Mir Hilal Ahmad, Mahino Fatima, Mobarak Hossain, Amal Chandra Mondal. Evaluation of naproxen-induced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats[J]. Journal of Pharmaceutical Analysis, 2018, 8(6): 400-406.
Citation: Mir Hilal Ahmad, Mahino Fatima, Mobarak Hossain, Amal Chandra Mondal. Evaluation of naproxen-induced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats[J]. Journal of Pharmaceutical Analysis, 2018, 8(6): 400-406.

Evaluation of naproxen-induced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats

  • Publish Date: Dec. 10, 2018
  • Naproxen (NP), a nonsteroidal anti-inflammatory drug (NSAID), is used for the treatment of common pain, inflammation and tissue damage. Genotoxicity testing of NP is of prime importance as it represents the largest group of drugs to which humans are exposed. Not many genotoxic studies are reported on NP; therefore, the present study investigated the detailed genotoxic and oxidative stress properties of NP. Male Wistar rats were administered NP orally at the doses of 38.91 and 65.78 mg/kg body weight for 14 days. Reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) activities/levels were measured in the liver, kidney and brain tissues. The aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) activities, and total bilirubin (TBIL) levels were measured in the liver tissues. Micronucleus frequency (micronucleus test MNT) and DNA damage (comet assay) were performed in the bone marrow cells and leukocytes, respectively. The results showed that NP treatment decreased the GSH levels and increased the SOD, CAT, LPO, ALT, AST, ALP and TBIL activities/levels compared to the control (p < 0.05). Results of MNT showed an increased micronucleus induction and comet assay showed a significant increase in DNA damage in the NP treated animals (p < 0.05). Treatment of NP resulted in the biochemical imbalance and induced oxidative stress that deteriorated the integrity of the cells, which caused significant damage to the genetic material and affected liver function in male Wistar rats. Therefore, NP is a potential genotoxic agent that induces genotoxicity and oxidative stress.
  • Relative Articles

  • Cited by

    Periodical cited type(46)

    1. Li, S., Liu, Y., Zhang, Y. et al. Stereoselective behavior of naproxen chiral enantiomers in promoting horizontal transfer of antibiotic resistance genes. Journal of Hazardous Materials, 2025, 489: 137692. doi:10.1016/j.jhazmat.2025.137692
    2. Hasan, S.A., Khaleel, A., Hisaindee, S. et al. Visible-Light-Induced Photocatalytic Degradation of Naproxen Using 5% Cu/TiO2, Transformation Products, and Mechanistic Studies. Molecules, 2024, 29(23): 5752. doi:10.3390/molecules29235752
    3. Bano, A., Aziz, M.K., Ameen, F. et al. Adsorptive removal of naproxen onto nano magnesium oxide-modified castor wood biochar: Treatment of pharmaceutical wastewater via sequential Fenton's-adsorption process. IUBMB Life, 2024, 76(12): 1106-1124. doi:10.1002/iub.2912
    4. Sethi, N., Khokhar, M., Mathur, M. et al. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Seminars in Liver Disease, 2024, 44(4): 430-456. doi:10.1055/s-0044-1791559
    5. Zhang, X., Geng, Q., Lin, L. et al. Insights gained into the injury mechanism of drug and herb induced liver injury in the hepatic microenvironment. Toxicology, 2024, 507: 153900. doi:10.1016/j.tox.2024.153900
    6. Chen, M., Liang, J., Wei, H. et al. Association of alkylphenols exposure with serum liver function markers in pregnant women in Guangxi, China. Ecotoxicology and Environmental Safety, 2024, 282: 116676. doi:10.1016/j.ecoenv.2024.116676
    7. Qureshi, I.Z., Razzaq, A., Naz, S.S. Testing of acute and sub-acute toxicity profile of novel naproxen sodium nanoformulation in male and female mice. Regulatory Toxicology and Pharmacology, 2024, 150: 105650. doi:10.1016/j.yrtph.2024.105650
