1. | Hamid, M., Humaidi, S., Wijoyo, H. et al. Solvothermal synthesized N–S doped carbon dots derived from cavendish banana peel (Musa paradisiaca) for detection of Fe(III) and Pb(II). Case Studies in Chemical and Environmental Engineering, 2024. doi:10.1016/j.cscee.2024.100832 | |
2. | Khan, M.J., Karim, Z., Pongchaikul, P. et al. Nitrogen and sulfur doped carbon dots coupled cellulose nanofibers: A surface functionalized nanocellulose membranes for air filtration. Journal of the Taiwan Institute of Chemical Engineers, 2024. doi:10.1016/j.jtice.2023.105324 | |
3. | Wang, X., Fan, X., Zhang, B. et al. Fast fluorescent blood sugar sensing using phenylboronic acid functionalized N, S-doped carbon dots. Carbon Letters, 2024, 34(5): 1355-1366. doi:10.1007/s42823-024-00696-3 | |
4. | Xu, D., Guo, D., Zhang, J. et al. Innovative tumor interstitial fluid-triggered carbon dot-docetaxel nanoassemblies for targeted drug delivery and imaging of HER2-positive breast cancer. International Journal of Pharmaceutics, 2024. doi:10.1016/j.ijpharm.2024.124145 | |
5. | Gu, C., Jiao, Y., Gao, Y. et al. Synthesis of nitrogen-doped fluorescent carbon dots for determination of nickel ions and morin from aqueous solution simultaneously. Microchemical Journal, 2024. doi:10.1016/j.microc.2024.110317 | |
6. | Mansour, F.R., Hamid, M.A.A., Gamal, A. et al. Nitrogen sulfur co doped carbon quantum dots as fluorescent probe for quantitative determination of monosodium glutamate in food samples. Journal of Food Composition and Analysis, 2024. doi:10.1016/j.jfca.2024.105972 | |
7. | Li, J., Feng, Z., Zhou, S. et al. Activating the room-temperature phosphorescence of carbon dots for the dual-signal detection of tetracycline and information encryption. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024. doi:10.1016/j.saa.2023.123592 | |
8. | Zhang, R., Fu, F., Cao, J. et al. Nitrogen-Doped Bifunctional Carbon Dots: Photoluminescence Investigation, and Fluorescent Recognition Applications. ChemistrySelect, 2024, 9(4): e202302791. doi:10.1002/slct.202302791 | |
9. | Sousa, H.B.A., Prior, J.A.V. The Role of Carbon Quantum Dots in Environmental Protection. Advanced Materials Technologies, 2024. doi:10.1002/admt.202301073 | |
10. | Khan, R., Qureshi, A., Azhar, M. et al. Recent Progress of Fluorescent Carbon Dots and Graphene Quantum Dots for Biosensors: Synthesis of Solution Methods and their Medical Applications. Journal of Fluorescence, 2024. doi:10.1007/s10895-024-03809-3 | |
11. | Jing, H.H., Shati, A.A., Alfaifi, M.Y. et al. The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond. Journal of Advanced Research, 2024. doi:10.1016/j.jare.2024.01.034 | |
12. | Adeola, A.O., Clermont-Paquette, A., Piekny, A. et al. Advances in the design and use of carbon dots for analytical and biomedical applications. Nanotechnology, 2024, 35(1): 012001. doi:10.1088/1361-6528/acfdaf | |
13. | Pongchaikul, P., Hajidariyor, T., Khetlai, N. et al. Nanostructured N/S doped carbon dots/mesoporous silica nanoparticles and PVA composite hydrogel fabrication for anti-microbial and anti-biofilm application. International Journal of Pharmaceutics: X, 2023. doi:10.1016/j.ijpx.2023.100209 | |
14. | Tang, Y., Xu, Q., Zhu, P. et al. Utilizing machine learning to expedite the fabrication and biological application of carbon dots. Materials Advances, 2023, 4(23): 5974-5997. doi:10.1039/d3ma00443k | |
