| Citation: | Jing Chen, Nini Fan, Yuqing Lu, Jianhua Yang, Wenchao Song, Haiyang Sheng, Yinfeng Yang, Shengxi Chen, Jinghui Wang. Intelligence on the Graph: Graph Neural Networks for Mechanistic Drug Target Discovery[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101508 |
| [1] |
S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, et al., How to improve R&D productivity: The pharmaceutical industry’s grand challenge, Nat. Rev. Drug Discov. 9 (2010) 203-214.[PubMed].
|
| [2] |
J. Vamathevan, D. Clark, P. Czodrowski, et al., Applications of machine learning in drug discovery and development, Nat. Rev. Drug Discov. 18 (2019) 463-477.[PubMed].
|
| [3] |
A. Mullard, New drugs cost US$2.6 billion to develop, Nat. Rev. Drug Discov. 13 (2014), 877.[LinkOut].
|
| [4] |
D. Sun, W. Gao, H. Hu, et al., Why 90% of clinical drug development fails and how to improve it?Acta Pharm. Sin. B 12 (2022) 3049-3062.[PubMed].
|
| [5] |
A. Mullard, The drug-maker’s guide to the galaxy, Nature 549 (2017) 445-447.[PubMed].
|
| [6] |
J.M. Reichert, Trends in development and approval times for new therapeutics in the United States, Nat. Rev. Drug Discov. 2 (2003) 695-702.[PubMed].
|
| [7] |
Y. You, X. Lai, Y. Pan, et al., Artificial intelligence in cancer target identification and drug discovery, Signal Transduct. Target. Ther. 7 (2022), 156.[PubMed].
|
| [8] |
A.V. Sadybekov, V. Katritch, Computational approaches streamlining drug discovery, Nature 616 (2023) 673-685.[PubMed].
|
| [9] |
G. Sliwoski, S. Kothiwale, J. Meiler, et al., Computational methods in drug discovery, Pharmacol. Rev. 66 (2013) 334-395.[PubMed].
|
| [10] |
H. Chen, O. Engkvist, Y. Wang, et al., The rise of deep learning in drug discovery, Drug Discov. Today 23 (2018) 1241-1250.[PubMed].
|
| [11] |
S. Dara, S. Dhamercherla, S.S. Jadav, et al., Machine learning in drug discovery: A review, Artif. Intell. Rev. 55 (2022) 1947-1999.[PubMed].
|
| [12] |
S. Vatansever, A. Schlessinger, D. Wacker, et al., Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions, Med. Res. Rev. 41 (2021) 1427-1473.[PubMed].
|
| [13] |
C.J. Henrich, J.A. Beutler, Matching the power of high throughput screening to the chemical diversity of natural products, Nat. Prod. Rep. 30 (2013) 1284-1298.[PubMed].
|
| [14] |
A. Schneuing, C. Harris, Y. Du, et al., Structure-based drug design with equivariant diffusion models, Nat. Comput. Sci. 4 (2024) 899-909.[PubMed].
|
| [15] |
W. Zheng, N. Thorne, J.C. McKew, Phenotypic screens as a renewed approach for drug discovery, Drug Discov. Today 18 (2013) 1067-1073.[PubMed].
|
| [16] |
J.L. Medina-Franco, M.A. Giulianotti, G.S. Welmaker, et al., Shifting from the single to the multitarget paradigm in drug discovery, Drug Discov. Today 18 (2013) 495-501.[PubMed].
|
| [17] |
F. Zhong, X. Wu, R. Yang, et al., Drug target inference by mining transcriptional data using a novel graph convolutional network framework, Protein Cell 13 (2022) 281-301.[PubMed].
|
| [18] |
Z. Lu, G. Song, H. Zhu, et al., DTIAM: A unified framework for predicting drug-target interactions, binding affinities and drug mechanisms, Nat. Commun. 16 (2025), 2548.[PubMed].
|
| [19] |
P. Bai, F. Miljkovic, B. John, et al., Interpretable bilinear attention network with domain adaptation improves drug-target prediction, Nat. Mach. Intell. 5 (2023) 126-136.[LinkOut].
