| Citation: | Hua Wang, Pan Zhou, Huixiang Chen, Jiachen Zheng, Linlin Wei, Jiabin Chen, Yu Lei. Synovial Microenvironment and Fluorescence Imaging for Early Rheumatoid Arthritis Diagnosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101509 |
| [1] |
S. Monti, C. Montecucco, S. Bugatti, et al., Rheumatoid arthritis treatment: The earlier the better to prevent joint damage, RMD Open 1 (2015), e000057.
|
| [2] |
S. Zhang, L. Ning, Z. Song, et al., Activatable near-infrared fluorescent organic nanoprobe for hypochlorous acid detection in the early diagnosis of rheumatoid arthritis, Anal. Chem. 94 (2022) 5805-5813.
|
| [3] |
P. Zhou, X. Meng, Z. Nie, et al., PTEN: An emerging target in rheumatoid arthritis? Cell Commun. Signal. 22 (2024), 246.
|
| [4] |
A. Eberhard, E. Rydell, K. Forslind, et al., Radiographic damage in early rheumatoid arthritis is associated with increased disability but not with pain-a 5-year follow-up study, Arthritis Res. Ther. 25 (2023), 29.
|
| [5] |
J. Rech, K. Tascilar, M. Hagen, et al., Abatacept inhibits inflammation and onset of rheumatoid arthritis in individuals at high risk (ARIAA): A randomised, international, multicentre, double-blind, placebo-controlled trial, Lancet 403 (2024) 850-859.
|
| [6] |
D. Kim, C.B. Choi, J. Lee, et al., Impact of early diagnosis on functional disability in rheumatoid arthritis, Korean J. Intern. Med. 32 (2017) 738-746.
|
| [7] |
E. van Mulligen, M. Rutten-van Molken, A. van der Helm-van Mil, Early identification of rheumatoid arthritis: Does it induce treatment-related cost savings? Ann. Rheum. Dis. 83 (2024) 1647-1656.
|
| [8] |
D. Aletaha, T. Neogi, A.J. Silman, et al., 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative, Arthritis Rheum. 62 (2010) 2569-2581.
|
| [9] |
Y. Shi, M. Zhou, C. Chang, et al., Advancing precision rheumatology: Applications of machine learning for rheumatoid arthritis management, Front. Immunol. 15 (2024), 1409555.
|
| [10] |
F. Motta, N. Bizzaro, D. Giavarina, et al., Rheumatoid factor isotypes in rheumatoid arthritis diagnosis and prognosis: A systematic review and meta-analysis, RMD Open 9 (2023), e002817.
|
| [11] |
C. de Vries, W. Huang, R.K. Sharma, et al., Rheumatoid arthritis related B-cell changes are found already in the risk-RA phase, Eur. J. Immunol. 55 (2025), e202451391.
|
| [12] |
H. Kristyanto, N.J. Blomberg, L.M. Slot, et al., Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis, Sci. Transl. Med. 12 (2020), eaaz5327.
|
| [13] |
E. Pertsinidou, S. Saevarsdottir, V.A. Manivel, et al., In early rheumatoid arthritis, anticitrullinated peptide antibodies associate with low number of affected joints and rheumatoid factor associates with systemic inflammation, Ann. Rheum. Dis. 83 (2024) 277-287.
|
| [14] |
F. Anquetil, C. Clavel, G. Offer, et al., IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anti-citrullinated protein autoantibodies, J. Immunol. 194 (2015) 3664-3674.
|
| [15] |
S. de Brito Rocha, D.C. Baldo, L.E.C. Andrade, Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis, Adv. Rheumatol. 59 (2019), 2.
|
| [16] |
L. Van Hoovels, B. Vander Cruyssen, D. Sieghart, et al., IgA rheumatoid factor in rheumatoid arthritis, Clin. Chem. Lab. Med. 60 (2022) 1617-1626.
|
| [17] |
C. Lamacchia, D.S. Courvoisier, M. Jarlborg, et al., Predictive value of anti-CarP and anti-PAD3 antibodies alone or in combination with RF and ACPA for the severity of rheumatoid arthritis, Rheumatology (Oxford) 60 (2021) 4598-4608.
