Satar Tursynbolat, Yrysgul Bakytkarim, Jianzhi Huang, Lishi Wang. Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE[J]. Journal of Pharmaceutical Analysis, 2018, 8(2): 124-130.
Citation: Satar Tursynbolat, Yrysgul Bakytkarim, Jianzhi Huang, Lishi Wang. Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE[J]. Journal of Pharmaceutical Analysis, 2018, 8(2): 124-130.

Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE

  • Publish Date: Apr. 10, 2018
  • An ultrasensitive electrochemical sensor based on polydopamine/carboxylic multi-walled carbon nano-tubes (MWCNTs-COOH) nanocomposites modified glassy carbon electrode (GCE) was presented in this work, which has been developed for highly selective and highly sensitive determination of an anti-microbial drug, metronidazole. The preparation of polydopamine/MWCNTs―COOH nanocomposites/GCE sensor is simple and possesses high reproducible, where polydopamine can be coated on the surface of MWCNTs―COOH via a simple electropolymerization process. Under optimized conditions, the proposed sensor showed ultrasensitive determination for metronidazole with a wide linear detection range from 5 to 5000μmol/dm3 and a low detection limit of 0.25μmol/dm3 (S/N = 3). Moreover, the proposed sensor has been successfully applied for the quantitative determination of metronidazole in real drug samples. This work may provide a novel and effective analytical platform for determination of me-tronidazole in application of real pharmaceutical and biological samples analysis.
  • Relative Articles

  • Cited by

    Periodical cited type(72)

    1. Mobed, A., Darvishi, M., Alivirdiloo, V. et al. Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole. Analytical Science Advances, 2025, 6(1): e70000. doi:10.1002/ansa.70000
    2. Yarba, R., Özcan, L. Electrochemical Determination of Metronidazole using Nanostructured Over-Oxidized Polypyrrole. Analytical and Bioanalytical Electrochemistry, 2025, 17(1): 32-52. doi:10.22034/abec.2025.720370
    3. Satheesh, D., Rajendran, A., Valarmathi, B. et al. Comparative NMR Spectral and Pharmacological Investigation of Some N1-(4-Substituted benzyl/butyl)-2-methyl-4-nitro-1H-imidazoles. Asian Journal of Chemistry, 2025, 37(1): 31-38. doi:10.14233/ajchem.2025.32773
    4. Liu, F., Zhao, Y., Zhang, T. et al. Controlled and restricted growth of cobalt nanoparticles embedded in ordered mesoporous carbons @ carbon nanotubes for metronidazole electrochemical biosensing study. Electroanalysis, 2025, 37(1): e202400168. doi:10.1002/elan.202400168
    5. Tajik, S., Beitollahi, H., Garkani Nejad, F. Novel and simple electrochemical sensing platform based on polypyrrole nanotubes/ZIF-67 nanocomposite/screen printed graphite electrode for sensitive determination of metronidazole. Electrochemistry Communications, 2024, 169: 107824. doi:10.1016/j.elecom.2024.107824
    6. Bhanbhro, P., Baig, J.A., Solangi, I.B. et al. Cadmium oxide/calcium ferrite nanocomposite-based enhanced electrochemical sensing of metronidazole. Microchemical Journal, 2024, 207: 111820. doi:10.1016/j.microc.2024.111820
    7. Li, S., Jiang, X., Xu, W. et al. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. Water Research, 2024, 267: 122456. doi:10.1016/j.watres.2024.122456
    8. Kahraman, O., Turunc, E., Binzet, R. Eco-friendly Synthesis of Silver-Doped Reduced Graphene Oxide Nanocomposite, The Characterization, and Evaluation of Electrochemical Activity. Microchemical Journal, 2024, 206: 111587. doi:10.1016/j.microc.2024.111587
