, 2021. doi:10.1016/j.microc.2021.105976
    33. Sousa, H.B.A., Martins, C.S.M., Prior, J.A.V. You don’t learn that in school: An updated practical guide to carbon quantum dots. Nanomaterials, 2021, 11(3): 1-88. doi:10.3390/nano11030611
    34. Chen, B.B., Huang, C.Z. Preparation of carbon dots and their sensing applications. Sensing and Biosensing with Optically Active Nanomaterials, 2021. doi:10.1016/B978-0-323-90244-1.00005-7
    35. Yang, X., Tian, F., Wen, S. et al. Selective determination of dopamine in pharmaceuticals and human urine using carbon quantum dots as a fluorescent probe. Processes, 2021, 9(1): 1-15. doi:10.3390/pr9010170
    36. Chen, B.B., Liu, M.L., Huang, C.Z. Recent advances of carbon dots in imaging-guided theranostics. TrAC - Trends in Analytical Chemistry, 2021. doi:10.1016/j.trac.2020.116116
    37. Belal, F., Mabrouk, M., Hammad, S. et al. A Novel Eplerenone Ecofriendly Fluorescent Nanosensor Based on Nitrogen and Sulfur-Carbon Quantum Dots. Journal of Fluorescence, 2021, 31(1): 85-90. doi:10.1007/s10895-020-02638-4
    38. Yu, Z.-Y., Duo, S.-W. Facile, ultrafast synthesis of up- and down-conversion fluorescent carbon dots for highly sensitive detection of hematin. Optical Materials, 2020. doi:10.1016/j.optmat.2020.110029
    39. Chen, B.B., Liu, M.L., Huang, C.Z. Carbon dot-based composites for catalytic applications. Green Chemistry, 2020, 22(13): 4034-4054. doi:10.1039/d0gc01014f
    40. Wang, T., Zhang, D., Sun, D. et al. Current status of in vivo bioanalysis of nano drug delivery systems. Journal of Pharmaceutical Analysis, 2020, 10(3): 221-232. doi:10.1016/j.jpha.2020.05.002
    41. Ehtesabi, H., Amirfazli, M., Massah, F. et al. Application of functionalized carbon dots in detection, diagnostic, disease treatment, and desalination: A review. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11(2): 025017. doi:10.1088/2043-6254/ab9191
    42. Bonet-San-Emeterio, M., Algarra, M., Petković, M. et al. Modification of electrodes with N-and S-doped carbon dots. Evaluation of the electrochemical response. Talanta, 2020. doi:10.1016/j.talanta.2020.120806
    43. Zhang, H., Gao, Y., Jiao, Y. et al. Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO-. Analyst, 2020, 145(6): 2212-2218. doi:10.1039/c9an02570g
    44. Jia, Q., Zhao, Z., Liang, K. et al. Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4(2): 449-471. doi:10.1039/c9qm00667b

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.1 %FULLTEXT: 31.1 %META: 65.5 %META: 65.5 %PDF: 3.4 %PDF: 3.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %China: 62.8 %China: 62.8 %Indonesia: 2.0 %Indonesia: 2.0 %Other: 2.7 %Other: 2.7 %Slovenia: 1.4 %Slovenia: 1.4 %United States: 25.7 %United States: 25.7 %其他ChinaIndonesiaOtherSloveniaUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (96) PDF downloads(5) Cited by(50)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return