|
| [18] |
M. Volkov, A.S.B. Kampstra, K.A. van Schie, et al., Evolution of anti-modified protein antibody responses can be driven by consecutive exposure to different post-translational modifications, Arthritis Res. Ther. 23 (2021), 298.
|
| [19] |
D. Sahin, A. Di Matteo, P. Emery, Biomarkers in the diagnosis, prognosis and management of rheumatoid arthritis: A comprehensive review, Ann. Clin. Biochem. 62 (2025) 3-21.
|
| [20] |
P.H. Lew, M.T. Rahman, S.H. Safii, et al., Antibodies against citrullinated proteins in relation to periodontitis with or without rheumatoid arthritis: A cross-sectional study, BMC Oral Health 21 (2021), 360.
|
| [21] |
D. Sieghart, A. Platzer, P. Studenic, et al., Determination of autoantibody isotypes increases the sensitivity of serodiagnostics in rheumatoid arthritis, Front. Immunol. 9 (2018), 876.
|
| [22] |
C. Wu, H. Yang, S.F. Luo, et al., From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis, Int. J. Mol. Sci. 22 (2021), 686.
|
| [23] |
V. Ricchiuti, K.Y. Chun, J.M. Yang, et al., Anti-carbamylated protein (anti-CarP) antibodies in patients evaluated for suspected rheumatoid arthritis, Diagnostics (Basel) 12 (2022), 1661.
|
| [24] |
L. Wang, L. Hua, X. Hong, et al., Association of serum anti-carbamylated protein antibodies with disease activity and bone loss in rheumatoid arthritis, Clin. Chim. Acta 546 (2023), 117371.
|
| [25] |
M. Brink, M. Hansson, L. Mathsson-Alm, et al., Rheumatoid factor isotypes in relation to antibodies against citrullinated peptides and carbamylated proteins before the onset of rheumatoid arthritis, Arthritis Res. Ther. 18 (2016), 43.
|
| [26] |
E.J. Kwon, J.H. Ju, Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: Focusing on citrullination, carbamylation, and acetylation, Int. J. Mol. Sci. 22 (2021), 10576.
|
| [27] |
K. Yoshida, H. Ito, D. Kurosaka, et al., Autocitrullination confers monocyte chemotactic properties to peptidylarginine deiminase 4, Sci. Rep. 13 (2023), 7528.
|
| [28] |
B. Palterer, G. Vitiello, M. Del Carria, et al., Anti-protein arginine deiminase antibodies are distinctly associated with joint and lung involvement in rheumatoid arthritis, Rheumatology (Oxford) 62 (2023) 2410-2417.
|
| [29] |
G. Zhang, J. Xu, D. Du, et al., Diagnostic values, association with disease activity and possible risk factors of anti-PAD4 in rheumatoid arthritis: A meta-analysis, Rheumatology (Oxford) 63 (2024) 914-924.
|
| [30] |
L. Martinez-Prat, B. Palterer, G. Vitiello, et al., Autoantibodies to protein-arginine deiminase (PAD) 4 in rheumatoid arthritis: Immunological and clinical significance, and potential for precision medicine, Expert Rev. Clin. Immunol. 15 (2019) 1073-1087.
|
| [31] |
L. Martinez-Prat, V. Martinez-Taboada, C. Santos, et al., Anti-protein-arginine deiminase 4 IgG and IgA delineate severe rheumatoid arthritis, Diagnostics (Basel) 12 (2022), 2187.
|
| [32] |
Gronwall C, Liljefors L, Bang H, et al., A Comprehensive Evaluation of the Relationship Between Different IgG and IgA Anti-Modified Protein Autoantibodies in Rheumatoid Arthritis, Front Immunol.12 (2021), 627986.
|
| [33] |
S. Reijm, A.S. Brehler, S. Rantapaa-Dahlqvist, et al., Cross-reactivity of anti-modified protein antibodies is also present in predisease and individuals without rheumatoid arthritis, Ann. Rheum. Dis. 81 (2022) 1332-1334.
