Turn off MathJax
Article Contents
Hua Wang, Pan Zhou, Huixiang Chen, Jiachen Zheng, Linlin Wei, Jiabin Chen, Yu Lei. Synovial Microenvironment and Fluorescence Imaging for Early Rheumatoid Arthritis Diagnosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101509
Citation: Hua Wang, Pan Zhou, Huixiang Chen, Jiachen Zheng, Linlin Wei, Jiabin Chen, Yu Lei. Synovial Microenvironment and Fluorescence Imaging for Early Rheumatoid Arthritis Diagnosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101509

Synovial Microenvironment and Fluorescence Imaging for Early Rheumatoid Arthritis Diagnosis

doi: 10.1016/j.jpha.2025.101509
Funds:

This study was supported in part by the Special Project for Traditional Chinese Medicine Research of Sichuan Provincial Administration of Traditional Chinese Medicine, China (Grant No.: 2020LC0010) and Chengdu Medical Research Project , China (Project No.:2024568)

  • Received Date: Apr. 21, 2025
  • Accepted Date: Dec. 01, 2025
  • Rev Recd Date: Nov. 26, 2025
  • Available Online: Dec. 04, 2025
  • Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease that primarily affects the joints and surrounding soft tissues. Early diagnosis is crucial for preventing joint damage and improving the prognosis and quality of life in RA patients. Therefore, this article reviews conventional diagnostic methods, such as serologic tests (including rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody (ACPA), and anti-carbamylated protein (anti-CarP)) and imaging tests and also focuses on innovations in AI-driven diagnostic and therapeutic technologies. Additionally, we provide insights into new biomarkers (including macrophages, neutrophils, and synovial fibroblasts) in the synovial microenvironment that correlate with RA disease activity and severity at the molecular level. Importantly, we are optimistic about fluorescence imaging (FOI) techniques (including visible light imaging and near-infrared (NIR)-FOI), which can accurately quantify abnormal levels of molecular markers using fluorescent probes. This provides detailed information about pathological changes in RA, opening new horizons for early diagnosis and treatment.
  • loading
  • [1]
    S. Monti, C. Montecucco, S. Bugatti, et al., Rheumatoid arthritis treatment: The earlier the better to prevent joint damage, RMD Open 1 (2015), e000057.
    [2]
    S. Zhang, L. Ning, Z. Song, et al., Activatable near-infrared fluorescent organic nanoprobe for hypochlorous acid detection in the early diagnosis of rheumatoid arthritis, Anal. Chem. 94 (2022) 5805-5813.
    [3]
    P. Zhou, X. Meng, Z. Nie, et al., PTEN: An emerging target in rheumatoid arthritis? Cell Commun. Signal. 22 (2024), 246.
    [4]
    A. Eberhard, E. Rydell, K. Forslind, et al., Radiographic damage in early rheumatoid arthritis is associated with increased disability but not with pain-a 5-year follow-up study, Arthritis Res. Ther. 25 (2023), 29.
    [5]
    J. Rech, K. Tascilar, M. Hagen, et al., Abatacept inhibits inflammation and onset of rheumatoid arthritis in individuals at high risk (ARIAA): A randomised, international, multicentre, double-blind, placebo-controlled trial, Lancet 403 (2024) 850-859.
    [6]
    D. Kim, C.B. Choi, J. Lee, et al., Impact of early diagnosis on functional disability in rheumatoid arthritis, Korean J. Intern. Med. 32 (2017) 738-746.
    [7]
    E. van Mulligen, M. Rutten-van Molken, A. van der Helm-van Mil, Early identification of rheumatoid arthritis: Does it induce treatment-related cost savings? Ann. Rheum. Dis. 83 (2024) 1647-1656.
    [8]
    D. Aletaha, T. Neogi, A.J. Silman, et al., 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative, Arthritis Rheum. 62 (2010) 2569-2581.
    [9]
    Y. Shi, M. Zhou, C. Chang, et al., Advancing precision rheumatology: Applications of machine learning for rheumatoid arthritis management, Front. Immunol. 15 (2024), 1409555.