    9. Poomporai Vadivel, R., Venkatesh, K., Alagumalai, K. et al. Fabrication of iron manganese oxide-reduced graphene oxide nanocomposite: A highly effective synergistic electrocatalyst for sensitive metronidazole detection. Ceramics International, 2024, 50(21): 44659-44670. doi:10.1016/j.ceramint.2024.08.313
    10. Shamroukh, A.A., Rabie, E., Assaf, H. et al. A Novel, Effective and Low-Cost Sensor Based on Recycled Eggshell Waste Supported on Chitosan for the Voltammetric Detection of the Antibiotic Metronidazole in Milk and Drug Samples. Journal of Analytical Chemistry, 2024, 79(8): 1132-1142. doi:10.1134/S1061934824700515
    11. Hadjyoussef, M.T., Dakhli, A., Zayani, M.B. Cyclic and Square Wave Voltammetry Analysis of MTZ Using Reactive Electrode Based on Montmorillonite and Na-Alginate. Journal of the Electrochemical Society, 2024, 171(7): 077511. doi:10.1149/1945-7111/ad603a
    12. Sathya Jyothi, N.V., Revathi, V., Chakradhar Sridhar, B. et al. Nickel vanadate-polyaniline nanocomposite for electrochemical sensing of metronidazole in urine and milk. Results in Chemistry, 2024, 8: 101605. doi:10.1016/j.rechem.2024.101605
    13. Akhtar, K., Baig, J.A., Solangi, S.A. et al. Phytoextract based synthesis of TiO2.Al2O3 nanocomposites for efficient electrocatalytic detection of acetaminophen from environmental and pharmaceutical samples. Ceramics International, 2024, 50(7): 11012-11021. doi:10.1016/j.ceramint.2024.01.001
    14. Ying, S.Y., Chu, X.Q., Zeng, H. The impact of mutual interactions between ZIFs-MWCNTs and hemoglobin molecule on electrocatalysis on hydrogen peroxide reduction of integrated heme protein. Ionics, 2024, 30(4): 2299-2312. doi:10.1007/s11581-024-05389-5
    15. Akhtar, K., Baig, J.A., Solangi, I.B. et al. Biosynthesis of titanium oxide-aluminium oxide nanocomposites for electrocatalytic detection of 2, 4, 6-trichlorophenol. Materials Today Communications, 2024, 38: 108137. doi:10.1016/j.mtcomm.2024.108137
    16. Liu, L., Hu, Y., Yang, Y. et al. PDA-assisted immobilization of nZVI on cotton fabric for the removal of rhodamine B and chromium (VI) ion. Cellulose, 2024. doi:10.1007/s10570-024-06332-7
    17. Saliya, C.S., Mathew, N., Samuel, S. et al. Nanomaterials for sensing pharmaceuticals. Smart Nanomaterials for Environmental Applications, 2024. doi:10.1016/B978-0-443-21794-4.00023-5
    18. Singh, M., Rai, V.K., Rai, A. Functionalized Graphene Nanomaterials for Electrochemical Sensors. Nanomaterials and Point of Care Technologies, 2024. doi:10.1201/9781003316435-4
    19. Dongare, P.R., Nille, O.S., Bhavsar, P.S. et al. Analytical applications of graphene oxide-based hydrogels. Comprehensive Analytical Chemistry, 2024, 106: 391-434. doi:10.1016/bs.coac.2024.03.005
    20. Dai, H., Zhou, X., Gu, Z. et al. Highly sensitive and stretchable strain sensor based on modified carboxylic carbon nanotubes/chitosan/polyurethane yarn. Journal of the Textile Institute, 2024, 115(9): 1389-1402. doi:10.1080/00405000.2023.2228577
    21. Li, Z., Shen, F., Mishra, R.K. et al. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Critical Reviews in Analytical Chemistry, 2024, 54(2): 269-314. doi:10.1080/10408347.2022.2072679
    22. Jin, X., Nodehi, M., Baghayeri, M. et al. Development of an impedimetric sensor for susceptible detection of melatonin at picomolar concentrations in diverse pharmaceutical and human specimens. Environmental Research, 2023, 238: 117080. doi:10.1016/j.envres.2023.117080
