Rintaro Sogawa, Tetsuya Saita, Yuta Yamamoto, Sakiko Kimura, Yutaka Narisawa, Shinya Kimura, Masashi Shin. Development of a competitive enzyme-linked immunosorbent assay for therapeutic drug monitoring of afatinib[J]. Journal of Pharmaceutical Analysis, 2019, 9(1): 49-54.
Citation: Rintaro Sogawa, Tetsuya Saita, Yuta Yamamoto, Sakiko Kimura, Yutaka Narisawa, Shinya Kimura, Masashi Shin. Development of a competitive enzyme-linked immunosorbent assay for therapeutic drug monitoring of afatinib[J]. Journal of Pharmaceutical Analysis, 2019, 9(1): 49-54.

Development of a competitive enzyme-linked immunosorbent assay for therapeutic drug monitoring of afatinib

  • Publish Date: Feb. 10, 2019
  • Afatinib is an oral tyrosine kinase inhibitor (TKI) approved for treating advanced non-small cell lung cancer. It is necessary to develop a simple quantification method for TKIs in order to facilitate therapeutic drug monitoring (TDM) in clinical settings. This study sought to develop a simple and sensitive com-petitive enzyme-linked immunosorbent assay (ELISA) to quantify afatinib in plasma for routine phar-macokinetic applications. An anti-afatinib antibody was obtained using (S)-N-4-(3-chloro-4-fluor-ophenyl)-7-(tetrahydrofuran-3-yloxy)-quinazoline-4,6-diamine (CTQD), which has the same sub-structure as afatinib, as a hapten. Enzyme labeling of afatinib with horseradish peroxidase was similarly performed using CTQD. A simple competitive ELISA for afatinib was developed based on the principle of direct competition between afatinib and the enzyme marker for the anti-afatinib antibody, which had been immobilized on the plastic surface of a microtiter plate. Plasma afatinib concentrations below the limit of quantification of 30 pg/mL were reproducibly measurable. Also, the values of plasma afatinib levels measured from 20 patients were comparable with those measured by high-performance liquid chromatography, and there was a strong correlation between the values determined by both methods (Y = 0.976X – 0.207, r = 0.975). As indicated by its specificity and sensitivity, this newly developed ELISA for afatinib is an important tool for TDM and studies of the pharmacokinetics of afatinib.
  • Relative Articles

  • Cited by

    Periodical cited type(19)