    [10]
    F. Motta, N. Bizzaro, D. Giavarina, et al., Rheumatoid factor isotypes in rheumatoid arthritis diagnosis and prognosis: A systematic review and meta-analysis, RMD Open 9 (2023), e002817.
    [11]
    C. de Vries, W. Huang, R.K. Sharma, et al., Rheumatoid arthritis related B-cell changes are found already in the risk-RA phase, Eur. J. Immunol. 55 (2025), e202451391.
    [12]
    H. Kristyanto, N.J. Blomberg, L.M. Slot, et al., Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis, Sci. Transl. Med. 12 (2020), eaaz5327.
    [13]
    E. Pertsinidou, S. Saevarsdottir, V.A. Manivel, et al., In early rheumatoid arthritis, anticitrullinated peptide antibodies associate with low number of affected joints and rheumatoid factor associates with systemic inflammation, Ann. Rheum. Dis. 83 (2024) 277-287.
    [14]
    F. Anquetil, C. Clavel, G. Offer, et al., IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anti-citrullinated protein autoantibodies, J. Immunol. 194 (2015) 3664-3674.
    [15]
    S. de Brito Rocha, D.C. Baldo, L.E.C. Andrade, Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis, Adv. Rheumatol. 59 (2019), 2.
    [16]
    L. Van Hoovels, B. Vander Cruyssen, D. Sieghart, et al., IgA rheumatoid factor in rheumatoid arthritis, Clin. Chem. Lab. Med. 60 (2022) 1617-1626.
    [17]
    C. Lamacchia, D.S. Courvoisier, M. Jarlborg, et al., Predictive value of anti-CarP and anti-PAD3 antibodies alone or in combination with RF and ACPA for the severity of rheumatoid arthritis, Rheumatology (Oxford) 60 (2021) 4598-4608.
    [18]
    M. Volkov, A.S.B. Kampstra, K.A. van Schie, et al., Evolution of anti-modified protein antibody responses can be driven by consecutive exposure to different post-translational modifications, Arthritis Res. Ther. 23 (2021), 298.
    [19]
    D. Sahin, A. Di Matteo, P. Emery, Biomarkers in the diagnosis, prognosis and management of rheumatoid arthritis: A comprehensive review, Ann. Clin. Biochem. 62 (2025) 3-21.
    [20]
    P.H. Lew, M.T. Rahman, S.H. Safii, et al., Antibodies against citrullinated proteins in relation to periodontitis with or without rheumatoid arthritis: A cross-sectional study, BMC Oral Health 21 (2021), 360.
    [21]
    D. Sieghart, A. Platzer, P. Studenic, et al., Determination of autoantibody isotypes increases the sensitivity of serodiagnostics in rheumatoid arthritis, Front. Immunol. 9 (2018), 876.
    [22]
    C. Wu, H. Yang, S.F. Luo, et al., From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis, Int. J. Mol. Sci. 22 (2021), 686.
    [23]
    V. Ricchiuti, K.Y. Chun, J.M. Yang, et al., Anti-carbamylated protein (anti-CarP) antibodies in patients evaluated for suspected rheumatoid arthritis, Diagnostics (Basel) 12 (2022), 1661.
    [24]
    L. Wang, L. Hua, X. Hong, et al., Association of serum anti-carbamylated protein antibodies with disease activity and bone loss in rheumatoid arthritis, Clin. Chim. Acta 546 (2023), 117371.
    [25]
    M. Brink, M. Hansson, L. Mathsson-Alm, et al., Rheumatoid factor isotypes in relation to antibodies against citrullinated peptides and carbamylated proteins before the onset of rheumatoid arthritis, Arthritis Res. Ther. 18 (2016), 43.
    [26]
    E.J. Kwon, J.H. Ju, Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: Focusing on citrullination, carbamylation, and acetylation, Int. J. Mol. Sci. 22 (2021), 10576.
    [27]
    K. Yoshida, H. Ito, D. Kurosaka, et al., Autocitrullination confers monocyte chemotactic properties to peptidylarginine deiminase 4, Sci. Rep. 13 (2023), 7528.
    [28]
    B. Palterer, G. Vitiello, M. Del Carria, et al., Anti-protein arginine deiminase antibodies are distinctly associated with joint and lung involvement in rheumatoid arthritis, Rheumatology (Oxford) 62 (2023) 2410-2417.
    [29]
    G. Zhang, J. Xu, D. Du, et al., Diagnostic values, association with disease activity and possible risk factors of anti-PAD4 in rheumatoid arthritis: A meta-analysis, Rheumatology (Oxford) 63 (2024) 914-924.
    [30]
    L. Martinez-Prat, B. Palterer, G. Vitiello, et al., Autoantibodies to protein-arginine deiminase (PAD) 4 in rheumatoid arthritis: Immunological and clinical significance, and potential for precision medicine, Expert Rev. Clin. Immunol. 15 (2019) 1073-1087.
    [31]
    L. Martinez-Prat, V. Martinez-Taboada, C. Santos, et al., Anti-protein-arginine deiminase 4 IgG and IgA delineate severe rheumatoid arthritis, Diagnostics (Basel) 12 (2022), 2187.
    [32]
    Gronwall C, Liljefors L, Bang H, et al., A Comprehensive Evaluation of the Relationship Between Different IgG and IgA Anti-Modified Protein Autoantibodies in Rheumatoid Arthritis, Front Immunol.12 (2021), 627986.
    [33]
    S. Reijm, A.S. Brehler, S. Rantapaa-Dahlqvist, et al., Cross-reactivity of anti-modified protein antibodies is also present in predisease and individuals without rheumatoid arthritis, Ann. Rheum. Dis. 81 (2022) 1332-1334.
    [34]
    L. Lourido, V. Joshua, M. Hansson, et al., Identification of circulating autoantibodies to non-modified proteins associated with ACPA status in early rheumatoid arthritis, Rheumatology (Oxford) 63 (2024) 3106-3114.
    [35]
    F. Yanikoglu, H. Avci, Z.C. Celik, et al., Diagnostic performance of ICDAS II, FluoreCam and ultrasound for flat surface caries with different depths, Ultrasound Med. Biol. 46 (2020) 1755-1760.
    [36]
    E. Capkin, Musculoskeletal ultrasonography in rheumatic diseases, Turk. J. Med. Sci. 53 (2023) 1537-1551.
    [37]
    H. Mo, Z. Su, Z. Zheng, et al., Screening for early rheumatoid arthritis using high-frequency ultrasound, serum RANKL, and OPG detection, Clin. Rheumatol. 43 (2024) 159-166.
    [38]
    P. Boeyesen, E.A. Haavardsholm, M. Ostergaard, et al., MRI in early rheumatoid arthritis: Synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression, Ann. Rheum. Dis. 70 (2011) 428-433.
    [39]
    E. Olech, J.V. Crues 3rd, D.E. Yocum, et al., Bone marrow edema is the most specific finding for rheumatoid arthritis (RA) on noncontrast magnetic resonance imaging of the hands and wrists: A comparison of patients with RA and healthy controls, J. Rheumatol. 37 (2010) 265-274.
    [40]
    H. Yamashita, K. Kubota, A. Mimori, Clinical value of whole-body PET/CT in patients with active rheumatic diseases, Arthritis Res. Ther. 16 (2014), 423.
    [41]
    P. Fosse, M.J. Kaiser, G. Namur, et al., 18F- FDG PET/CT joint assessment of early therapeutic response in rheumatoid arthritis patients treated with rituximab, Eur. J. Hybrid Imaging 2 (2018), 6.
    [42]
    Y. Liu, Y. Su, Z. Wu, et al., Artificial intelligence in rheumatoid arthritis research: A bibliometric analysis from 2004 to 2023, Rheumatol. Autoimmun. 4 (2024) 133-144.
    [43]
    L. Bai, Y. Zhang, P. Wang, et al., Improved diagnosis of rheumatoid arthritis using an artificial neural network, Sci. Rep. 12 (2022), 9810.
    [44]
    Y. Mao, K. Imahori, W. Fang, et al., Artificial intelligence quantification of enhanced synovium throughout the entire hand in rheumatoid arthritis on dynamic contrast-enhanced MRI, J. Magn. Reson. Imaging 61 (2025) 771-783.