15. | Zhang, J., Wang, J., Ouyang, F. et al. A smartphone-integrated portable platform based on polychromatic ratiometric fluorescent paper sensors for visual quantitative determination of norfloxacin. Analytica Chimica Acta, 2023. doi:10.1016/j.aca.2023.341837 | |
16. | Miao, C., Zhou, X., Huang, X. et al. Effectively synthesized functional Si-doped carbon dots with the applications in tyrosinase detection and lysosomal imaging. Analytica Chimica Acta, 2023. doi:10.1016/j.aca.2023.341789 | |
17. | Yan, F., Li, J., Zhao, X. et al. Unveiling Unconventional Luminescence Behavior of Multicolor Carbon Dots Derived from Phenylenediamine. Journal of Physical Chemistry Letters, 2023, 14(26): 5975-5984. doi:10.1021/acs.jpclett.3c01497 | |
18. | Mohandoss, S., Ahmad, N., Khan, M.R. et al. Nitrogen and sulfur co-doped photoluminescent carbon dots for highly selective and sensitive detection of Ag+ and Hg2+ ions in aqueous media: Applications in bioimaging and real sample analysis. Environmental Research, 2023. doi:10.1016/j.envres.2023.115898 | |
19. | Chen, B.B., Wang, Y., Liu, M.L. et al. Bandgap Engineering of Scandium Microspheres for Anti-Counterfeiting and Multicolor Imaging. Advanced Optical Materials, 2023, 11(9): 2202850. doi:10.1002/adom.202202850 | |
20. | Atchudan, R., Gangadaran, P., Perumal, S. et al. Green Synthesis of Multicolor Emissive Nitrogen-Doped Carbon Dots for Bioimaging of Human Cancer Cells. Journal of Cluster Science, 2023, 34(3): 1583-1594. doi:10.1007/s10876-022-02337-z | |
21. | Atchudan, R., Perumal, S., Jebakumar Immanuel Edison, T.N. et al. Biowaste-Derived Heteroatom-Doped Porous Carbon as a Sustainable Electrocatalyst for Hydrogen Evolution Reaction. Catalysts, 2023, 13(3): 542. doi:10.3390/catal13030542 | |
22. | Sonaimuthu, M., Ganesan, S., Anand, S. et al. Multiple heteroatom dopant carbon dots as a novel photoluminescent probe for the sensitive detection of Cu2+ and Fe3+ ions in living cells and environmental sample analysis. Environmental Research, 2023. doi:10.1016/j.envres.2022.115106 | |
23. | Mohammady Maklavany, D., Rouzitalab, Z., Mohammad Amini, A. et al. One-step approach to Quaternary (B, N, P, S)-Doped hierarchical porous carbon derived from Quercus Brantii for highly selective and efficient CO2 Capture: A combined experimental and extensive DFT study. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2022.139950 | |
24. | Padmapriya, A., Krishnaveni, R., Kalaivani, R.A. et al. Synthesis, Characterization and Applications of Plain and Non-Metal Doped, Biomass-Derived Carbon Quantum Dots: A Short Review. Asian Journal of Chemistry, 2022, 34(12): 3048-3058. doi:10.14233/ajchem.2022.24044 | |
25. | Sánchez-Rodriguez, C.E., Tovar-Martinez, E., Reyes-Reyes, M. et al. Synthesis of hollow carbon spheres by chemical activation of carbon nanoparticles for their use in electrochemical capacitor. Carbon Trends, 2022. doi:10.1016/j.cartre.2022.100220 | |
26. | Jadhav, R.W., Khobrekar, P.P., Bugde, S.T. et al. Nanoarchitectonics of neomycin-derived fluorescent carbon dots for selective detection of Fe3+ ions. Analytical Methods, 2022, 14(34): 3289-3298. doi:10.1039/d2ay01040b | |
27. | Martínez-Periñán, E., Martínez-Sobrino, Á., Bravo, I. et al. Neutral Red-carbon nanodots for selective fluorescent DNA sensing. Analytical and Bioanalytical Chemistry, 2022, 414(18): 5537-5548. doi:10.1007/s00216-022-03980-1 | |
