1. | Li, S., Liu, Y., Zhang, Y. et al. Stereoselective behavior of naproxen chiral enantiomers in promoting horizontal transfer of antibiotic resistance genes. Journal of Hazardous Materials, 2025, 489: 137692. doi:10.1016/j.jhazmat.2025.137692 | |
2. | Hasan, S.A., Khaleel, A., Hisaindee, S. et al. Visible-Light-Induced Photocatalytic Degradation of Naproxen Using 5% Cu/TiO2, Transformation Products, and Mechanistic Studies. Molecules, 2024, 29(23): 5752. doi:10.3390/molecules29235752 | |
3. | Bano, A., Aziz, M.K., Ameen, F. et al. Adsorptive removal of naproxen onto nano magnesium oxide-modified castor wood biochar: Treatment of pharmaceutical wastewater via sequential Fenton's-adsorption process. IUBMB Life, 2024, 76(12): 1106-1124. doi:10.1002/iub.2912 | |
4. | Sethi, N., Khokhar, M., Mathur, M. et al. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Seminars in Liver Disease, 2024, 44(4): 430-456. doi:10.1055/s-0044-1791559 | |
5. | Zhang, X., Geng, Q., Lin, L. et al. Insights gained into the injury mechanism of drug and herb induced liver injury in the hepatic microenvironment. Toxicology, 2024, 507: 153900. doi:10.1016/j.tox.2024.153900 | |
6. | Chen, M., Liang, J., Wei, H. et al. Association of alkylphenols exposure with serum liver function markers in pregnant women in Guangxi, China. Ecotoxicology and Environmental Safety, 2024, 282: 116676. doi:10.1016/j.ecoenv.2024.116676 | |
7. | Qureshi, I.Z., Razzaq, A., Naz, S.S. Testing of acute and sub-acute toxicity profile of novel naproxen sodium nanoformulation in male and female mice. Regulatory Toxicology and Pharmacology, 2024, 150: 105650. doi:10.1016/j.yrtph.2024.105650 | |
8. | Karkoszka, M., Rok, J., Kowalska, J. et al. Phototoxic action of meloxicam contributes to dysregulation of redox homeostasis in normal human skin cells – Molecular and biochemical analysis of antioxidant enzymes in melanocytes and fibroblasts. Toxicology in Vitro, 2024, 95: 105745. doi:10.1016/j.tiv.2023.105745 | |
9. | Seker, E.. Effect of naproxen on oxidative stress biomarkers in Gammarus pulex | [Efecto del naproxeno sobre los biomarcadores de estrés oxidativo en Gammarus pulex]. Revista Cientifica de la Facultad de Veterinaria, 2024, 34(3): e34505. doi:10.52973/RCFCV-E34505 | |
10. | Tehrani, E., Faraji, A.R., Shojaei, N. et al. An overview of the characteristics, toxicity, and treatment methods for the degradation of pharmaceutically active compounds: Naproxen as a case study. Journal of Environmental Chemical Engineering, 2023, 11(6): 111575. doi:10.1016/j.jece.2023.111575 | |
11. | Kainat, K.M., Ansari, M.I., Bano, N. et al. Rifampicin-induced ER stress and excessive cytoplasmic vacuolization instigate hepatotoxicity via alternate programmed cell death paraptosis in vitro and in vivo. Life Sciences, 2023, 333: 122164. doi:10.1016/j.lfs.2023.122164 | |
12. | Huynh, N.C., Nguyen, T.T.T., Nguyen, D.T.C. et al. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. Science of the Total Environment, 2023, 898: 165317. doi:10.1016/j.scitotenv.2023.165317 | |
13. | Lee, W., Mun, Y., Lee, K.-Y. et al. Mefenamic Acid-Upregulated Nrf2/SQSTM1 Protects Hepatocytes against Oxidative Stress-Induced Cell Damage. Toxics, 2023, 11(9): 735. doi:10.3390/toxics11090735 | |
14. | Haller, O.J., Semendric, I., George, R.P. et al. The effectiveness of anti-inflammatory agents in reducing chemotherapy-induced cognitive impairment in preclinical models – A systematic review. Neuroscience and Biobehavioral Reviews, 2023, 148: 105120. doi:10.1016/j.neubiorev.2023.105120 | |
15. | Shankar, P., Singh, R.V., Kumar, A. Therapeutic Protection of Arsenic-Induced Oxidative Stress and Hepato-Nephro Toxicity by Syzygium cumini (Seed) Ethanolic Extract (SCEE) in Charles Foster Rats. Toxicology International, 2023, 30(2): 207-224. doi:10.18311/ti/2023/v30i2/32429 | |