    1. Chu, F., Zhang, W., Hu, H. New findings on the incidence and management of CNS adverse reactions in ALK-positive NSCLC with lorlatinib treatment. Discover Oncology, 2024, 15(1): 444. doi:10.1007/s12672-024-01339-9
    2. Kumar, H., Kumar, L., Verma, R. AFATINIB-A COMPREHENSIVE REVIEW OF ANALYTICAL METHODS DEVELOPED IN PHARMACEUTICALS AND BIOLOGICAL MATRICES. International Journal of Applied Pharmaceutics, 2024, 16(4): 23-28. doi:10.22159/ijap.2024v16i4.50330
    3. Jahanban-Esfahlan, A., Amarowicz, R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. International Journal of Biological Macromolecules, 2024, 266: 131132. doi:10.1016/j.ijbiomac.2024.131132
    4. Kataoka, H., Saita, T., Yamamoto, Y. et al. Development of a specific and sensitive sandwich enzyme-linked immunosorbent assay for the quantification of dasatinib. Analytical Biochemistry, 2023, 678: 115272. doi:10.1016/j.ab.2023.115272
    5. Zhu, Z., Zhang, Y., Xue, J. et al. Fluorescent immunochromatographic test strip for therapeutic drug monitoring of methotrexate with high sensitivity and wide dynamic range. Microchimica Acta, 2023, 190(9): 342. doi:10.1007/s00604-023-05917-6
    6. Yamamoto, Y., Saita, T., Kataoka, H. et al. Localization of Sites of Osimertinib Action in Rat Intestine, Skin, and Lung by Immunohistochemistry. Acta Histochemica et Cytochemica, 2023, 56(6): 145-151. doi:10.1267/ahc.23-00055
    7. Saita, T., Kataoka, H., Sogawa, R. et al. Development of an enzyme-linked immunosorbent assay for the quantification of O-Phosphoethanolamine in human plasma. Analytical Biochemistry, 2022, 659: 114952. doi:10.1016/j.ab.2022.114952
    8. Kataoka, H., Saita, T., Oka, A. et al. An Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Brigatinib and Gilteritinib Using a Specific Polyclonal Antibody. Biological and Pharmaceutical Bulletin, 2022, 45(7): 904-909. doi:10.1248/bpb.b22-00166
    9. Wang, Y., Liang, K., Shi, J. et al. Determination of Afatinib in Human Plasma by 2-Dimensional Liquid Chromatography. Pharmacology, 2022, 107(5-6): 290-297. doi:10.1159/000521181
    10. Kataoka, H., Saita, T., Sogawa, R. et al. Development of a Competitive Enzyme-Linked Immunosorbent Assay for the Determination of Sunitinib Unaffected by Light-Induced Isomerization. Biological and Pharmaceutical Bulletin, 2021, 44(10): 1565-1570. doi:10.1248/bpb.b21-00480
    11. Liu, B., Qin, Y., Cao, M. et al. A stable and sensitive enzyme-linked immunosorbent assay (ELISA) for the determination of metsulfuron-methyl residues in foods. Journal of Food Science, 2021, 86(7): 3176-3187. doi:10.1111/1750-3841.15683
    12. Qi, Y., Liu, G. A UPLC–MS/MS method for simultaneous determination of nine antiepileptic drugs in human plasma and its application in TDM. Biomedical Chromatography, 2021, 35(7): e5090. doi:10.1002/bmc.5090
    13. Yamamoto, Y., Saita, T., Oka, A. et al. Development of a sensitive enzyme-linked immunosorbent assay for daptomycin | [ダプトマイシンの高感度な酵素免疫測定法の開発]. Yakugaku Zasshi, 2021, 141(3): 427-431. doi:10.1248/yakushi.20-00224
    14. Guoning, C., Hua, S., Wang, L. et al. A surfactant-mediated sol-gel method for the preparation of molecularly imprinted polymers and its application in a biomimetic immunoassay for the detection of protein. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190: 113511. doi:10.1016/j.jpba.2020.113511
    15. Akbulut, Y., Zengin, A. A molecularly imprinted whatman paper for clinical detection of propranolol. Sensors and Actuators, B: Chemical, 2020, 304: 127276. doi:10.1016/j.snb.2019.127276
    16. Yamamoto, Y., Saita, T., Yamamoto, Y. et al. Immunohistochemical localization of afatinib in male rat intestines and skin after its oral administration. Acta Histochemica, 2019, 121(8): 151439. doi:10.1016/j.acthis.2019.09.001
    17. Kaewwonglom, N., Oliver, M., Cocovi-Solberg, D.J. et al. Reliable Sensing Platform for Plasmonic Enzyme-Linked Immunosorbent Assays Based on Automatic Flow-Based Methodology. Analytical Chemistry, 2019, 91(20): 13260-13267. doi:10.1021/acs.analchem.9b03855
    18. Yamamoto, Y., Saita, T., Sogawa, R. et al. Development of a sandwich enzyme-linked immunosorbent assay for the quantification of ponatinib in serum. Analytical Biochemistry, 2019, 571: 14-20. doi:10.1016/j.ab.2019.02.010
    19. Yamamoto, Y., Saita, T., Oka, A. et al. Localization and accumulation studies of dacomitinib in rat intestines and skin by immunohistochemistry. Acta Histochemica et Cytochemica, 2019, 52(6): 101-106. doi:10.1267/ahc.19031

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.3 %FULLTEXT: 32.3 %META: 67.1 %META: 67.1 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %China: 76.4 %China: 76.4 %United States: 11.8 %United States: 11.8 %其他ChinaUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(1) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return