    [45]
    A. Bird, L. Oakden-Rayner, C. McMaster, et al., Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: A viewpoint, Arthritis Res. Ther. 24 (2022), 268.
    [46]
    X. Zhang, I. Cheng, S. Liu, et al., Automatic 3D joint erosion detection for the diagnosis and monitoring of rheumatoid arthritis using hand HR-pQCT images, Comput. Med. Imaging Graph. 106 (2023), 102200.
    [47]
    K. Ureten, H.H. Maras, Automated classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs with deep learning methods, J. Digit. Imaging 35 (2022) 193-199.
    [48]
    McMaster C, Bird A, Liew DFL, et al., Artificial Intelligence and Deep Learning for Rheumatologists, Arthritis Rheumatol. 74 (2022),1893-1905.
    [49]
    A.L. Vlad, C. Popazu, A.M. Lescai, et al., The role of artificial intelligence in the diagnosis and management of rheumatoid arthritis, Medicina (Kaunas) 61 (2025), 689.
    [50]
    S. Alivernini, G.S. Firestein, I.B. McInnes, The pathogenesis of rheumatoid arthritis, Immunity 55 (2022) 2255-2270.
    [51]
    H. Tsuchiya, M. Ota, K. Fujio, Multiomics landscape of synovial fibroblasts in rheumatoid arthritis, Inflamm. Regen. 41 (2021), 7.
    [52]
    Y. Wu, Y. Ge, Z. Wang, et al., Synovium microenvironment-responsive injectable hydrogel inducing modulation of macrophages and elimination of synovial fibroblasts for enhanced treatment of rheumatoid arthritis, J. Nanobiotechnology 22 (2024), 188.
    [53]
    M.A. Boutet, G. Courties, A. Nerviani, et al., Novel insights into macrophage diversity in rheumatoid arthritis synovium, Autoimmun. Rev. 20 (2021), 102758.
    [54]
    X. Hu, Z. Zhang, L. Long, et al., Deconvolution of synovial myeloid cell subsets across pathotypes and role of COL3A1+ macrophages in rheumatoid arthritis remission, Front. Immunol. 15 (2024), 1307748.
    [55]
    S. Jang, E.J. Kwon, J.J. Lee, Rheumatoid arthritis: Pathogenic roles of diverse immune cells, Int. J. Mol. Sci. 23 (2022), 905.
    [56]
    Y. Zheng, K. Wei, P. Jiang, et al., Macrophage polarization in rheumatoid arthritis: Signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts, Front. Immunol. 15 (2024), 1394108.
    [57]
    J. Tu, W. Huang, W. Zhang, et al., A tale of two immune cells in rheumatoid arthritis: The crosstalk between macrophages and T cells in the synovium, Front. Immunol. 12 (2021), 655477.
    [58]
    K.S. Nandakumar, Q. Fang, I. Wingbro Agren, Z.F. Bejmo, Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis, Int J Mol Sci 24 (2023) 15883.
    [59]
    L.-K. Bai, Y.-Z. Su, X.-X. Wang, B. Bai, C.-Q. Zhang, L.-Y. Zhang, G.-L. Zhang, Synovial Macrophages: Past Life, Current Situation, and Application in Inflammatory Arthritis., Front Immunol (2022) 905356.
    [60]
    S. Culemann, A. Gruneboom, J.A. Nicolas-Avila, et al., Locally renewing resident synovial macrophages provide a protective barrier for the joint, Nature 572 (2019) 670-675.
    [61]
    Corica F, De Feo MS, Gorica J, et al., PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside, Diagnostics. 13 (2023) 1029.
    [62]
    X. Su, L. Wang, R. Yang, et al., Longitudinal 18F-VUIIS1008 PET imaging in a rat model of rheumatoid arthritis, Front. Chem. 10 (2022), 1064518.
    [63]
    N.J.F. Verweij, M. Yaqub, S.T.G. Bruijnen, et al., First in man study of [18F] fluoro-PEG-folate PET: A novel macrophage imaging technique to visualize rheumatoid arthritis, Sci. Rep. 10 (2020), 1047.
    [64]
    O. Gondry, C. Xavier, L. Raes, et al., Phase I study of [68Ga] Ga-anti-CD206-sdAb for PET/CT assessment of protumorigenic macrophage presence in solid tumors (MMR phase I), J. Nucl. Med. 64 (2023) 1378-1384.
    [65]
    N. Verweij, G. Zwezerijnen, M. Ter Wee, et al., Early prediction of treatment response in rheumatoid arthritis by quantitative macrophage PET, RMD Open 8 (2022), e002108.
    [66]
    J. Inciarte-Mundo, B. Frade-Sosa, R. Sanmarti, From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis, Front. Immunol. 13 (2022), 1001025.
    [67]
    Rizo-Tellez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair, Am J Physiol Cell Physiol. 326 (2024), C661-C683.
    [68]
    Q. Fang, J. Ou, K.S. Nandakumar, Autoantibodies as diagnostic markers and mediator of joint inflammation in arthritis, Mediators Inflamm. 2019 (2019), 6363086.
    [69]
    J. Chen, Y. Cao, J. Xiao, et al., The emerging role of neutrophil extracellular traps in the progression of rheumatoid arthritis, Front. Immunol. 15 (2024), 1438272.
    [70]
    Y. Deng, J. Li, R. Wu, Neutrophils in rheumatoid arthritis synovium: Implications on disease activity and inflammation state, J. Inflamm. Res. 18 (2025) 4741-4753.
    [71]
    T. Chen, Z. Zhou, M. Peng, et al., Glutathione peroxidase 3 is a novel clinical diagnostic biomarker and potential therapeutic target for neutrophils in rheumatoid arthritis, Arthritis Res. Ther. 25 (2023), 66.
    [72]
    J. Xia, H. Gao, J. Tang, et al., A novel diagnostic model based on lncRNA PTPRE expression, neutrophil count and red blood cell distribution width for diagnosis of seronegative rheumatoid arthritis, Clin. Exp. Med. 24 (2024), 86.
    [73]
    M. Bach, J. Moon, R. Moore, et al., A neutrophil activation biomarker panel in prognosis and monitoring of patients with rheumatoid arthritis, Arthritis Rheumatol. 72 (2020) 47-56.
    [74]
    N. Jung, J.L. Bueb, F. Tolle, et al., Regulation of neutrophil pro-inflammatory functions sheds new light on the pathogenesis of rheumatoid arthritis, Biochem. Pharmacol. 165 (2019) 170-180.
    [75]
    Q. Wang, W. Chen, J. Lin, The role of calprotectin in rheumatoid arthritis, J. Transl. Int. Med. 7 (2019) 126-131.
    [76]
    D. Michailidou, L. Johansson, R. Kuley, et al., Immune complex-mediated neutrophil activation in patients with polymyalgia rheumatica, Rheumatology (Oxford) 62 (2023) 2880-2886.
    [77]
    A. Baillet, C. Trocme, X. Romand, et al., Calprotectin discriminates septic arthritis from pseudogout and rheumatoid arthritis, Rheumatology (Oxford) 58 (2019) 1644-1648.
    [78]
    M. Gernert, M. Schmalzing, H.P. Tony, et al., Calprotectin (S100A8/S100A9) detects inflammatory activity in rheumatoid arthritis patients receiving tocilizumab therapy, Arthritis Res. Ther. 24 (2022), 200.
    [79]
    M. Manfredi, L. Van Hoovels, M. Benucci, et al., Circulating Calprotectin (cCLP) in autoimmune diseases, Autoimmun. Rev. 22 (2023), 103295.
    [80]
    Jarlborg, M., Courvoisier, D.S., Lamacchia, C. et al. Serum calprotectin: a promising biomarker in rheumatoid arthritis and axial spondyloarthritis, Arthritis Res Ther. 22 (2020), 105.
    [81]
    B. Frade-Sosa, A. Ponce, J. Inciarte-Mundo, et al., Plasma calprotectin as a biomarker of ultrasound synovitis in rheumatoid arthritis patients receiving IL-6 antagonists or JAK inhibitors, Ther. Adv. Musculoskelet. Dis. 14 (2022), 1759720X221114105.
    [82]
    Brinkmann V, Reichard U, Goosmann C, et al., Neutrophil extracellular traps kill bacteria, Science. 303 (2004), 1532-1535.
    [83]
    J. Lehmann, S. Giaglis, D. Kyburz, et al., Plasma mtDNA as a possible contributor to and biomarker of inflammation in rheumatoid arthritis, Arthritis Res. Ther. 26 (2024), 97.
    [84]
    C.M. de Bont, M.E.M. Stokman, P. Faas, et al., Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis, J. Autoimmun. 113 (2020), 102484.
    [85]
    Zheng L, Gu M, Li X, et al., ITGA5+ synovial fibroblasts orchestrate proinflammatory niche formation by remodelling the local immune microenvironment in rheumatoid arthritis, Ann Rheum Dis. 84 (2025), 232-252.
    [86]
    F. Li, Y. Tang, B. Song, et al., Nomenclature clarification: Synovial fibroblasts and synovial mesenchymal stem cells, Stem Cell Res. Ther. 10 (2019), 260.
    [87]
    Y. Liu, P. Rao, H. Qian, et al., Regulatory fibroblast-like synoviocytes cell membrane coated nanoparticles: A novel targeted therapy for rheumatoid arthritis, Adv. Sci. (Weinh) 10 (2023), e2204998.
    [88]
    M.H. Smith, V.R. Gao, P.K. Periyakoil, et al., Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis, Nat. Immunol. 24 (2023) 1200-1210.
    [89]
    K. Li, W. Liu, H. Yu, et al., 68Ga-FAPI PET imaging monitors response to combined TGF-βR inhibition and immunotherapy in metastatic colorectal cancer, J. Clin. Invest. 134 (2024), e170490.
    [90]
    H. Qian, C. Deng, S. Chen, et al., Targeting pathogenic fibroblast-like synoviocyte subsets in rheumatoid arthritis, Arthritis Res. Ther. 26 (2024), 103.
    [91]
    Cao C, Wu F, Niu X, et al., Cadherin-11 cooperates with inflammatory factors to promote the migration and invasion of fibroblast-like synoviocytes in pigmented villonodular synovitis, Theranostics. 10 (2020), 10573-10588.
    [92]
    A.P. Croft, A.J. Naylor, J.L. Marshall, et al., Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage, Arthritis Res. Ther. 18 (2016), 270.
    [93]
    A.C. Chandler, M. Yakoub, T. Fujiwara, et al., Neoplastic synovial lining cells that coexpress podoplanin and CD90 overproduce CSF-1, driving tenosynovial giant cell tumor, J. Orthop. Res. 40 (2022) 1918-1925.
    [94]
    M. Yang, Y. Su, H. Zheng, et al., Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related CeRNA networks, BMC Musculoskelet. Disord. 24 (2023), 799.
    [95]
    J. Han, X. Wang, X. Zhang, Functional interactions between lncRNAs/circRNAs and miRNAs: Insights into rheumatoid arthritis, Front. Immunol. 13 (2022), 810317.
    [96]
    Z. Luo, S. Chen, X. Chen, CircMAPK9 promotes the progression of fibroblast-like synoviocytes in rheumatoid arthritis via the miR-140-3p/PPM1A axis., J. Orthop. Surg. Res. 16 (2021) 395.
    [97]
    Y. Tong, X. Li, Q. Deng, et al., Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis, Front. Pharmacol. 14 (2023), 1230293.
    [98]
    Z. Wu, D. Ma, H. Yang, et al., Fibroblast-like synoviocytes in rheumatoid arthritis: Surface markers and phenotypes, Int. Immunopharmacol. 93 (2021), 107392.
    [99]
    A. Mihailova, Interleukin 6 concentration in synovial fluid of patients with inflammatory and degenerative arthritis, Curr Rheumatol Rev. 18 (2022) 230-233.
    [100]
    A.M. Mustonen, J. Savinainen, M. Lehtonen, et al., Synovial fluid o-tyrosine is a potential biomarker for autoimmune-driven rheumatoid arthritis, Clin Rheumatol. 44 (2025), 2657-2668.
    [101]
    V. Smolinska, D. Klimova, L. Danisovic, S. Harsanyi, Synovial fluid markers and extracellular vesicles in rheumatoid arthritis, Medicina (Kaunas). 60 (2024), 1945.
    [102]
    Y. Sun, X. Zhong, A.M. Dennis, Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection, J. Biomed. Opt. 28 (2023), 094805.
    [103]
    S. Li, D. Cheng, L. He, L. Yuan, Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation, Front. Bioeng. Biotechnol. 9 (2021), 768698.
    [104]
    L. Dong, W. Li, L. Li, et al., Nanoprobe-based near-infrared II optical imaging for guiding precision glioma therapy, Int. J. Nanomedicine 20 (2025), 8433-8449.
    [105]
    I. Sudol-Szopinska, C. Giraudo, E.H.G. Oei, et al., Imaging update in inflammatory arthritis, J. Clin. Orthop. Trauma 20 (2021), 101491.
    [106]
    F. Rothe, J. Berger, P. Welker, et al., Fluorescence optical imaging feature selection with machine learning for differential diagnosis of selected rheumatic diseases, Front. Med. (Lausanne) 10 (2023), 1228833.
    [107]
    A.M. Glimm, L.I. Sprenger, I.K. Haugen, et al., Fluorescence optical imaging for treatment monitoring in patients with early and active rheumatoid arthritis in a 1-year follow-up period, Arthritis Res. Ther. 21 (2019), 209.
    [108]
    J. Chen, M. Chen, X. Yu, Fluorescent probes in autoimmune disease research: Current status and future prospects, J. Transl. Med. 23 (2025), 411.
    [109]
    X. Wang, L. Xu, D. Tan, et al., A novel Cys-activated NIR-II fluorescent probe for rheumatoid arthritis fluorescence imaging in vivo, New J. Chem. 49 (2025) 572-578.
    [110]
    P. Luo, F. Gao, W. Sun, et al., Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis, Mil. Med. Res. 10 (2023), 31.
    [111]
    C.M.C. Andres, J.M. Perez de la Lastra, C.A. Juan, et al., Hypochlorous acid chemistry in mammalian cells-influence on infection and role in various pathologies, Int. J. Mol. Sci. 23 (2022), 10735.
    [112]
    H. Ma, K. Chen, B. Song, et al., A visible-light-excitable mitochondria-targeted europium complex probe for hypochlorous acid and its application to time-gated luminescence bioimaging, Biosens. Bioelectron. 168 (2020), 112560.
    [113]
    P. Wu, H. Xiong, An acid-enhanced OFF-ON fluorescent probe for the detection of hypochlorous acid in rheumatoid arthritis, Talanta 247 (2022), 123584.
    [114]
    X. Yang, Y. Wang, Z. Shang, et al., Quinoline-based fluorescent probe for the detection and monitoring of hypochlorous acid in a rheumatoid arthritis model, RSC Adv. 11 (2021) 31656-31662.
    [115]
    W. Chen, W. Xu, J. Xing, et al., De novo design of a highly stable ratiometric probe for long-term continuous imaging of endogenous HClO burst, Anal. Chem. 96 (2024) 4129-4137.
    [116]
    W. Qu, R. Tian, B. Yang, et al., Dual-channel/localization single-molecule fluorescence probe for monitoring ATP and HOCl in early diagnosis and therapy of rheumatoid arthritis, Anal. Chem. 96 (2024) 5428-5436.
    [117]
    G. Wu, Z. Li, P. Huang, et al., Shedding light on ONOO- detection: The emergence of a fast-response fluorescent probe for biological systems, J. Mater. Chem. B 12 (2024) 3436-3444.
    [118]
    P.G. Winyard, B. Ryan, P. Eggleton, et al., Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease, Biochem. Soc. Trans. 39 (2011) 1226-1232.
    [119]
    Z. Wang, J. Gong, P. Wang, et al., An activatable fluorescent probe enables in vivo evaluation of peroxynitrite levels in rheumatoid arthritis, Talanta 252 (2023), 123811.
    [120]
    S. Zhong, S. Huang, B. Feng, et al., An ESIPT-based AIE fluorescent probe to visualize mitochondrial hydrogen peroxide and its application in living cells and rheumatoid arthritis, Org. Biomol. Chem. 21 (2023) 5063-5071.
    [121]
    K. Wei, T. Chen, H. Fang, et al., Mitochondrial DNA release via the mitochondrial permeability transition pore activates the cGAS-STING pathway, exacerbating inflammation in acute Kawasaki disease, Cell Commun. Signal. 22 (2024), 328.
    [122]
    Z. Zeng, X. Zhou, Y. Wang, et al., Mitophagy-a new target of bone disease, Biomolecules 12 (2022), 1420.
    [123]
    J. Wang, Y. Zhang, J. Cao, et al., The role of autophagy in bone metabolism and clinical significance, Autophagy 19 (2023) 2409-2427.
    [124]
    T. Han, Y. Sun, C. Zhao, et al., Mitochondrial-targeted ratiometric near-infrared fluorescence probe for monitoring nitric oxide in rheumatoid arthritis, J. Med. Chem. 67 (2024) 4026-4035.
    [125]
    L. Liu, P. Wei, W. Yuan, et al., Detecting basal myeloperoxidase activity in living systems with a near-infrared emissive “turn-on” probe, Anal. Chem. 92 (2020) 10971-10978.
    [126]
    X. Liu, X. Yang, L. Li, et al., An analyte-replacement near-infrared fluorogenic probe for ultrafast detection of hypochlorite in rheumatoid arthritis, Bioorg. Chem. 139 (2023), 106757.
    [127]
    S.D. Tsen, L.E. Springer, K. Sharmah Gautam, et al., Non-invasive monitoring of arthritis treatment response via targeting of tyrosine-phosphorylated annexin A2 in chondrocytes, Arthritis Res. Ther. 23 (2021), 265.
    [128]
    M. Xu, C. Zhang, J. Yan, et al., A responsive nanoplatform with molecular and structural imaging capacity for assisting accurate diagnosis of early rheumatoid arthritis, Int. J. Biol. Macromol. 271 (2024), 132514.
    [129]
    R. Wang, J. Shi, Q. Zhang, et al., Dual-triggered near-infrared persistent luminescence nanoprobe for autofluorescence-free imaging-guided precise therapy of rheumatoid arthritis, Adv. Sci. (Weinh) 10 (2023), e2205320.
    [130]
    L. Shen, Y. Bi, J. Yu, et al., The biological applications of near-infrared optical nanomaterials in atherosclerosis, J. Nanobiotechnology 22 (2024), 478.
    [131]
    C. Li, G. Chen, Y. Zhang, et al., Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications, J. Am. Chem. Soc. 142 (2020) 14789-14804.
    [132]
    M Zhao, X Chen, Recent advances in NIR-II materials for biomedical applications, Acc. Mater. Res. 5 (2024) 600-613.
    [133]
    P. Wu, Y. Zhu, L. Chen, et al., A fast-responsive OFF-ON near-infrared-II fluorescent probe for in vivo detection of hypochlorous acid in rheumatoid arthritis, Anal. Chem. 93 (2021) 13014-13021.
    [134]
    L. Li, X. Wang, R. Gao, et al., Inflammation-triggered supramolecular nanoplatform for local dynamic dependent imaging-guided therapy of rheumatoid arthritis, Adv. Sci. (Weinh) 9 (2022), e2105188.
    [135]
    J. Chen, J. Qi, C. Chen, et al., Tocilizumab-conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis, Adv. Mater. 32 (2020), 2003399.
    [136]
    R. Dai, M. Zhao, X. Zheng, et al., Homology-activated ultrasensitive nanomedicines for precise NIR-II FL/MRI imaging-guided “knock-on” dynamic therapy in rheumatoid arthritis, Adv. Healthc. Mater. 13 (2024), 2303892.
    [137]
    Y. Liu, L. Chen, Z. Chen, et al., Multifunctional Janus nanoplatform for efficiently synergistic theranostics of rheumatoid arthritis, ACS Nano 17 (2023) 8167-8182.
    [138]
    H. Cheng, H. Xu, B. Peng, et al., Illuminating the future of precision cancer surgery with fluorescence imaging and artificial intelligence convergence, NPJ Precis. Oncol. 8 (2024), 196.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return