    8. Karkoszka, M., Rok, J., Kowalska, J. et al. Phototoxic action of meloxicam contributes to dysregulation of redox homeostasis in normal human skin cells – Molecular and biochemical analysis of antioxidant enzymes in melanocytes and fibroblasts. Toxicology in Vitro, 2024, 95: 105745. doi:10.1016/j.tiv.2023.105745
    9. Seker, E.. Effect of naproxen on oxidative stress biomarkers in Gammarus pulex | [Efecto del naproxeno sobre los biomarcadores de estrés oxidativo en Gammarus pulex]. Revista Cientifica de la Facultad de Veterinaria, 2024, 34(3): e34505. doi:10.52973/RCFCV-E34505
    10. Tehrani, E., Faraji, A.R., Shojaei, N. et al. An overview of the characteristics, toxicity, and treatment methods for the degradation of pharmaceutically active compounds: Naproxen as a case study. Journal of Environmental Chemical Engineering, 2023, 11(6): 111575. doi:10.1016/j.jece.2023.111575
    11. Kainat, K.M., Ansari, M.I., Bano, N. et al. Rifampicin-induced ER stress and excessive cytoplasmic vacuolization instigate hepatotoxicity via alternate programmed cell death paraptosis in vitro and in vivo. Life Sciences, 2023, 333: 122164. doi:10.1016/j.lfs.2023.122164
    12. Huynh, N.C., Nguyen, T.T.T., Nguyen, D.T.C. et al. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. Science of the Total Environment, 2023, 898: 165317. doi:10.1016/j.scitotenv.2023.165317
    13. Lee, W., Mun, Y., Lee, K.-Y. et al. Mefenamic Acid-Upregulated Nrf2/SQSTM1 Protects Hepatocytes against Oxidative Stress-Induced Cell Damage. Toxics, 2023, 11(9): 735. doi:10.3390/toxics11090735
    14. Haller, O.J., Semendric, I., George, R.P. et al. The effectiveness of anti-inflammatory agents in reducing chemotherapy-induced cognitive impairment in preclinical models – A systematic review. Neuroscience and Biobehavioral Reviews, 2023, 148: 105120. doi:10.1016/j.neubiorev.2023.105120
    15. Shankar, P., Singh, R.V., Kumar, A. Therapeutic Protection of Arsenic-Induced Oxidative Stress and Hepato-Nephro Toxicity by Syzygium cumini (Seed) Ethanolic Extract (SCEE) in Charles Foster Rats. Toxicology International, 2023, 30(2): 207-224. doi:10.18311/ti/2023/v30i2/32429
    16. Marcu, D., Keyser, S., Petrik, L. et al. Contaminants of Emerging Concern (CECs) and Male Reproductive Health: Challenging the Future with a Double-Edged Sword. Toxics, 2023, 11(4): 330. doi:10.3390/toxics11040330
    17. Dolas, H.. The adsorption of naproxen on adsorbents obtained from pepper stalk extract by green synthesis. Open Chemistry, 2023, 21(1): 20230185. doi:10.1515/chem-2023-0185
    18. Yousuf, S., Shabir, S., Singh, M.P. Protection Against Drug-Induced Liver Injuries Through Nutraceuticals via Amelioration of Nrf-2 Signaling. Journal of the American Nutrition Association, 2023, 42(5): 495-515. doi:10.1080/27697061.2022.2089403
    19. Pavlock, S., McCarthy, D.M., Kesarwani, A. et al. Hippocampal neuroinflammation following combined exposure to cyclophosphamide and naproxen in ovariectomized mice. International Journal of Neuroscience, 2023, 133(2): 159-168. doi:10.1080/00207454.2021.1896508
    20. Abdel-Hamid, N.M., Hamid, M.M.A., Mohamed, A.A. The hepato-fibrogenic potential of both acute and chronic treatments with paracetamol, ibuprofen, and aspirin in rats Running title: The hepato-fibrogenic potential of NSAIDs. Journal of Bioscience and Applied Research, 2022, 8(4): 236-246. doi:10.21608/jbaar.2022.261227
    21. Şahin, M., Arslan, Y., Tomul, F. Removal of naproxen and diclofenac using magnetic nanoparticles/nanocomposites. Research on Chemical Intermediates, 2022, 48(12): 5209-5226. doi:10.1007/s11164-022-04862-y