16. | Marcu, D., Keyser, S., Petrik, L. et al. Contaminants of Emerging Concern (CECs) and Male Reproductive Health: Challenging the Future with a Double-Edged Sword. Toxics, 2023, 11(4): 330. doi:10.3390/toxics11040330 | |
17. | Dolas, H.. The adsorption of naproxen on adsorbents obtained from pepper stalk extract by green synthesis. Open Chemistry, 2023, 21(1): 20230185. doi:10.1515/chem-2023-0185 | |
18. | Yousuf, S., Shabir, S., Singh, M.P. Protection Against Drug-Induced Liver Injuries Through Nutraceuticals via Amelioration of Nrf-2 Signaling. Journal of the American Nutrition Association, 2023, 42(5): 495-515. doi:10.1080/27697061.2022.2089403 | |
19. | Pavlock, S., McCarthy, D.M., Kesarwani, A. et al. Hippocampal neuroinflammation following combined exposure to cyclophosphamide and naproxen in ovariectomized mice. International Journal of Neuroscience, 2023, 133(2): 159-168. doi:10.1080/00207454.2021.1896508 | |
20. | Abdel-Hamid, N.M., Hamid, M.M.A., Mohamed, A.A. The hepato-fibrogenic potential of both acute and chronic treatments with paracetamol, ibuprofen, and aspirin in rats Running title: The hepato-fibrogenic potential of NSAIDs. Journal of Bioscience and Applied Research, 2022, 8(4): 236-246. doi:10.21608/jbaar.2022.261227 | |
21. | Şahin, M., Arslan, Y., Tomul, F. Removal of naproxen and diclofenac using magnetic nanoparticles/nanocomposites. Research on Chemical Intermediates, 2022, 48(12): 5209-5226. doi:10.1007/s11164-022-04862-y | |
22. | Razzaq, A., Qureshi, I.Z. Naproxen sodium nanoparticles are less toxic and gastroprotective agents than the conventional NSAID drug naproxen sodium in Balb/c mice. Toxicology and Applied Pharmacology, 2022, 452: 116192. doi:10.1016/j.taap.2022.116192 | |
23. | Souza-Chaves, B.M.D., Bosio, M., Dezotti, M. et al. Advanced electrochemical oxidation applied to benzodiazepine and carbamazepine removal: Aqueous matrix effects and neurotoxicity assessments employing rat hippocampus neuronal activity. Journal of Water Process Engineering, 2022, 49: 102990. doi:10.1016/j.jwpe.2022.102990 | |
24. | Al-Hayder, M.N., Aledani, T.H.W., Al-Mayyahi, R.S. Amelioration of the hepatotoxic effects of nonsteroidal drugs using vitamin C and determination of their relationship with the lipid profile. Journal of Taibah University Medical Sciences, 2022, 17(4): 715-723. doi:10.1016/j.jtumed.2021.11.003 | |
25. | Franco, D.S.P., Georgin, J., Netto, M.S. et al. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): Analytical interpretation via statistical physical model. Journal of Molecular Liquids, 2022, 356: 119021. doi:10.1016/j.molliq.2022.119021 | |
26. | Moreno Ríos, A.L., Gutierrez-Suarez, K., Carmona, Z. et al. Pharmaceuticals as emerging pollutants: Case naproxen an overview. Chemosphere, 2022, 291: 132822. doi:10.1016/j.chemosphere.2021.132822 | |
27. | Américo-Pinheiro, J.H.P., Paschoa, C.V.M., Salomão, G.R. et al. Adsorptive remediation of naproxen from water using in-house developed hybrid material functionalized with iron oxide. Chemosphere, 2022, 289: 133222. doi:10.1016/j.chemosphere.2021.133222 | |
28. | Cao, M.-Y., Wu, J., Xie, C.-Q. et al. Antioxidant and anti-inflammatory activities of Gynura procumbens flowers extract through suppressing LPS-induced MAPK/NF-κB signalling pathways. Food and Agricultural Immunology, 2022, 33(1): 511-529. doi:10.1080/09540105.2022.2098935 | |
29. | Cao, M.-Y., Wu, J., Wu, L. et al. Anti-Inflammatory Effects of Gynura procumbens on RAW264.7 Cells via Regulation of the PI3K/Akt and MAPK Signaling Pathways. Evidence-based Complementary and Alternative Medicine, 2022, 2022: 5925626. doi:10.1155/2022/5925626 | |
30. | da Silva, J.C.G., Dallegrave, E., Rodrigues, G.Z.P. et al. Repeated dose of meloxicam induces genotoxicity and histopathological changes in cardiac tissue of mice. Drug and Chemical Toxicology, 2022, 45(2): 822-833. doi:10.1080/01480545.2020.1778018 | |