|
| [20] |
Z. Zhang, L. Chen, F. Zhong, et al., Graph neural network approaches for drug-target interactions, Curr. Opin. Struct. Biol. 73 (2022), 102327.[PubMed].
|
| [21] |
G. Corso, H. Stark, S. Jegelka, et al., Graph neural networks, Nat. Rev. Meth. Primers 4 (2024), 17.[LinkOut].
|
| [22] |
H. Zhang, B. Wu, X. Yuan, et al., Trustworthy graph neural networks: Aspects, methods, and trends, Proc. IEEE 112 (2024) 97-139.[LinkOut].
|
| [23] |
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv. 2016. https://arxiv.org/abs/1609.02907.
|
| [24] |
M.M. Bronstein, J. Bruna, Y. LeCun, et al., Geometric deep learning: Going beyond euclidean data, IEEE Signal Process. Mag. 34 (2017) 18-42.[LinkOut].
|
| [25] |
S. Zhang, H. Tong, J. Xu, et al., Graph convolutional networks: A comprehensive review, Comput Soc Netw 6 (2019), 11.[PubMed].
|
| [26] |
Z. Wu, S. Pan, F. Chen, et al., A comprehensive survey on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (2021) 4-24.[LinkOut].
|
| [27] |
Z Zhang, P Cui, W Zhu, Deep learning on graphs: A survey, IEEE Trans. Knowl. Data Eng. 34 (2022) 249-270.[LinkOut].
|
| [28] |
M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph domains, Proceedings of 2005 IEEE International Joint Conference on Neural Networks, 2005. July 31 - August 4, 2005, Montreal, QC, Canada. IEEE, (2005) 729–734.[LinkOut]
|
| [29] |
S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine, Comput. Netw. ISDN Syst. 30 (1998) 107-117.[LinkOut].
|
| [30] |
J. Bruna, W. Zaremba, A. Szlam, et al., Spectral networks and locally connected networks on graphs, arXiv. 2013. https://arxiv.org/abs/1312.6203.
|
| [31] |
M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Neural Information Processing Systems., (1997)[LinkOut]
|
| [32] |
W. Hamilton, Z. Ying , J. Leskovec, Proceedings of the Thirty-First Advances in neural information processing systems, Dec 4–9, 2017, California, America, 2017, pp. 671–681.
|
| [33] |
L. Zhang, C. Wang, Y. Zhang, et al., GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores, Comput. Biol. Med. 166 (2023), 107512.[PubMed].
|
| [34] |
M. Sun, S. Zhao, C. Gilvary, et al., Graph convolutional networks for computational drug development and discovery, Brief. Bioinform. 21 (2020) 919-935.[PubMed].
|
| [35] |
W. Torng, R.B. Altman, Graph convolutional neural networks for predicting drug-target interactions, J Chem Inf Model 59 (2019) 4131-4149.[PubMed].
|
| [36] |
Q. Liu, Z. Hu, R. Jiang, et al., DeepCDR: A hybrid graph convolutional network for predicting cancer drug response, Bioinformatics 36 (2020) i911-i918.[PubMed].
|
| [37] |
D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv. 2014. https://arxiv.org/abs/1409.0473.
|
| [38] |
A. Vaswani, N. Shazeer, N. Parmar, et al., Proceedings of the Thirty-First Advances in neural information processing systems, Dec 4–9, 2017, California, America, 2017, pp. 3058–3068.
|
| [39] |
P. Velickovic, G. Cucurull, A. Casanova, et al., Graph attention networks, arXiv. 2017. https://arxiv.org/abs/1710.10903.
|
| [40] |
S. Brody, U. Alon, E. Yahav, How attentive are graph attention networks?, arXiv. 2021. https://arxiv.org/abs/2105.14491.
|
| [41] |
S. Bai, F. Zhang, P.H.S. Torr, Hypergraph convolution and hypergraph attention, Pattern Recognit. 110 (2021), 107637.[LinkOut].