|
| [34] |
L. Lourido, V. Joshua, M. Hansson, et al., Identification of circulating autoantibodies to non-modified proteins associated with ACPA status in early rheumatoid arthritis, Rheumatology (Oxford) 63 (2024) 3106-3114.
|
| [35] |
F. Yanikoglu, H. Avci, Z.C. Celik, et al., Diagnostic performance of ICDAS II, FluoreCam and ultrasound for flat surface caries with different depths, Ultrasound Med. Biol. 46 (2020) 1755-1760.
|
| [36] |
E. Capkin, Musculoskeletal ultrasonography in rheumatic diseases, Turk. J. Med. Sci. 53 (2023) 1537-1551.
|
| [37] |
H. Mo, Z. Su, Z. Zheng, et al., Screening for early rheumatoid arthritis using high-frequency ultrasound, serum RANKL, and OPG detection, Clin. Rheumatol. 43 (2024) 159-166.
|
| [38] |
P. Boeyesen, E.A. Haavardsholm, M. Ostergaard, et al., MRI in early rheumatoid arthritis: Synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression, Ann. Rheum. Dis. 70 (2011) 428-433.
|
| [39] |
E. Olech, J.V. Crues 3rd, D.E. Yocum, et al., Bone marrow edema is the most specific finding for rheumatoid arthritis (RA) on noncontrast magnetic resonance imaging of the hands and wrists: A comparison of patients with RA and healthy controls, J. Rheumatol. 37 (2010) 265-274.
|
| [40] |
H. Yamashita, K. Kubota, A. Mimori, Clinical value of whole-body PET/CT in patients with active rheumatic diseases, Arthritis Res. Ther. 16 (2014), 423.
|
| [41] |
P. Fosse, M.J. Kaiser, G. Namur, et al., 18F- FDG PET/CT joint assessment of early therapeutic response in rheumatoid arthritis patients treated with rituximab, Eur. J. Hybrid Imaging 2 (2018), 6.
|
| [42] |
Y. Liu, Y. Su, Z. Wu, et al., Artificial intelligence in rheumatoid arthritis research: A bibliometric analysis from 2004 to 2023, Rheumatol. Autoimmun. 4 (2024) 133-144.
|
| [43] |
L. Bai, Y. Zhang, P. Wang, et al., Improved diagnosis of rheumatoid arthritis using an artificial neural network, Sci. Rep. 12 (2022), 9810.
|
| [44] |
Y. Mao, K. Imahori, W. Fang, et al., Artificial intelligence quantification of enhanced synovium throughout the entire hand in rheumatoid arthritis on dynamic contrast-enhanced MRI, J. Magn. Reson. Imaging 61 (2025) 771-783.
|
| [45] |
A. Bird, L. Oakden-Rayner, C. McMaster, et al., Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: A viewpoint, Arthritis Res. Ther. 24 (2022), 268.
|
| [46] |
X. Zhang, I. Cheng, S. Liu, et al., Automatic 3D joint erosion detection for the diagnosis and monitoring of rheumatoid arthritis using hand HR-pQCT images, Comput. Med. Imaging Graph. 106 (2023), 102200.
|
| [47] |
K. Ureten, H.H. Maras, Automated classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs with deep learning methods, J. Digit. Imaging 35 (2022) 193-199.
|
| [48] |
McMaster C, Bird A, Liew DFL, et al., Artificial Intelligence and Deep Learning for Rheumatologists, Arthritis Rheumatol. 74 (2022),1893-1905.
|
| [49] |
A.L. Vlad, C. Popazu, A.M. Lescai, et al., The role of artificial intelligence in the diagnosis and management of rheumatoid arthritis, Medicina (Kaunas) 61 (2025), 689.