28. | Saengsrichan, A., Saikate, C., Silasana, P. et al. The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe3+ Ion. International Journal of Molecular Sciences, 2022, 23(9): 5001. doi:10.3390/ijms23095001 | |
29. | Abdelhamid, H.N.. Carbon dots-based fluorescence spectroscopy for metal ion sensing. Carbon Dots in Analytical Chemistry: Detection and Imaging, 2022. doi:10.1016/B978-0-323-98350-1.00025-6 | |
30. | Belal, F., Mabrouk, M., Hammad, S. et al. One-pot synthesis of fluorescent nitrogen and sulfur–carbon quantum dots as a sensitive nanosensor for trimetazidine determination. Luminescence, 2021, 36(6): 1435-1443. doi:10.1002/bio.4083 | |
31. | Bi, X., Li, L., Liu, X. et al. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chemistry, 2021. doi:10.1016/j.foodchem.2021.129171 | |
32. | Wu, Z., Chen, R., Pan, S. et al. A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection. Microchemical Journal, 2021. doi:10.1016/j.microc.2021.105976 | |
33. | Sousa, H.B.A., Martins, C.S.M., Prior, J.A.V. You don’t learn that in school: An updated practical guide to carbon quantum dots. Nanomaterials, 2021, 11(3): 1-88. doi:10.3390/nano11030611 | |
34. | Chen, B.B., Huang, C.Z. Preparation of carbon dots and their sensing applications. Sensing and Biosensing with Optically Active Nanomaterials, 2021. doi:10.1016/B978-0-323-90244-1.00005-7 | |
35. | Yang, X., Tian, F., Wen, S. et al. Selective determination of dopamine in pharmaceuticals and human urine using carbon quantum dots as a fluorescent probe. Processes, 2021, 9(1): 1-15. doi:10.3390/pr9010170 | |
36. | Chen, B.B., Liu, M.L., Huang, C.Z. Recent advances of carbon dots in imaging-guided theranostics. TrAC - Trends in Analytical Chemistry, 2021. doi:10.1016/j.trac.2020.116116 | |
37. | Belal, F., Mabrouk, M., Hammad, S. et al. A Novel Eplerenone Ecofriendly Fluorescent Nanosensor Based on Nitrogen and Sulfur-Carbon Quantum Dots. Journal of Fluorescence, 2021, 31(1): 85-90. doi:10.1007/s10895-020-02638-4 | |
38. | Yu, Z.-Y., Duo, S.-W. Facile, ultrafast synthesis of up- and down-conversion fluorescent carbon dots for highly sensitive detection of hematin. Optical Materials, 2020. doi:10.1016/j.optmat.2020.110029 | |
39. | Chen, B.B., Liu, M.L., Huang, C.Z. Carbon dot-based composites for catalytic applications. Green Chemistry, 2020, 22(13): 4034-4054. doi:10.1039/d0gc01014f | |
40. | Wang, T., Zhang, D., Sun, D. et al. Current status of in vivo bioanalysis of nano drug delivery systems. Journal of Pharmaceutical Analysis, 2020, 10(3): 221-232. doi:10.1016/j.jpha.2020.05.002 | |
41. | Ehtesabi, H., Amirfazli, M., Massah, F. et al. Application of functionalized carbon dots in detection, diagnostic, disease treatment, and desalination: A review. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11(2): 025017. doi:10.1088/2043-6254/ab9191 | |
42. | Bonet-San-Emeterio, M., Algarra, M., Petković, M. et al. Modification of electrodes with N-and S-doped carbon dots. Evaluation of the electrochemical response. Talanta, 2020. doi:10.1016/j.talanta.2020.120806 | |
43. | Zhang, H., Gao, Y., Jiao, Y. et al. Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO-. Analyst, 2020, 145(6): 2212-2218. doi:10.1039/c9an02570g | |
44. | Jia, Q., Zhao, Z., Liang, K. et al. Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4(2): 449-471. doi:10.1039/c9qm00667b | |