    23. Mendes Alvarenga, L., dos Reis Feliciano, C., Giordano Alvarenga, B. et al. Preparation of a composite sensor based on a fluorescent and magnetic molecular imprint polymer for metronidazole extraction–detection. Journal of Molecular Liquids, 2023, 390: 123027. doi:10.1016/j.molliq.2023.123027
    24. Pandiyan, R., Vinothkumar, V., Chen, S.-M. et al. Integrated LaFeO3/rGO nanocomposite for the sensitive electrochemical detection of antibiotic drug metronidazole in urine and milk samples. Applied Surface Science, 2023, 635: 157672. doi:10.1016/j.apsusc.2023.157672
    25. Radha, A., Wang, S.-F. Insight into lanthanides REVO4 (RE = Ce, Pr, Nd): a comparative study on RE-site variants in the electrochemical detection of metronidazole in environmental samples. Environmental Science: Nano, 2023, 10(11): 3122-3135. doi:10.1039/d3en00384a
    26. Hussain, S., Sadiq, I., Ahmed Baig, J. et al. Electrocatalytic sensing of metronidazole by R-type hexagonal nanoferrites modified electrode. Inorganic Chemistry Communications, 2023, 153: 110832. doi:10.1016/j.inoche.2023.110832
    27. Laghlimi, C., Moutcine, A., Chtaini, A. et al. Recent advances in electrochemical sensors and biosensors for monitoring drugs and metabolites in pharmaceutical and biological samples. ADMET and DMPK, 2023, 11(2): 151-173. doi:10.5599/admet.1709
    28. Sun, Y., Waterhouse, G.I.N., Qiao, X. et al. Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chemistry, 2023, 410: 135434. doi:10.1016/j.foodchem.2023.135434
    29. Huang, J., Qiu, Z., Lin, J. et al. Ultrasensitive determination of metronidazole using flower-like cobalt anchored on reduced graphene oxide nanocomposite electrochemical sensor. Microchemical Journal, 2023, 188: 108444. doi:10.1016/j.microc.2023.108444
    30. Wang, S., Wang, Y., Ning, Y. et al. Inner filter effect-based near-infrared fluorescent probe for detection of metronidazole on a smartphone-integrated analytical platform. Analyst, 2023, 148(11): 2544-2552. doi:10.1039/d3an00039g
    31. Touati, M., Maatoug, M., Mellah, B. et al. Potential electrode based on montmorillonite and amino acid hybrid for the retention of MTZ. Journal of Applied Electrochemistry, 2023, 53(2): 331-343. doi:10.1007/s10800-022-01763-1
    32. Yao, C., Wei, J., Lin, J. et al. Application progress of nano-materials in detection of antibiotics by electrochemical sensors | [纳米材料在电化学传感器检测抗生素中的应用进展]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(1) doi:10.13801/j.cnki.fhclxb.20220412.001
    33. Sadeghi, M., Shabani-Nooshabadi, M. Use of a nano-porous gold film electrode modified with chitosan / polypyrrole for electrochemical determination of metronidazole in the Presence of Acetaminophen. Chemosphere, 2022, 307: 135722. doi:10.1016/j.chemosphere.2022.135722
    34. Li, S., Zhou, X., Wang, Q. et al. Facile synthesis of hypercrosslinked polymer as high-efficiency adsorbent for the enrichment of nitroimidazoles from water, honey and chicken meat. Journal of Chromatography A, 2022, 1682: 463527. doi:10.1016/j.chroma.2022.463527
    35. Khalil, N.A., Mahmood, H.Sh., Shehab, A.A. Spectrophotometric Determination of Metronidazole in Pharmaceutical Preparations and in Human Blood samples. Egyptian Journal of Chemistry, 2022, 65(8): 397-405. doi:10.21608/ejchem.2022.112958.5134
    36. Szewczyk, J., Aguilar-Ferrer, D., Coy, E. Polydopamine films: Electrochemical growth and sensing applications. European Polymer Journal, 2022, 174: 111346. doi:10.1016/j.eurpolymj.2022.111346
    37. Wu, J., Cai, S., Kong, Q. et al. Preparation of Co, Fe bimetallic materials supported on carbon nanotubes material and its application to rutin. Synthetic Metals, 2022, 287: 117087. doi:10.1016/j.synthmet.2022.117087
    38. Ettadili, F.E., Matrouf, M., Alaoui, O.T. et al. Catalytic effect of silver in reducing metronidazole in human blood and water samples. Case Studies in Chemical and Environmental Engineering, 2022, 5: 100204. doi:10.1016/j.cscee.2022.100204
    39. Zhang, L., Yin, M., Qiu, J. et al. An electrochemical sensor based on CNF@AuNPs for metronidazole hypersensitivity detection. Biosensors and Bioelectronics: X, 2022, 10: 100102. doi:10.1016/j.biosx.2021.100102
    40. Tkach, V.V., Kushnir, M.V., de Oliveira, S.C. et al. The theoretical description for perillartine electrochemical determination, assisted by cobalt oxyhydroxide in pair with its dioxide | [A descrição teórica da determinação eletroquímica do fármaco perilartina, assistida pelo oxihidróxido de cobalto, emparelhado com o seu dióxido]. Revista Colombiana de Ciencias Quimico-Farmaceuticas(Colombia), 2022, 51(3): 1098-1113. doi:10.15446/rcciquifa.v51n3.106036
    41. Sabeti, M., Ensafi, A.A., Rezaei, B. Polydopamine-modified MWCNTs-glassy Carbon Electrode, a Selective Electrochemical Morphine Sensor. Electroanalysis, 2021, 33(11): 2286-2295. doi:10.1002/elan.202100158
    42. Saedi, H., Fat'hi, M.R., Zargar, B. Synthesis of AgNPs functionalized CuMOF/PPy–rGO nanocomposite and its use as an electrochemical sensor for metronidazole determination. Journal of the Chinese Chemical Society, 2021, 68(10): 1954-1964. doi:10.1002/jccs.202100081
    43. Materón, E.M., Wong, A., Freitas, T.A. et al. A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. Journal of Pharmaceutical Analysis, 2021, 11(5): 646-652. doi:10.1016/j.jpha.2021.03.004
    44. Sabeti, M., Ensafi, A.A., Zarean Mousaabadi, K. et al. A Selective Electrochemical Sensor Based on a Modified-Glassy Carbon Electrode Using f-MWCNTs-Polydopamine for Ciprofloxacin Detection. IEEE Sensors Journal, 2021, 21(18): 19714-19721. doi:10.1109/JSEN.2021.3100251
    45. Kesavan, G., Vinothkumar, V., Chen, S.-M. et al. Construction of metal-free oxygen-doped graphitic carbon nitride as an electrochemical sensing platform for determination of antimicrobial drug metronidazole. Applied Surface Science, 2021, 556: 149814. doi:10.1016/j.apsusc.2021.149814
    46. Jeon, W.-Y., Kim, H.-H., Choi, Y.-B. Development of a glucose sensor based on glucose dehydrogenase using polydopamine-functionalized nanotubes. Membranes, 2021, 11(6): 384. doi:10.3390/membranes11060384
    47. Simsir, E.A., Erdemir, S., Tabakci, M. et al. Nano-scale selective and sensitive optical sensor for metronidazole based on fluorescence quenching: 1H-Phenanthro[9, 10-d]imidazolyl-calixarene fluorescent probe. Analytica Chimica Acta, 2021, 1162: 338494. doi:10.1016/j.aca.2021.338494
    48. Meenakshi, S., Rama, R., Pandian, K. et al. Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchemical Journal, 2021, 165: 106151. doi:10.1016/j.microc.2021.106151
    49. Abrahem Sarra, A., Abdul Kader, S., Ibrahim Suhad, A. Different analytical methods for the determination of metronidazole. Research Journal of Chemistry and Environment, 2021, 25(5): 241-245.
    50. Agrawal, N., Savalia, R., Chatterjee, S. Nanostructured zinc oxide film amalgamated with functionalized carbon nanotubes for facile electrochemical determination of nifedipine. Colloids and Surfaces B: Biointerfaces, 2021, 201: 111635. doi:10.1016/j.colsurfb.2021.111635
    51. Gusmão, A.P., Rosenberger, A.G., Muniz, E.C. et al. Characterization of Microfibers of Carbon Nanotubes Obtained by Electrospinning for Use in Electrochemical Sensor. Journal of Polymers and the Environment, 2021, 29(5): 1551-1565. doi:10.1007/s10924-020-01964-9
    52. Kesavan, G., Chen, S.-M. Sonochemical-assisted synthesis of zinc vanadate microstructure for electrochemical determination of metronidazole. Journal of Materials Science: Materials in Electronics, 2021, 32(7): 9377-9391. doi:10.1007/s10854-021-05601-6
    53. Bonyadi, Z., Noghani, F., Dehghan, A. et al. Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125791. doi:10.1016/j.colsurfa.2020.125791
    54. Gopi, P.K., Kesavan, G., Chen, S.-M. et al. Cadmium sulfide quantum dots anchored on reduced graphene oxide for the electrochemical detection of metronidazole. New Journal of Chemistry, 2021, 45(6): 3022-3033. doi:10.1039/d0nj05501h
    55. Bitew, Z., Amare, M. Recent reports on electrochemical determination of selected antibiotics in pharmaceutical formulations: A mini review. Electrochemistry Communications, 2020, 121: 106863. doi:10.1016/j.elecom.2020.106863
    56. Vilian, A.T.E., Ranjith, K.S., Lee, S.J. et al. Hierarchical dense Ni−Co layered double hydroxide supported carbon nanofibers for the electrochemical determination of metronidazole in biological samples. Electrochimica Acta, 2020, 354: 136723. doi:10.1016/j.electacta.2020.136723
    57. Veerakumar, P., Sangili, A., Chen, S.-M. et al. Ultrafine gold nanoparticle embedded poly(diallyldimethylammonium chloride)-graphene oxide hydrogels for voltammetric determination of an antimicrobial drug (metronidazole). Journal of Materials Chemistry C, 2020, 8(22): 7575-7590. doi:10.1039/c9tc06690j
    58. Wang, X., Zhang, S., Zhao, B. Determination of ultra trace amounts of metronidazole by 3-phenyl-N-[4-(10, 15, 20-triphenyl-porphyrin-5-yl)-phenyl]- acrylamide as the fluorescence spectral probe in CTAB microemulsion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227: 117699. doi:10.1016/j.saa.2019.117699
    59. Salahuddin, N., Elfiky, M., Matsuda, A. Sensors and biosensors nanocomposites based on polymer/inorganic nanostructures. Handbook of Polymer Nanocomposites for Industrial Applications, 2020. doi:10.1016/B978-0-12-821497-8.00027-7
    60. Imanzadeh, H., Bakirhan, N.K., Sınag, A. et al. Methods for design and fabrication of nanosensors and their electrochemical applications on pharmaceutical compounds. Nanosensors for Smart Cities, 2020. doi:10.1016/B978-0-12-819870-4.00003-7
    61. Solís, J.C., Galicia, M. High performance of MWCNTs-Chitosan modified glassy carbon electrode for voltammetric trace analysis of Cd(II). International Journal of Electrochemical Science, 2020, 15: 6815-6828. doi:10.20964/2020.07.56
    62. Cheng, W., Zeng, P., Ma, C. et al. Electrochemical sensor for sensitive detection of luteolin based on multi-walled carbon nanotubes/poly(3, 4-ethylenedioxythiophene)-gold nanocomposites. New Journal of Chemistry, 2020, 44(5): 1953-1961. doi:10.1039/c9nj05241k
    63. Zare, A.R., Ensafi, A.A., Rezaei, B. An impedimetric biosensor based on poly(l-lysine)-decorated multiwall carbon nanotubes for the determination of diazinon in water and fruits. Journal of the Iranian Chemical Society, 2019, 16(12): 2777-2785. doi:10.1007/s13738-019-01741-z
    64. Ramki, S., Sukanya, R., Chen, S.-M. et al. Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: Inter-connected path in multi-layered structure for efficient electron transfer. Inorganic Chemistry Frontiers, 2019, 6(7): 1680-1693. doi:10.1039/c9qi00158a
    65. Ranganathan, P., Mutharani, B., Chen, S.-M. et al. Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin. Carbohydrate Polymers, 2019, 214: 317-327. doi:10.1016/j.carbpol.2019.03.053
    66. Dehghani, M., Nasirizadeh, N., Yazdanshenas, M.E. Developing a novel nanocomposite of gold nanowires/ reduced graphene oxide/molecularly imprinted polyaniline for the electrochemical sensing of metronidazole. Journal of Applied Biotechnology Reports, 2019, 6(2): 60-68. doi:10.29252/JABR.06.02.04
    67. Ghalkhani, M., Ghorbani-Bidkorbeh, F. Development of carbon nanostructured based electrochemical sensors for pharmaceutical analysis. Iranian Journal of Pharmaceutical Research, 2019, 18(2): 658-669. doi:10.22037/ijpr.2019.1100645
    68. Yuan, S., Bo, X., Guo, L. In-situ insertion of multi-walled carbon nanotubes in the Fe3O4/N/C composite derived from iron-based metal-organic frameworks as a catalyst for effective sensing acetaminophen and metronidazole. Talanta, 2019, 193: 100-109. doi:10.1016/j.talanta.2018.09.065
    69. Kalaiyarasi, J., Pandian, K. Egg-shell like hollow alumina sphere modified electrode for enhanced electrochemical determination of metronidazole. Journal of the Electrochemical Society, 2019, 166(13): B1151-B1160. doi:10.1149/2.1211912jes
    70. Yalikun, N., Mamat, X., Li, Y. et al. N, s, p-triple doped porous carbon as an improved electrochemical sensor for metronidazole determination. Journal of the Electrochemical Society, 2019, 166(13): B1131-B1137. doi:10.1149/2.0321913jes
    71. Karthik, R., Mutharani, B., Chen, S.-M. et al. Synthesis, characterization and catalytic performance of nanostructured dysprosium molybdate catalyst for selective biomolecule detection in biological and pharmaceutical samples. Journal of Materials Chemistry B, 2019, 7(33): 5065-5077. doi:10.1039/c9tb01020c
    72. Talay Pınar, P., Yardım, Y., Şentürk, Z. Electrochemical oxidation of ranitidine at poly(dopamine) modified carbon paste electrode: Its voltammetric determination in pharmaceutical and biological samples based on the enhancement effect of anionic surfactant. Sensors and Actuators, B: Chemical, 2018, 273: 1463-1473. doi:10.1016/j.snb.2018.07.068

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.6 %FULLTEXT: 31.6 %META: 66.7 %META: 66.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.9 %其他: 2.9 %China: 73.0 %China: 73.0 %France: 2.3 %France: 2.3 %United States: 19.5 %United States: 19.5 %Viet Nam: 2.3 %Viet Nam: 2.3 %其他ChinaFranceUnited StatesViet Nam

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads(3) Cited by(72)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return