    22. Razzaq, A., Qureshi, I.Z. Naproxen sodium nanoparticles are less toxic and gastroprotective agents than the conventional NSAID drug naproxen sodium in Balb/c mice. Toxicology and Applied Pharmacology, 2022, 452: 116192. doi:10.1016/j.taap.2022.116192
    23. Souza-Chaves, B.M.D., Bosio, M., Dezotti, M. et al. Advanced electrochemical oxidation applied to benzodiazepine and carbamazepine removal: Aqueous matrix effects and neurotoxicity assessments employing rat hippocampus neuronal activity. Journal of Water Process Engineering, 2022, 49: 102990. doi:10.1016/j.jwpe.2022.102990
    24. Al-Hayder, M.N., Aledani, T.H.W., Al-Mayyahi, R.S. Amelioration of the hepatotoxic effects of nonsteroidal drugs using vitamin C and determination of their relationship with the lipid profile. Journal of Taibah University Medical Sciences, 2022, 17(4): 715-723. doi:10.1016/j.jtumed.2021.11.003
    25. Franco, D.S.P., Georgin, J., Netto, M.S. et al. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): Analytical interpretation via statistical physical model. Journal of Molecular Liquids, 2022, 356: 119021. doi:10.1016/j.molliq.2022.119021
    26. Moreno Ríos, A.L., Gutierrez-Suarez, K., Carmona, Z. et al. Pharmaceuticals as emerging pollutants: Case naproxen an overview. Chemosphere, 2022, 291: 132822. doi:10.1016/j.chemosphere.2021.132822
    27. Américo-Pinheiro, J.H.P., Paschoa, C.V.M., Salomão, G.R. et al. Adsorptive remediation of naproxen from water using in-house developed hybrid material functionalized with iron oxide. Chemosphere, 2022, 289: 133222. doi:10.1016/j.chemosphere.2021.133222
    28. Cao, M.-Y., Wu, J., Xie, C.-Q. et al. Antioxidant and anti-inflammatory activities of Gynura procumbens flowers extract through suppressing LPS-induced MAPK/NF-κB signalling pathways. Food and Agricultural Immunology, 2022, 33(1): 511-529. doi:10.1080/09540105.2022.2098935
    29. Cao, M.-Y., Wu, J., Wu, L. et al. Anti-Inflammatory Effects of Gynura procumbens on RAW264.7 Cells via Regulation of the PI3K/Akt and MAPK Signaling Pathways. Evidence-based Complementary and Alternative Medicine, 2022, 2022: 5925626. doi:10.1155/2022/5925626
    30. da Silva, J.C.G., Dallegrave, E., Rodrigues, G.Z.P. et al. Repeated dose of meloxicam induces genotoxicity and histopathological changes in cardiac tissue of mice. Drug and Chemical Toxicology, 2022, 45(2): 822-833. doi:10.1080/01480545.2020.1778018
    31. Ahmad, M.H., Fatima, M., Ali, M. et al. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson's disease. Neuropharmacology, 2021, 201: 108831. doi:10.1016/j.neuropharm.2021.108831
    32. Georgin, J., da Boit Martinello, K., Franco, D.S.P. et al. Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels. Journal of Environmental Chemical Engineering, 2021, 9(6): 106820. doi:10.1016/j.jece.2021.106820
    33. Bhattacharya, S., Das, P., Bhowal, A. et al. Thermal, Chemical and ultrasonic assisted synthesis of carbonized Biochar and its application for reducing Naproxen: Batch and Fixed bed study and subsequent optimization with response surface methodology (RSM) and artificial neural network (ANN). Surfaces and Interfaces, 2021, 26: 101378. doi:10.1016/j.surfin.2021.101378
    34. Wang, Y., Lu, J., Zhang, S. et al. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. ISME Journal, 2021, 15(9): 2493-2508. doi:10.1038/s41396-021-00945-7
    35. Sarihan, A., Balbay, S. Uv degradation of naproxen adsorbed on graphite oxide. Desalination and Water Treatment, 2021, 230: 419-429. doi:10.5004/dwt.2021.27437
    36. Rania, I., Anjan, A., Sur, T.K. et al. Elucidation of the effect of concomitant administration of Metformin and Diclofenac Sodium on insulin resistance, pro-inflammatory cytokines and oxidative stress markers in in vivo models. Research Journal of Biotechnology, 2021, 16(7): 48-57.