|
| [42] |
Y. Weng, X. Chen, L. Chen, et al., GAIN: Graph attention & interaction network for inductive semi-supervised learning over large-scale graphs, IEEE Trans. Knowl. Data Eng. 34 (2022) 4257-4269.[LinkOut].
|
| [43] |
Z. Xiong, D. Wang, X. Liu, et al., Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism, J. Med. Chem. 63 (2020) 8749-8760.[PubMed].
|
| [44] |
Q. Lv, G. Chen, Z. Yang, et al., Meta learning with graph attention networks for low-data drug discovery, IEEE Trans. Neural Netw. Learn. Syst. 35 (2024) 11218-11230.[LinkOut].
|
| [45] |
X. Su, L. Hu, Z. You, et al., Attention-based knowledge graph representation learning for predicting drug-drug interactions, Brief. Bioinform. 23 (2022), bbac140.[PubMed].
|
| [46] |
S. Huang, M. Wang, X. Zheng, et al., Hierarchical and dynamic graph attention network for drug-disease association prediction, IEEE J. Biomed. Health Inform. 28 (2024) 2416-2427.[LinkOut].
|
| [47] |
D. Charte, F. Charte, S. Garcia, et al., A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines, Inf. Fusion 44 (2018) 78-96.[LinkOut].
|
| [48] |
P. Vincent, H. Larochelle, I. Lajoie, et al., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion, Mach. Learn. Res. 11 (2010), 3371-3408.
|
| [49] |
P. Vincent, H. Larochelle, Y. Bengio, et al., Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th International Conference on Machine Learning - ICML '08. July 5-9, 2008. Helsinki, Finland. ACM, (2008): 1096-1103.[LinkOut]
|
| [50] |
C Zhou, R.C. Paffenroth, Anomaly detection with robust deep autoencoders, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax NS Canada. ACM, (2017): 665-674.[LinkOut]
|
| [51] |
J. Mehta, A. Majumdar, RODEO: Robust DE-aliasing autoencOder for real-time medical image reconstruction, Pattern Recognit. 63 (2017) 499-510.[LinkOut].
|
| [52] |
D Wang, P Cui, W Zhu, Structural deep network embedding, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. ACM, (2016): 1225-1234.[LinkOut]
|
| [53] |
T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv. 2016. https://arxiv.org/abs/1611.07308.
|
| [54] |
A. Bojchevski, S. Gunnemann, Deep Gaussian embedding of graphs: Unsupervised inductive learning via ranking, ArXiv Mach. Learn., (2022)[LinkOut].
|
| [55] |
S. Pan, R. Hu, G. Long, et al., Adversarially regularized graph autoencoder for graph embedding, arXiv. 2018. https://arxiv.org/abs/1802.04407.
|
| [56] |
W Chiang, X Liu, S Si, et al., Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage AK USA. ACM, (2019): 257-266.[LinkOut]
|
| [57] |
C. Sun, P. Xuan, T. Zhang, et al., Graph convolutional autoencoder and generative adversarial network-based method for predicting drug-target interactions, IEEE/ACM Trans. Comput. Biol. Bioinform. 19 (2022) 455-464.[PubMed].
|
| [58] |
Y. Wang, Y. Gao, J. Wang, et al., MSGCA: Drug-disease associations prediction based on multi-similarities graph convolutional autoencoder, IEEE J. Biomed. Health Inform. 27 (2023) 3686-3694.[LinkOut].
|
| [59] |
Y. Dai, C. Guo, W. Guo, et al., Drug-drug interaction prediction with Wasserstein Adversarial Autoencoder-based knowledge graph embeddings, Brief. Bioinform. 22 (2021), bbaa256.[PubMed].
|
| [60] |
P. Xuan, M. Fan, H. Cui, et al., GVDTI: Graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction, Brief. Bioinform. 23 (2022), bbab453.[PubMed].
|
| [61] |
A. L’Heureux, K. Grolinger, H.F. Elyamany, et al., Machine learning with big data: Challenges and approaches, IEEE Access 5 (2017) 7776-7797.[LinkOut].
|
| [62] |
M.J. Keiser, V. Setola, J.J. Irwin, et al., Predicting new molecular targets for known drugs, Nature 462 (2009) 175-181.[LinkOut].
|
| [63] |
U. Veleiro, J. de la Fuente, G. Serrano, et al., GeNNius: An ultrafast drug-target interaction inference method based on graph neural networks, Bioinformatics 40 (2024), btad774.[PubMed].
|
| [64] |
T. Zhao, Y. Hu, L.R. Valsdottir, et al., Identifying drug-target interactions based on graph convolutional network and deep neural network, Brief. Bioinform. 22 (2021) 2141-2150.[PubMed].
|
| [65] |
Y. Yamanishi, M. Araki, A. Gutteridge, et al., Prediction of drug-target interaction networks from the integration of chemical and genomic spaces, Bioinformatics 24 (2008) i232-i240.[PubMed].
|
| [66] |
G. Alanis-Lobato, M.A. Andrade-Navarro, M.H. Schaefer, HIPPIE v2.0: Enhancing meaningfulness and reliability of protein-protein interaction networks, Nucleic Acids Res. 45 (2017) D408-D414.[PubMed].
|
| [67] |
D.S. Wishart, Y.D. Feunang, A.C. Guo, et al., DrugBank 5.0: A major update to the DrugBank database for 2018, Nucleic Acids Res. 46 (2018) D1074-D1082.[PubMed].
|
| [68] |
L. Jiang, J. Sun, Y. Wang, et al., Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities, Brief. Bioinform. 23 (2022), bbac016.[PubMed].
|
| [69] |
Y. Luo, X. Zhao, J. Zhou, et al., A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information, Nat. Commun. 8 (2017), 573.[PubMed].
|
| [70] |
M. Li, X. Cai, S. Xu, et al., Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction, Brief. Bioinform. 24 (2023), bbac578.[PubMed].
|
| [71] |
U. Consortium, UniProt: A worldwide hub of protein knowledge, Nucleic Acids Res. 47 (2019) D506-D515.[PubMed].
|
| [72] |
Y. Su, Z. Hu, F. Wang, et al., AMGDTI: Drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network, Brief. Bioinform. 25 (2023), bbad474.[PubMed].
|
| [73] |
Y. Zheng, H. Peng, X. Zhang, et al., Predicting drug targets from heterogeneous spaces using anchor graph hashing and ensemble learning, 2018 International Joint Conference on Neural Networks (IJCNN). July 8-13, 2018, Rio de Janeiro, Brazil. IEEE, (2018) 1–7.[LinkOut]
|
| [74] |
K. Shao, Y. Zhang, Y. Wen, et al., DTI-HETA: Prediction of drug-target interactions based on GCN and GAT on heterogeneous graph, Brief. Bioinform. 23 (2022), bbac109.[PubMed].
|
| [75] |
S. He, Y. Wen, X. Yang, et al., PIMD: An integrative approach for drug repositioning using multiple characterization fusion, Genomics Proteomics Bioinformatics 18 (2020) 565-581.[PubMed].
|
| [76] |
Z. Liu, Q. Chen, W. Lan, et al., SSLDTI: A novel method for drug-target interaction prediction based on self-supervised learning, Artif. Intell. Med. 149 (2024), 102778.[PubMed].
|
| [77] |
F. Wan, L. Hong, A. Xiao, et al., NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions, Bioinformatics 35 (2019) 104-111.[PubMed].
|
| [78] |
X. Zeng, S. Zhu, X. Liu, et al., deepDR: A network-based deep learning approach to in silico drug repositioning, Bioinformatics 35 (2019) 5191-5198.[PubMed].
|
| [79] |
P. Xu, Z. Wei, C. Li, et al., Drug-target prediction based on dynamic heterogeneous graph convolutional network, IEEE J. Biomed. Health Inform. 28 (2024) 6997-7005.[LinkOut].
|
| [80] |
Y. Jin, J. Lu, R. Shi, et al., EmbedDTI: Enhancing the molecular representations via sequence embedding and graph convolutional network for the prediction of drug-target interaction, Biomolecules 11 (2021), 1783.[PubMed].
|
| [81] |
M.I. Davis, J.P. Hunt, S. Herrgard, et al., Comprehensive analysis of kinase inhibitor selectivity, Nat. Biotechnol. 29 (2011) 1046-1051.[PubMed].
|
| [82] |
J. Tang, A. Szwajda, S. Shakyawar, et al., Making sense of large-scale kinase inhibitor bioactivity data sets: A comparative and integrative analysis, J. Chem. Inf. Model. 54 (2014) 735-743.[PubMed].
|
| [83] |
Q. Kim, J.H. Ko, S. Kim, et al., Bayesian neural network with pretrained protein embedding enhances prediction accuracy of drug-protein interaction, Bioinformatics 37 (2021) 3428-3435.[PubMed].
|
| [84] |
P. Battaglia, R. Pascanu, M. Lai, et al., Proceedings of the Thirtieth Advances in neural information processing systems, Dec 5–11, 2016, Barcelona, Spain, 2016, pp. 2244–2252.
|
| [85] |
K.Y. Gao, A. Fokoue, H. Luo, et al., Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, July 13–19, 2018, Stockholm, Sweden, 2018, pp. 3371–3377.
|
| [86] |
H. Liu, J. Sun, J. Guan, et al., Improving compound-protein interaction prediction by building up highly credible negative samples, Bioinformatics 31 (2015) i221-i229.[PubMed].
|
| [87] |
M. Tsubaki, K. Tomii, S. Jun, Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences, Bioinformatics 35 (2019) 309-318.[PubMed].
|
| [88] |
D.S. Wishart, C. Knox, A.C. Guo, et al., DrugBank: A knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res 36 (2008) D901-D906.[PubMed].
|
| [89] |
S. Gunther, M. Kuhn, M. Dunkel, et al., SuperTarget and Matador: Resources for exploring drug-target relationships, Nucleic Acids Res. 36 (2008) D919-D922.[PubMed].
|
| [90] |
L. Chen, X. Tan, D. Wang, et al., TransformerCPI: Improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments, Bioinformatics 36 (2020) 4406-4414.[PubMed].
|
| [91] |
R. Ying, D. Bourgeois, J. You, et al., GNNExplainer: Generating explanations for graph neural networks, Adv Neural Inf Process. Syst 32 (2019) 9240-9251.[PubMed].
|
| [92] |
H. Wang, F. Huang, Z. Xiong, et al., A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions, Brief. Bioinform. 23 (2022), bbac184.[PubMed].
|
| [93] |
Y. Li, G. Qiao, K. Wang, et al., Drug-target interaction predication via multi-channel graph neural networks, Brief. Bioinform. 23 (2022), bbab346.[PubMed].
|
| [94] |
C. Knox, V. Law, T. Jewison, et al., DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs, Nucleic Acids Res. 39 (2011) D1035-D1041.[PubMed].
|
| [95] |
T.S. Keshava Prasad, R. Goel, K. Kandasamy, et al., Human protein reference database: 2009 update, Nucleic Acids Res 37 (2009) D767-D772.[PubMed].
|
| [96] |
S. Wang, P. Shan, Y. Zhao, et al., GanDTI: A multi-task neural network for drug-target interaction prediction, Comput. Biol. Chem. 92 (2021), 107476.[LinkOut].
|
| [97] |
Y. Zhu, C. Ning, N. Zhang, et al., GSRF-DTI: A framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph, BMC Biol. 22 (2024), 156.[PubMed].
|
| [98] |
D.S. Wishart, C. Knox, A.C. Guo, et al., DrugBank: A comprehensive resource for in silico drug discovery and exploration, Nucleic Acids Res. 34 (2006) D668-D672.[PubMed].
|
| [99] |
M. Zitnik, R. Sosic, J. Leskovec, BioSNAP Datasets: Stanford biomedical network dataset collection.
|
| [100] |
J. Hu, W. Yu, C. Pang, et al., DrugormerDTI: Drug Graphormer for drug-target interaction prediction, Comput. Biol. Med. 161 (2023), 106946.[PubMed].
|
| [101] |
Z. Yang, W. Zhong, L. Zhao, et al., MGraphDTA: Deep multiscale graph neural network for explainable drug-target binding affinity prediction, Chem. Sci. 13 (2022) 816-833.[LinkOut].
|
| [102] |
J.T. Metz, E.F. Johnson, N.B. Soni, et al., Navigating the kinome, Nat Chem Biol 7 (2011) 200-202.[PubMed].
|
| [103] |
M. Jiang, S. Wang, S. Zhang, et al., Sequence-based drug-target affinity prediction using weighted graph neural networks, BMC Genomics 23 (2022), 449.[PubMed].
|
| [104] |
M.M. Mysinger, M. Carchia, J.J. Irwin, et al., Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking, J. Med. Chem. 55 (2012) 6582-6594.[PubMed].
|
| [105] |
M. Jiang, Z. Li, S. Zhang, et al., Drug-target affinity prediction using graph neural network and contact maps, RSC Adv. 10 (2020) 20701-20712.[PubMed].
|
| [106] |
J. Liao, H. Chen, L. Wei, et al., GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information, Comput. Biol. Med. 150 (2022), 106145.[PubMed].
|
| [107] |
X. Zeng, K. Zhong, B. Jiang, et al., Fusing sequence and structural knowledge by heterogeneous models to accurately and interpretively predict drug-target affinity, Molecules 28 (2023), 8005.[PubMed].
|
| [108] |
R. Wang, X. Fang, Y. Lu, et al., The PDBbind database: Methodologies and updates, J Med Chem 48 (2005) 4111-4119.[PubMed].
|
| [109] |
P. Zhang, Z. Wei, C. Che, et al., DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug-Target interaction prediction, Comput. Biol. Med. 142 (2022), 105214.[PubMed].
|
| [110] |
C. Tang, C. Zhong, D. Chen, et al., Drug-target interactions prediction using marginalized denoising model on heterogeneous networks, BMC Bioinformatics 21 (2020), 330.[PubMed].
|
| [111] |
M. Kanehisa, S. Goto, M. Hattori, et al., From genomics to chemical genomics: New developments in KEGG, Nucleic Acids Res. 34 (2006) D354-D357.[PubMed].
|
| [112] |
Y. Wang, S.H. Bryant, T. Cheng, et al., PubChem BioAssay: 2017 update, Nucleic Acids Res. 45 (2017) D955-D963.[PubMed].
|
| [113] |
T. Nguyen, H. Le, T.P. Quinn, et al., GraphDTA: Predicting drug-target binding affinity with graph neural networks, Bioinformatics 37 (2021) 1140-1147.[PubMed].
|
| [114] |
S. Zhang, M. Jiang, S. Wang, et al., SAG-DTA: Prediction of drug-target affinity using self-attention graph network, Int J Mol Sci 22 (2021), 8993.[PubMed].
|
| [115] |
X. Wang, Y. Liu, F. Lu, et al., Dipeptide frequency of word frequency and graph convolutional networks for DTA prediction, Front. Bioeng. Biotechnol. 8 (2020), 267.[PubMed].
|
| [116] |
Y. Liu, X. Xia, Y. Gong, et al., SSR-DTA: Substructure-aware multi-layer graph neural networks for drug-target binding affinity prediction, Artif. Intell. Med. 157 (2024), 102983.[PubMed].
|
| [117] |
H. He, G. Chen, C.Y. Chen, NHGNN-DTA: A node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction, Bioinformatics 39 (2023), btad355.[PubMed].
|
| [118] |
S. Wang, X. Song, Y. Zhang, et al., MSGNN-DTA: Multi-scale topological feature fusion based on graph neural networks for drug-target binding affinity prediction, Int J Mol Sci 24 (2023), 8326.[PubMed].
|
| [119] |
X. Jiang, R. Zhu, P. Ji, et al., Co-embedding of nodes and edges with graph neural networks, IEEE Trans. Pattern Anal. