1. | Mobed, A., Darvishi, M., Alivirdiloo, V. et al. Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole. Analytical Science Advances, 2025, 6(1): e70000. doi:10.1002/ansa.70000 | |
2. | Yarba, R., Özcan, L. Electrochemical Determination of Metronidazole using Nanostructured Over-Oxidized Polypyrrole. Analytical and Bioanalytical Electrochemistry, 2025, 17(1): 32-52. doi:10.22034/abec.2025.720370 | |
3. | Satheesh, D., Rajendran, A., Valarmathi, B. et al. Comparative NMR Spectral and Pharmacological Investigation of Some N1-(4-Substituted benzyl/butyl)-2-methyl-4-nitro-1H-imidazoles. Asian Journal of Chemistry, 2025, 37(1): 31-38. doi:10.14233/ajchem.2025.32773 | |
4. | Liu, F., Zhao, Y., Zhang, T. et al. Controlled and restricted growth of cobalt nanoparticles embedded in ordered mesoporous carbons @ carbon nanotubes for metronidazole electrochemical biosensing study. Electroanalysis, 2025, 37(1): e202400168. doi:10.1002/elan.202400168 | |
5. | Tajik, S., Beitollahi, H., Garkani Nejad, F. Novel and simple electrochemical sensing platform based on polypyrrole nanotubes/ZIF-67 nanocomposite/screen printed graphite electrode for sensitive determination of metronidazole. Electrochemistry Communications, 2024, 169: 107824. doi:10.1016/j.elecom.2024.107824 | |
6. | Bhanbhro, P., Baig, J.A., Solangi, I.B. et al. Cadmium oxide/calcium ferrite nanocomposite-based enhanced electrochemical sensing of metronidazole. Microchemical Journal, 2024, 207: 111820. doi:10.1016/j.microc.2024.111820 | |
7. | Li, S., Jiang, X., Xu, W. et al. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. Water Research, 2024, 267: 122456. doi:10.1016/j.watres.2024.122456 | |
8. | Kahraman, O., Turunc, E., Binzet, R. Eco-friendly Synthesis of Silver-Doped Reduced Graphene Oxide Nanocomposite, The Characterization, and Evaluation of Electrochemical Activity. Microchemical Journal, 2024, 206: 111587. doi:10.1016/j.microc.2024.111587 | |
9. | Poomporai Vadivel, R., Venkatesh, K., Alagumalai, K. et al. Fabrication of iron manganese oxide-reduced graphene oxide nanocomposite: A highly effective synergistic electrocatalyst for sensitive metronidazole detection. Ceramics International, 2024, 50(21): 44659-44670. doi:10.1016/j.ceramint.2024.08.313 | |
10. | Shamroukh, A.A., Rabie, E., Assaf, H. et al. A Novel, Effective and Low-Cost Sensor Based on Recycled Eggshell Waste Supported on Chitosan for the Voltammetric Detection of the Antibiotic Metronidazole in Milk and Drug Samples. Journal of Analytical Chemistry, 2024, 79(8): 1132-1142. doi:10.1134/S1061934824700515 | |
11. | Hadjyoussef, M.T., Dakhli, A., Zayani, M.B. Cyclic and Square Wave Voltammetry Analysis of MTZ Using Reactive Electrode Based on Montmorillonite and Na-Alginate. Journal of the Electrochemical Society, 2024, 171(7): 077511. doi:10.1149/1945-7111/ad603a | |
12. | Sathya Jyothi, N.V., Revathi, V., Chakradhar Sridhar, B. et al. Nickel vanadate-polyaniline nanocomposite for electrochemical sensing of metronidazole in urine and milk. Results in Chemistry, 2024, 8: 101605. doi:10.1016/j.rechem.2024.101605 | |
13. | Akhtar, K., Baig, J.A., Solangi, S.A. et al. Phytoextract based synthesis of TiO2.Al2O3 nanocomposites for efficient electrocatalytic detection of acetaminophen from environmental and pharmaceutical samples. Ceramics International, 2024, 50(7): 11012-11021. doi:10.1016/j.ceramint.2024.01.001 | |
14. | Ying, S.Y., Chu, X.Q., Zeng, H. The impact of mutual interactions between ZIFs-MWCNTs and hemoglobin molecule on electrocatalysis on hydrogen peroxide reduction of integrated heme protein. Ionics, 2024, 30(4): 2299-2312. doi:10.1007/s11581-024-05389-5 | |
15. | Akhtar, K., Baig, J.A., Solangi, I.B. et al. Biosynthesis of titanium oxide-aluminium oxide nanocomposites for electrocatalytic detection of 2, 4, 6-trichlorophenol. Materials Today Communications, 2024, 38: 108137. doi:10.1016/j.mtcomm.2024.108137 | |
16. | Liu, L., Hu, Y., Yang, Y. et al. PDA-assisted immobilization of nZVI on cotton fabric for the removal of rhodamine B and chromium (VI) ion. Cellulose, 2024. doi:10.1007/s10570-024-06332-7 | |
17. | Saliya, C.S., Mathew, N., Samuel, S. et al. Nanomaterials for sensing pharmaceuticals. Smart Nanomaterials for Environmental Applications, 2024. doi:10.1016/B978-0-443-21794-4.00023-5 | |
18. | Singh, M., Rai, V.K., Rai, A. Functionalized Graphene Nanomaterials for Electrochemical Sensors. Nanomaterials and Point of Care Technologies, 2024. doi:10.1201/9781003316435-4 | |
19. | Dongare, P.R., Nille, O.S., Bhavsar, P.S. et al. Analytical applications of graphene oxide-based hydrogels. Comprehensive Analytical Chemistry, 2024, 106: 391-434. doi:10.1016/bs.coac.2024.03.005 | |
20. | Dai, H., Zhou, X., Gu, Z. et al. Highly sensitive and stretchable strain sensor based on modified carboxylic carbon nanotubes/chitosan/polyurethane yarn. Journal of the Textile Institute, 2024, 115(9): 1389-1402. doi:10.1080/00405000.2023.2228577 | |
21. | Li, Z., Shen, F., Mishra, R.K. et al. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Critical Reviews in Analytical Chemistry, 2024, 54(2): 269-314. doi:10.1080/10408347.2022.2072679 | |
22. | Jin, X., Nodehi, M., Baghayeri, M. et al. Development of an impedimetric sensor for susceptible detection of melatonin at picomolar concentrations in diverse pharmaceutical and human specimens. Environmental Research, 2023, 238: 117080. doi:10.1016/j.envres.2023.117080 | |
23. | Mendes Alvarenga, L., dos Reis Feliciano, C., Giordano Alvarenga, B. et al. Preparation of a composite sensor based on a fluorescent and magnetic molecular imprint polymer for metronidazole extraction–detection. Journal of Molecular Liquids, 2023, 390: 123027. doi:10.1016/j.molliq.2023.123027 | |
24. | Pandiyan, R., Vinothkumar, V., Chen, S.-M. et al. Integrated LaFeO3/rGO nanocomposite for the sensitive electrochemical detection of antibiotic drug metronidazole in urine and milk samples. Applied Surface Science, 2023, 635: 157672. doi:10.1016/j.apsusc.2023.157672 | |
25. | Radha, A., Wang, S.-F. Insight into lanthanides REVO4 (RE = Ce, Pr, Nd): a comparative study on RE-site variants in the electrochemical detection of metronidazole in environmental samples. Environmental Science: Nano, 2023, 10(11): 3122-3135. doi:10.1039/d3en00384a | |
26. | Hussain, S., Sadiq, I., Ahmed Baig, J. et al. Electrocatalytic sensing of metronidazole by R-type hexagonal nanoferrites modified electrode. Inorganic Chemistry Communications, 2023, 153: 110832. doi:10.1016/j.inoche.2023.110832 | |
27. | Laghlimi, C., Moutcine, A., Chtaini, A. et al. Recent advances in electrochemical sensors and biosensors for monitoring drugs and metabolites in pharmaceutical and biological samples. ADMET and DMPK, 2023, 11(2): 151-173. doi:10.5599/admet.1709 | |
28. | Sun, Y., Waterhouse, G.I.N., Qiao, X. et al. Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chemistry, 2023, 410: 135434. doi:10.1016/j.foodchem.2023.135434 | |
29. | Huang, J., Qiu, Z., Lin, J. et al. Ultrasensitive determination of metronidazole using flower-like cobalt anchored on reduced graphene oxide nanocomposite electrochemical sensor. Microchemical Journal, 2023, 188: 108444. doi:10.1016/j.microc.2023.108444 | |
30. | Wang, S., Wang, Y., Ning, Y. et al. Inner filter effect-based near-infrared fluorescent probe for detection of metronidazole on a smartphone-integrated analytical platform. Analyst, 2023, 148(11): 2544-2552. doi:10.1039/d3an00039g | |
31. | Touati, M., Maatoug, M., Mellah, B. et al. Potential electrode based on montmorillonite and amino acid hybrid for the retention of MTZ. Journal of Applied Electrochemistry, 2023, 53(2): 331-343. doi:10.1007/s10800-022-01763-1 | |
32. | Yao, C., Wei, J., Lin, J. et al. Application progress of nano-materials in detection of antibiotics by electrochemical sensors | [纳米材料在电化学传感器检测抗生素中的应用进展]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(1) doi:10.13801/j.cnki.fhclxb.20220412.001 | |
33. | Sadeghi, M., Shabani-Nooshabadi, M. Use of a nano-porous gold film electrode modified with chitosan / polypyrrole for electrochemical determination of metronidazole in the Presence of Acetaminophen. Chemosphere, 2022, 307: 135722. doi:10.1016/j.chemosphere.2022.135722 | |
34. | Li, S., Zhou, X., Wang, Q. et al. Facile synthesis of hypercrosslinked polymer as high-efficiency adsorbent for the enrichment of nitroimidazoles from water, honey and chicken meat. Journal of Chromatography A, 2022, 1682: 463527. doi:10.1016/j.chroma.2022.463527 | |
35. | Khalil, N.A., Mahmood, H.Sh., Shehab, A.A. Spectrophotometric Determination of Metronidazole in Pharmaceutical Preparations and in Human Blood samples. Egyptian Journal of Chemistry, 2022, 65(8): 397-405. doi:10.21608/ejchem.2022.112958.5134 | |
36. | Szewczyk, J., Aguilar-Ferrer, D., Coy, E. Polydopamine films: Electrochemical growth and sensing applications. European Polymer Journal, 2022, 174: 111346. doi:10.1016/j.eurpolymj.2022.111346 | |
37. | Wu, J., Cai, S., Kong, Q. et al. Preparation of Co, Fe bimetallic materials supported on carbon nanotubes material and its application to rutin. Synthetic Metals, 2022, 287: 117087. doi:10.1016/j.synthmet.2022.117087 | |
38. | Ettadili, F.E., Matrouf, M., Alaoui, O.T. et al. Catalytic effect of silver in reducing metronidazole in human blood and water samples. Case Studies in Chemical and Environmental Engineering, 2022, 5: 100204. doi:10.1016/j.cscee.2022.100204 | |
39. | Zhang, L., Yin, M., Qiu, J. et al. An electrochemical sensor based on CNF@AuNPs for metronidazole hypersensitivity detection. Biosensors and Bioelectronics: X, 2022, 10: 100102. doi:10.1016/j.biosx.2021.100102 | |
40. | Tkach, V.V., Kushnir, M.V., de Oliveira, S.C. et al. The theoretical description for perillartine electrochemical determination, assisted by cobalt oxyhydroxide in pair with its dioxide | [A descrição teórica da determinação eletroquímica do fármaco perilartina, assistida pelo oxihidróxido de cobalto, emparelhado com o seu dióxido]. Revista Colombiana de Ciencias Quimico-Farmaceuticas(Colombia), 2022, 51(3): 1098-1113. doi:10.15446/rcciquifa.v51n3.106036 | |
41. | Sabeti, M., Ensafi, A.A., Rezaei, B. Polydopamine-modified MWCNTs-glassy Carbon Electrode, a Selective Electrochemical Morphine Sensor. Electroanalysis, 2021, 33(11): 2286-2295. doi:10.1002/elan.202100158 | |
42. | Saedi, H., Fat'hi, M.R., Zargar, B. Synthesis of AgNPs functionalized CuMOF/PPy–rGO nanocomposite and its use as an electrochemical sensor for metronidazole determination. Journal of the Chinese Chemical Society, 2021, 68(10): 1954-1964. doi:10.1002/jccs.202100081 | |
43. | Materón, E.M., Wong, A., Freitas, T.A. et al. A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. Journal of Pharmaceutical Analysis, 2021, 11(5): 646-652. doi:10.1016/j.jpha.2021.03.004 | |
44. | Sabeti, M., Ensafi, A.A., Zarean Mousaabadi, K. et al. A Selective Electrochemical Sensor Based on a Modified-Glassy Carbon Electrode Using f-MWCNTs-Polydopamine for Ciprofloxacin Detection. IEEE Sensors Journal, 2021, 21(18): 19714-19721. doi:10.1109/JSEN.2021.3100251 | |
45. | Kesavan, G., Vinothkumar, V., Chen, S.-M. et al. Construction of metal-free oxygen-doped graphitic carbon nitride as an electrochemical sensing platform for determination of antimicrobial drug metronidazole. Applied Surface Science, 2021, 556: 149814. doi:10.1016/j.apsusc.2021.149814 | |
46. | Jeon, W.-Y., Kim, H.-H., Choi, Y.-B. Development of a glucose sensor based on glucose dehydrogenase using polydopamine-functionalized nanotubes. Membranes, 2021, 11(6): 384. doi:10.3390/membranes11060384 | |
47. | Simsir, E.A., Erdemir, S., Tabakci, M. et al. Nano-scale selective and sensitive optical sensor for metronidazole based on fluorescence quenching: 1H-Phenanthro[9, 10-d]imidazolyl-calixarene fluorescent probe. Analytica Chimica Acta, 2021, 1162: 338494. doi:10.1016/j.aca.2021.338494 | |
48. | Meenakshi, S., Rama, R., Pandian, K. et al. Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchemical Journal, 2021, 165: 106151. doi:10.1016/j.microc.2021.106151 | |
49. | Abrahem Sarra, A., Abdul Kader, S., Ibrahim Suhad, A. Different analytical methods for the determination of metronidazole. Research Journal of Chemistry and Environment, 2021, 25(5): 241-245.  | |
50. | Agrawal, N., Savalia, R., Chatterjee, S. Nanostructured zinc oxide film amalgamated with functionalized carbon nanotubes for facile electrochemical determination of nifedipine. Colloids and Surfaces B: Biointerfaces, 2021, 201: 111635. doi:10.1016/j.colsurfb.2021.111635 | |
51. | Gusmão, A.P., Rosenberger, A.G., Muniz, E.C. et al. Characterization of Microfibers of Carbon Nanotubes Obtained by Electrospinning for Use in Electrochemical Sensor. Journal of Polymers and the Environment, 2021, 29(5): 1551-1565. doi:10.1007/s10924-020-01964-9 | |
52. | Kesavan, G., Chen, S.-M. Sonochemical-assisted synthesis of zinc vanadate microstructure for electrochemical determination of metronidazole. Journal of Materials Science: Materials in Electronics, 2021, 32(7): 9377-9391. doi:10.1007/s10854-021-05601-6 | |
53. | Bonyadi, Z., Noghani, F., Dehghan, A. et al. Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125791. doi:10.1016/j.colsurfa.2020.125791 | |
54. | Gopi, P.K., Kesavan, G., Chen, S.-M. et al. Cadmium sulfide quantum dots anchored on reduced graphene oxide for the electrochemical detection of metronidazole. New Journal of Chemistry, 2021, 45(6): 3022-3033. doi:10.1039/d0nj05501h | |
55. | Bitew, Z., Amare, M. Recent reports on electrochemical determination of selected antibiotics in pharmaceutical formulations: A mini review. Electrochemistry Communications, 2020, 121: 106863. doi:10.1016/j.elecom.2020.106863 | |
56. | Vilian, A.T.E., Ranjith, K.S., Lee, S.J. et al. Hierarchical dense Ni−Co layered double hydroxide supported carbon nanofibers for the electrochemical determination of metronidazole in biological samples. Electrochimica Acta, 2020, 354: 136723. doi:10.1016/j.electacta.2020.136723 | |
57. | Veerakumar, P., Sangili, A., Chen, S.-M. et al. Ultrafine gold nanoparticle embedded poly(diallyldimethylammonium chloride)-graphene oxide hydrogels for voltammetric determination of an antimicrobial drug (metronidazole). Journal of Materials Chemistry C, 2020, 8(22): 7575-7590. doi:10.1039/c9tc06690j | |
58. | Wang, X., Zhang, S., Zhao, B. Determination of ultra trace amounts of metronidazole by 3-phenyl-N-[4-(10, 15, 20-triphenyl-porphyrin-5-yl)-phenyl]- acrylamide as the fluorescence spectral probe in CTAB microemulsion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227: 117699. doi:10.1016/j.saa.2019.117699 | |
59. | Salahuddin, N., Elfiky, M., Matsuda, A. Sensors and biosensors nanocomposites based on polymer/inorganic nanostructures. Handbook of Polymer Nanocomposites for Industrial Applications, 2020. doi:10.1016/B978-0-12-821497-8.00027-7 | |
60. | Imanzadeh, H., Bakirhan, N.K., Sınag, A. et al. Methods for design and fabrication of nanosensors and their electrochemical applications on pharmaceutical compounds. Nanosensors for Smart Cities, 2020. doi:10.1016/B978-0-12-819870-4.00003-7 | |
61. | Solís, J.C., Galicia, M. High performance of MWCNTs-Chitosan modified glassy carbon electrode for voltammetric trace analysis of Cd(II). International Journal of Electrochemical Science, 2020, 15: 6815-6828. doi:10.20964/2020.07.56 | |
62. | Cheng, W., Zeng, P., Ma, C. et al. Electrochemical sensor for sensitive detection of luteolin based on multi-walled carbon nanotubes/poly(3, 4-ethylenedioxythiophene)-gold nanocomposites. New Journal of Chemistry, 2020, 44(5): 1953-1961. doi:10.1039/c9nj05241k | |
63. | Zare, A.R., Ensafi, A.A., Rezaei, B. An impedimetric biosensor based on poly(l-lysine)-decorated multiwall carbon nanotubes for the determination of diazinon in water and fruits. Journal of the Iranian Chemical Society, 2019, 16(12): 2777-2785. doi:10.1007/s13738-019-01741-z | |
64. | Ramki, S., Sukanya, R., Chen, S.-M. et al. Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: Inter-connected path in multi-layered structure for efficient electron transfer. Inorganic Chemistry Frontiers, 2019, 6(7): 1680-1693. doi:10.1039/c9qi00158a | |
65. | Ranganathan, P., Mutharani, B., Chen, S.-M. et al. Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin. Carbohydrate Polymers, 2019, 214: 317-327. doi:10.1016/j.carbpol.2019.03.053 | |
66. | Dehghani, M., Nasirizadeh, N., Yazdanshenas, M.E. Developing a novel nanocomposite of gold nanowires/ reduced graphene oxide/molecularly imprinted polyaniline for the electrochemical sensing of metronidazole. Journal of Applied Biotechnology Reports, 2019, 6(2): 60-68. doi:10.29252/JABR.06.02.04 | |
67. | Ghalkhani, M., Ghorbani-Bidkorbeh, F. Development of carbon nanostructured based electrochemical sensors for pharmaceutical analysis. Iranian Journal of Pharmaceutical Research, 2019, 18(2): 658-669. doi:10.22037/ijpr.2019.1100645 | |
68. | Yuan, S., Bo, X., Guo, L. In-situ insertion of multi-walled carbon nanotubes in the Fe3O4/N/C composite derived from iron-based metal-organic frameworks as a catalyst for effective sensing acetaminophen and metronidazole. Talanta, 2019, 193: 100-109. doi:10.1016/j.talanta.2018.09.065 | |
69. | Kalaiyarasi, J., Pandian, K. Egg-shell like hollow alumina sphere modified electrode for enhanced electrochemical determination of metronidazole. Journal of the Electrochemical Society, 2019, 166(13): B1151-B1160. doi:10.1149/2.1211912jes | |
70. | Yalikun, N., Mamat, X., Li, Y. et al. N, s, p-triple doped porous carbon as an improved electrochemical sensor for metronidazole determination. Journal of the Electrochemical Society, 2019, 166(13): B1131-B1137. doi:10.1149/2.0321913jes | |
71. | Karthik, R., Mutharani, B., Chen, S.-M. et al. Synthesis, characterization and catalytic performance of nanostructured dysprosium molybdate catalyst for selective biomolecule detection in biological and pharmaceutical samples. Journal of Materials Chemistry B, 2019, 7(33): 5065-5077. doi:10.1039/c9tb01020c | |
72. | Talay Pınar, P., Yardım, Y., Şentürk, Z. Electrochemical oxidation of ranitidine at poly(dopamine) modified carbon paste electrode: Its voltammetric determination in pharmaceutical and biological samples based on the enhancement effect of anionic surfactant. Sensors and Actuators, B: Chemical, 2018, 273: 1463-1473. doi:10.1016/j.snb.2018.07.068 | |