31. | Ahmad, M.H., Fatima, M., Ali, M. et al. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson's disease. Neuropharmacology, 2021, 201: 108831. doi:10.1016/j.neuropharm.2021.108831 | |
32. | Georgin, J., da Boit Martinello, K., Franco, D.S.P. et al. Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels. Journal of Environmental Chemical Engineering, 2021, 9(6): 106820. doi:10.1016/j.jece.2021.106820 | |
33. | Bhattacharya, S., Das, P., Bhowal, A. et al. Thermal, Chemical and ultrasonic assisted synthesis of carbonized Biochar and its application for reducing Naproxen: Batch and Fixed bed study and subsequent optimization with response surface methodology (RSM) and artificial neural network (ANN). Surfaces and Interfaces, 2021, 26: 101378. doi:10.1016/j.surfin.2021.101378 | |
34. | Wang, Y., Lu, J., Zhang, S. et al. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. ISME Journal, 2021, 15(9): 2493-2508. doi:10.1038/s41396-021-00945-7 | |
35. | Sarihan, A., Balbay, S. Uv degradation of naproxen adsorbed on graphite oxide. Desalination and Water Treatment, 2021, 230: 419-429. doi:10.5004/dwt.2021.27437 | |
36. | Rania, I., Anjan, A., Sur, T.K. et al. Elucidation of the effect of concomitant administration of Metformin and Diclofenac Sodium on insulin resistance, pro-inflammatory cytokines and oxidative stress markers in in vivo models. Research Journal of Biotechnology, 2021, 16(7): 48-57.  | |
37. | Shabunin, S.V., Vostroilova, G.A., Cheskidova, L.V. et al. In vivo Study of Mutagenic Activity of the Complex Antibacterial Medication of Mastitis in Mice Model. Advances in Animal and Veterinary Sciences, 2021, 9(10): 1601-1607. doi:10.17582/journal.aavs/2021/9.10.1601.1607 | |
38. | Chinwe, E.H., Okum, R.C., Ezeoyili, I.C. et al. Non-steroidal anti-inflammatory drug Ibuprofen modulates brain lipid peroxidation and anti-oxidant enzymes in rat. Comparative Clinical Pathology, 2020, 29(6): 1271-1276. doi:10.1007/s00580-020-03180-2 | |
39. | Bindu, S., Mazumder, S., Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochemical Pharmacology, 2020, 180: 114147. doi:10.1016/j.bcp.2020.114147 | |
40. | Sharma, P., Kaur, P., Ghanghas, P. et al. Selenium Ameliorates Ibuprofen Induced Testicular Toxicity by Redox Regulation: Running Head: Se protects against NSAID induced testicular toxicity. Reproductive Toxicology, 2020, 96: 349-358. doi:10.1016/j.reprotox.2020.08.005 | |
41. | Hung, C.-M., Huang, C.P., Chen, S.-K. et al. Electrochemical analysis of naproxen in water using poly(L-serine)-modified glassy carbon electrode. Chemosphere, 2020, 254: 126686. doi:10.1016/j.chemosphere.2020.126686 | |
42. | Tomul, F., Arslan, Y., Kabak, B. et al. Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water. Science of the Total Environment, 2020, 726: 137828. doi:10.1016/j.scitotenv.2020.137828 | |
43. | Fatima, M., Ahmad, M.H., Srivastav, S. et al. A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats. Neurochemistry International, 2020, 136: 104730. doi:10.1016/j.neuint.2020.104730 | |
44. | Ramírez-Durán, N., Can-Ubando, L.C., Manzanares-Leal, G.L. et al. Biological Technologies Used for the Removal of Nonsteroidal Anti-inflammatory Drugs. Handbook of Environmental Chemistry, 2020, 96: 303-320. doi:10.1007/698_2020_554 | |
45. | Górny, D., Guzik, U., Hupert-Kocurek, K. et al. Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. Ecotoxicology and Environmental Safety, 2019, 167: 505-512. doi:10.1016/j.ecoenv.2018.10.067 | |
46. | Kumar, S., Srivastav, S., Fatima, M. et al. A Synthetic Pro-Drug Peptide Reverses Amyloid-β-Induced Toxicity in the Rat Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 69(2): 499-512. doi:10.3233/JAD-181273 | |