|
| [50] |
S. Alivernini, G.S. Firestein, I.B. McInnes, The pathogenesis of rheumatoid arthritis, Immunity 55 (2022) 2255-2270.
|
| [51] |
H. Tsuchiya, M. Ota, K. Fujio, Multiomics landscape of synovial fibroblasts in rheumatoid arthritis, Inflamm. Regen. 41 (2021), 7.
|
| [52] |
Y. Wu, Y. Ge, Z. Wang, et al., Synovium microenvironment-responsive injectable hydrogel inducing modulation of macrophages and elimination of synovial fibroblasts for enhanced treatment of rheumatoid arthritis, J. Nanobiotechnology 22 (2024), 188.
|
| [53] |
M.A. Boutet, G. Courties, A. Nerviani, et al., Novel insights into macrophage diversity in rheumatoid arthritis synovium, Autoimmun. Rev. 20 (2021), 102758.
|
| [54] |
X. Hu, Z. Zhang, L. Long, et al., Deconvolution of synovial myeloid cell subsets across pathotypes and role of COL3A1+ macrophages in rheumatoid arthritis remission, Front. Immunol. 15 (2024), 1307748.
|
| [55] |
S. Jang, E.J. Kwon, J.J. Lee, Rheumatoid arthritis: Pathogenic roles of diverse immune cells, Int. J. Mol. Sci. 23 (2022), 905.
|
| [56] |
Y. Zheng, K. Wei, P. Jiang, et al., Macrophage polarization in rheumatoid arthritis: Signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts, Front. Immunol. 15 (2024), 1394108.
|
| [57] |
J. Tu, W. Huang, W. Zhang, et al., A tale of two immune cells in rheumatoid arthritis: The crosstalk between macrophages and T cells in the synovium, Front. Immunol. 12 (2021), 655477.
|
| [58] |
K.S. Nandakumar, Q. Fang, I. Wingbro Agren, Z.F. Bejmo, Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis, Int J Mol Sci 24 (2023) 15883.
|
| [59] |
L.-K. Bai, Y.-Z. Su, X.-X. Wang, B. Bai, C.-Q. Zhang, L.-Y. Zhang, G.-L. Zhang, Synovial Macrophages: Past Life, Current Situation, and Application in Inflammatory Arthritis., Front Immunol (2022) 905356.
|
| [60] |
S. Culemann, A. Gruneboom, J.A. Nicolas-Avila, et al., Locally renewing resident synovial macrophages provide a protective barrier for the joint, Nature 572 (2019) 670-675.
|
| [61] |
Corica F, De Feo MS, Gorica J, et al., PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside, Diagnostics. 13 (2023) 1029.
|
| [62] |
X. Su, L. Wang, R. Yang, et al., Longitudinal 18F-VUIIS1008 PET imaging in a rat model of rheumatoid arthritis, Front. Chem. 10 (2022), 1064518.
|
| [63] |
N.J.F. Verweij, M. Yaqub, S.T.G. Bruijnen, et al., First in man study of [18F] fluoro-PEG-folate PET: A novel macrophage imaging technique to visualize rheumatoid arthritis, Sci. Rep. 10 (2020), 1047.
|
| [64] |
O. Gondry, C. Xavier, L. Raes, et al., Phase I study of [68Ga] Ga-anti-CD206-sdAb for PET/CT assessment of protumorigenic macrophage presence in solid tumors (MMR phase I), J. Nucl. Med. 64 (2023) 1378-1384.
|
| [65] |
N. Verweij, G. Zwezerijnen, M. Ter Wee, et al., Early prediction of treatment response in rheumatoid arthritis by quantitative macrophage PET, RMD Open 8 (2022), e002108.
|
| [66] |
J. Inciarte-Mundo, B. Frade-Sosa, R. Sanmarti, From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis, Front. Immunol. 13 (2022), 1001025.
|
| [67] |
Rizo-Tellez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair, Am J Physiol Cell Physiol. 326 (2024), C661-C683.
|
| [68] |
Q. Fang, J. Ou, K.S. Nandakumar, Autoantibodies as diagnostic markers and mediator of joint inflammation in arthritis, Mediators Inflamm. 2019 (2019), 6363086.
|
| [69] |
J. Chen, Y. Cao, J. Xiao, et al., The emerging role of neutrophil extracellular traps in the progression of rheumatoid arthritis, Front. Immunol. 15 (2024), 1438272.
|
| [70] |
Y. Deng, J. Li, R. Wu, Neutrophils in rheumatoid arthritis synovium: Implications on disease activity and inflammation state, J. Inflamm. Res. 18 (2025) 4741-4753.
|
| [71] |
T. Chen, Z. Zhou, M. Peng, et al., Glutathione peroxidase 3 is a novel clinical diagnostic biomarker and potential therapeutic target for neutrophils in rheumatoid arthritis, Arthritis Res. Ther. 25 (2023), 66.
|
| [72] |
J. Xia, H. Gao, J. Tang, et al., A novel diagnostic model based on lncRNA PTPRE expression, neutrophil count and red blood cell distribution width for diagnosis of seronegative rheumatoid arthritis, Clin. Exp. Med. 24 (2024), 86.
|
| [73] |
M. Bach, J. Moon, R. Moore, et al., A neutrophil activation biomarker panel in prognosis and monitoring of patients with rheumatoid arthritis, Arthritis Rheumatol. 72 (2020) 47-56.
|
| [74] |
N. Jung, J.L. Bueb, F. Tolle, et al., Regulation of neutrophil pro-inflammatory functions sheds new light on the pathogenesis of rheumatoid arthritis, Biochem. Pharmacol. 165 (2019) 170-180.
|
| [75] |
Q. Wang, W. Chen, J. Lin, The role of calprotectin in rheumatoid arthritis, J. Transl. Int. Med. 7 (2019) 126-131.
|
| [76] |
D. Michailidou, L. Johansson, R. Kuley, et al., Immune complex-mediated neutrophil activation in patients with polymyalgia rheumatica, Rheumatology (Oxford) 62 (2023) 2880-2886.
|
| [77] |
A. Baillet, C. Trocme, X. Romand, et al., Calprotectin discriminates septic arthritis from pseudogout and rheumatoid arthritis, Rheumatology (Oxford) 58 (2019) 1644-1648.
|
| [78] |
M. Gernert, M. Schmalzing, H.P. Tony, et al., Calprotectin (S100A8/S100A9) detects inflammatory activity in rheumatoid arthritis patients receiving tocilizumab therapy, Arthritis Res. Ther. 24 (2022), 200.
|
| [79] |
M. Manfredi, L. Van Hoovels, M. Benucci, et al., Circulating Calprotectin (cCLP) in autoimmune diseases, Autoimmun. Rev. 22 (2023), 103295.
|
| [80] |
Jarlborg, M., Courvoisier, D.S., Lamacchia, C. et al. Serum calprotectin: a promising biomarker in rheumatoid arthritis and axial spondyloarthritis, Arthritis Res Ther. 22 (2020), 105.
|
| [81] |
B. Frade-Sosa, A. Ponce, J. Inciarte-Mundo, et al., Plasma calprotectin as a biomarker of ultrasound synovitis in rheumatoid arthritis patients receiving IL-6 antagonists or JAK inhibitors, Ther. Adv. Musculoskelet. Dis. 14 (2022), 1759720X221114105.
|
| [82] |
Brinkmann V, Reichard U, Goosmann C, et al., Neutrophil extracellular traps kill bacteria, Science. 303 (2004), 1532-1535.
|
| [83] |
J. Lehmann, S. Giaglis, D. Kyburz, et al., Plasma mtDNA as a possible contributor to and biomarker of inflammation in rheumatoid arthritis, Arthritis Res. Ther. 26 (2024), 97.
|
| [84] |
C.M. de Bont, M.E.M. Stokman, P. Faas, et al., Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis, J. Autoimmun. 113 (2020), 102484.
|
| [85] |
Zheng L, Gu M, Li X, et al., ITGA5+ synovial fibroblasts orchestrate proinflammatory niche formation by remodelling the local immune microenvironment in rheumatoid arthritis, Ann Rheum Dis. 84 (2025), 232-252.
|
| [86] |
F. Li, Y. Tang, B. Song, et al., Nomenclature clarification: Synovial fibroblasts and synovial mesenchymal stem cells, Stem Cell Res. Ther. 10 (2019), 260.
|
| [87] |
Y. Liu, P. Rao, H. Qian, et al., Regulatory fibroblast-like synoviocytes cell membrane coated nanoparticles: A novel targeted therapy for rheumatoid arthritis, Adv. Sci. (Weinh) 10 (2023), e2204998.
|
| [88] |
M.H. Smith, V.R. Gao, P.K. Periyakoil, et al., Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis, Nat. Immunol. 24 (2023) 1200-1210.
|
| [89] |
K. Li, W. Liu, H. Yu, et al., 68Ga-FAPI PET imaging monitors response to combined TGF-βR inhibition and immunotherapy in metastatic colorectal cancer, J. Clin. Invest. 134 (2024), e170490.
|
| [90] |
H. Qian, C. Deng, S. Chen, et al., Targeting pathogenic fibroblast-like synoviocyte subsets in rheumatoid arthritis, Arthritis Res. Ther. 26 (2024), 103.
|
| [91] |
Cao C, Wu F, Niu X, et al., Cadherin-11 cooperates with inflammatory factors to promote the migration and invasion of fibroblast-like synoviocytes in pigmented villonodular synovitis, Theranostics. 10 (2020), 10573-10588.
|
| [92] |
A.P. Croft, A.J. Naylor, J.L. Marshall, et al., Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage, Arthritis Res. Ther. 18 (2016), 270.
|
| [93] |
A.C. Chandler, M. Yakoub, T. Fujiwara, et al., Neoplastic synovial lining cells that coexpress podoplanin and CD90 overproduce CSF-1, driving tenosynovial giant cell tumor, J. Orthop. Res. 40 (2022) 1918-1925.
|
| [94] |
M. Yang, Y. Su, H. Zheng, et al., Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related CeRNA networks, BMC Musculoskelet. Disord. 24 (2023), 799.
|
| [95] |
J. Han, X. Wang, X. Zhang, Functional interactions between lncRNAs/circRNAs and miRNAs: Insights into rheumatoid arthritis, Front. Immunol. 13 (2022), 810317.
|
| [96] |
Z. Luo, S. Chen, X. Chen, CircMAPK9 promotes the progression of fibroblast-like synoviocytes in rheumatoid arthritis via the miR-140-3p/PPM1A axis., J. Orthop. Surg. Res. 16 (2021) 395.
|
| [97] |
Y. Tong, X. Li, Q. Deng, et al., Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis, Front. Pharmacol. 14 (2023), 1230293.
|
| [98] |
Z. Wu, D. Ma, H. Yang, et al., Fibroblast-like synoviocytes in rheumatoid arthritis: Surface markers and phenotypes, Int. Immunopharmacol. 93 (2021), 107392.
|
| [99] |
A. Mihailova, Interleukin 6 concentration in synovial fluid of patients with inflammatory and degenerative arthritis, Curr Rheumatol Rev. 18 (2022) 230-233.
|
| [100] |
A.M. Mustonen, J. Savinainen, M. Lehtonen, et al., Synovial fluid o-tyrosine is a potential biomarker for autoimmune-driven rheumatoid arthritis, Clin Rheumatol. 44 (2025), 2657-2668.
|
| [101] |
V. Smolinska, D. Klimova, L. Danisovic, S. Harsanyi, Synovial fluid markers and extracellular vesicles in rheumatoid arthritis, Medicina (Kaunas). 60 (2024), 1945.
|
| [102] |
Y. Sun, X. Zhong, A.M. Dennis, Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection, J. Biomed. Opt. 28 (2023), 094805.
|
| [103] |
S. Li, D. Cheng, L. He, L. Yuan, Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation, Front. Bioeng. Biotechnol. 9 (2021), 768698.
|
| [104] |
L. Dong, W. Li, L. Li, et al., Nanoprobe-based near-infrared II optical imaging for guiding precision glioma therapy, Int. J. Nanomedicine 20 (2025), 8433-8449.
|
| [105] |
I. Sudol-Szopinska, C. Giraudo, E.H.G. Oei, et al., Imaging update in inflammatory arthritis, J. Clin. Orthop. Trauma 20 (2021), 101491.
|
| [106] |
F. Rothe, J. Berger, P. Welker, et al., Fluorescence optical imaging feature selection with machine learning for differential diagnosis of selected rheumatic diseases, Front. Med. (Lausanne) 10 (2023), 1228833.
|
| [107] |
A.M. Glimm, L.I. Sprenger, I.K. Haugen, et al., Fluorescence optical imaging for treatment monitoring in patients with early and active rheumatoid arthritis in a 1-year follow-up period, Arthritis Res. Ther. 21 (2019), 209.
|
| [108] |
J. Chen, M. Chen, X. Yu, Fluorescent probes in autoimmune disease research: Current status and future prospects, J. Transl. Med. 23 (2025), 411.
|
| [109] |
X. Wang, L. Xu, D. Tan, et al., A novel Cys-activated NIR-II fluorescent probe for rheumatoid arthritis fluorescence imaging in vivo, New J. Chem. 49 (2025) 572-578.
|
| [110] |
P. Luo, F. Gao, W. Sun, et al., Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis, Mil. Med. Res. 10 (2023), 31.
|
| [111] |
C.M.C. Andres, J.M. Perez de la Lastra, C.A. Juan, et al., Hypochlorous acid chemistry in mammalian cells-influence on infection and role in various pathologies, Int. J. Mol. Sci. 23 (2022), 10735.
|
| [112] |
H. Ma, K. Chen, B. Song, et al., A visible-light-excitable mitochondria-targeted europium complex probe for hypochlorous acid and its application to time-gated luminescence bioimaging, Biosens. Bioelectron. 168 (2020), 112560.
|
| [113] |
P. Wu, H. Xiong, An acid-enhanced OFF-ON fluorescent probe for the detection of hypochlorous acid in rheumatoid arthritis, Talanta 247 (2022), 123584.
|
| [114] |
X. Yang, Y. Wang, Z. Shang, et al., Quinoline-based fluorescent probe for the detection and monitoring of hypochlorous acid in a rheumatoid arthritis model, RSC Adv. 11 (2021) 31656-31662.
|
| [115] |
W. Chen, W. Xu, J. Xing, et al., De novo design of a highly stable ratiometric probe for long-term continuous imaging of endogenous HClO burst, Anal. Chem. 96 (2024) 4129-4137.
|
| [116] |
W. Qu, R. Tian, B. Yang, et al., Dual-channel/localization single-molecule fluorescence probe for monitoring ATP and HOCl in early diagnosis and therapy of rheumatoid arthritis, Anal. Chem. 96 (2024) 5428-5436.
|
| [117] |
G. Wu, Z. Li, P. Huang, et al., Shedding light on ONOO- detection: The emergence of a fast-response fluorescent probe for biological systems, J. Mater. Chem. B 12 (2024) 3436-3444.
|
| [118] |
P.G. Winyard, B. Ryan, P. Eggleton, et al., Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease, Biochem. Soc. Trans. 39 (2011) 1226-1232.
|
| [119] |
Z. Wang, J. Gong, P. Wang, et al., An activatable fluorescent probe enables in vivo evaluation of peroxynitrite levels in rheumatoid arthritis, Talanta 252 (2023), 123811.
|
| [120] |
S. Zhong, S. Huang, B. Feng, et al., An ESIPT-based AIE fluorescent probe to visualize mitochondrial hydrogen peroxide and its application in living cells and rheumatoid arthritis, Org. Biomol. Chem. 21 (2023) 5063-5071.
|
| [121] |
K. Wei, T. Chen, H. Fang, et al., Mitochondrial DNA release via the mitochondrial permeability transition pore activates the cGAS-STING pathway, exacerbating inflammation in acute Kawasaki disease, Cell Commun. Signal. 22 (2024), 328.
|
| [122] |
Z. Zeng, X. Zhou, Y. Wang, et al., Mitophagy-a new target of bone disease, Biomolecules 12 (2022), 1420.
|
| [123] |
J. Wang, Y. Zhang, J. Cao, et al., The role of autophagy in bone metabolism and clinical significance, Autophagy 19 (2023) 2409-2427.
|
| [124] |
T. Han, Y. Sun, C. Zhao, et al., Mitochondrial-targeted ratiometric near-infrared fluorescence probe for monitoring nitric oxide in rheumatoid arthritis, J. Med. Chem. 67 (2024) 4026-4035.
|
| [125] |
L. Liu, P. Wei, W. Yuan, et al., Detecting basal myeloperoxidase activity in living systems with a near-infrared emissive “turn-on” probe, Anal. Chem. 92 (2020) 10971-10978.
|
| [126] |
X. Liu, X. Yang, L. Li, et al., An analyte-replacement near-infrared fluorogenic probe for ultrafast detection of hypochlorite in rheumatoid arthritis, Bioorg. Chem. 139 (2023), 106757.
|
| [127] |
S.D. Tsen, L.E. Springer, K. Sharmah Gautam, et al., Non-invasive monitoring of arthritis treatment response via targeting of tyrosine-phosphorylated annexin A2 in chondrocytes, Arthritis Res. Ther. 23 (2021), 265.
|
| [128] |
M. Xu, C. Zhang, J. Yan, et al., A responsive nanoplatform with molecular and structural imaging capacity for assisting accurate diagnosis of early rheumatoid arthritis, Int. J. Biol. Macromol. 271 (2024), 132514.
|
| [129] |
R. Wang, J. Shi, Q. Zhang, et al., Dual-triggered near-infrared persistent luminescence nanoprobe for autofluorescence-free imaging-guided precise therapy of rheumatoid arthritis, Adv. Sci. (Weinh) 10 (2023), e2205320.
|
| [130] |
L. Shen, Y. Bi, J. Yu, et al., The biological applications of near-infrared optical nanomaterials in atherosclerosis, J. Nanobiotechnology 22 (2024), 478.
|
| [131] |
C. Li, G. Chen, Y. Zhang, et al., Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications, J. Am. Chem. Soc. 142 (2020) 14789-14804.
|
| [132] |
M Zhao, X Chen, Recent advances in NIR-II materials for biomedical applications, Acc. Mater. Res. 5 (2024) 600-613.
|
| [133] |
P. Wu, Y. Zhu, L. Chen, et al., A fast-responsive OFF-ON near-infrared-II fluorescent probe for in vivo detection of hypochlorous acid in rheumatoid arthritis, Anal. Chem. 93 (2021) 13014-13021.
|
| [134] |
L. Li, X. Wang, R. Gao, et al., Inflammation-triggered supramolecular nanoplatform for local dynamic dependent imaging-guided therapy of rheumatoid arthritis, Adv. Sci. (Weinh) 9 (2022), e2105188.
|
| [135] |
J. Chen, J. Qi, C. Chen, et al., Tocilizumab-conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis, Adv. Mater. 32 (2020), 2003399.
|
| [136] |
R. Dai, M. Zhao, X. Zheng, et al., Homology-activated ultrasensitive nanomedicines for precise NIR-II FL/MRI imaging-guided “knock-on” dynamic therapy in rheumatoid arthritis, Adv. Healthc. Mater. 13 (2024), 2303892.
|
| [137] |
Y. Liu, L. Chen, Z. Chen, et al., Multifunctional Janus nanoplatform for efficiently synergistic theranostics of rheumatoid arthritis, ACS Nano 17 (2023) 8167-8182.
|
| [138] |
H. Cheng, H. Xu, B. Peng, et al., Illuminating the future of precision cancer surgery with fluorescence imaging and artificial intelligence convergence, NPJ Precis. Oncol. 8 (2024), 196.
|