    37. Shabunin, S.V., Vostroilova, G.A., Cheskidova, L.V. et al. In vivo Study of Mutagenic Activity of the Complex Antibacterial Medication of Mastitis in Mice Model. Advances in Animal and Veterinary Sciences, 2021, 9(10): 1601-1607. doi:10.17582/journal.aavs/2021/9.10.1601.1607
    38. Chinwe, E.H., Okum, R.C., Ezeoyili, I.C. et al. Non-steroidal anti-inflammatory drug Ibuprofen modulates brain lipid peroxidation and anti-oxidant enzymes in rat. Comparative Clinical Pathology, 2020, 29(6): 1271-1276. doi:10.1007/s00580-020-03180-2
    39. Bindu, S., Mazumder, S., Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochemical Pharmacology, 2020, 180: 114147. doi:10.1016/j.bcp.2020.114147
    40. Sharma, P., Kaur, P., Ghanghas, P. et al. Selenium Ameliorates Ibuprofen Induced Testicular Toxicity by Redox Regulation: Running Head: Se protects against NSAID induced testicular toxicity. Reproductive Toxicology, 2020, 96: 349-358. doi:10.1016/j.reprotox.2020.08.005
    41. Hung, C.-M., Huang, C.P., Chen, S.-K. et al. Electrochemical analysis of naproxen in water using poly(L-serine)-modified glassy carbon electrode. Chemosphere, 2020, 254: 126686. doi:10.1016/j.chemosphere.2020.126686
    42. Tomul, F., Arslan, Y., Kabak, B. et al. Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water. Science of the Total Environment, 2020, 726: 137828. doi:10.1016/j.scitotenv.2020.137828
    43. Fatima, M., Ahmad, M.H., Srivastav, S. et al. A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats. Neurochemistry International, 2020, 136: 104730. doi:10.1016/j.neuint.2020.104730
    44. Ramírez-Durán, N., Can-Ubando, L.C., Manzanares-Leal, G.L. et al. Biological Technologies Used for the Removal of Nonsteroidal Anti-inflammatory Drugs. Handbook of Environmental Chemistry, 2020, 96: 303-320. doi:10.1007/698_2020_554
    45. Górny, D., Guzik, U., Hupert-Kocurek, K. et al. Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. Ecotoxicology and Environmental Safety, 2019, 167: 505-512. doi:10.1016/j.ecoenv.2018.10.067
    46. Kumar, S., Srivastav, S., Fatima, M. et al. A Synthetic Pro-Drug Peptide Reverses Amyloid-β-Induced Toxicity in the Rat Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 69(2): 499-512. doi:10.3233/JAD-181273

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.7 %FULLTEXT: 32.7 %META: 66.8 %META: 66.8 %PDF: 0.4 %PDF: 0.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.4 %其他: 12.4 %China: 59.3 %China: 59.3 %India: 1.3 %India: 1.3 %Nigeria: 1.3 %Nigeria: 1.3 %Philippines: 1.3 %Philippines: 1.3 %Russian Federation: 2.7 %Russian Federation: 2.7 %United States: 21.7 %United States: 21.7 %其他ChinaIndiaNigeriaPhilippinesRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (150) PDF downloads(1) Cited by(46)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return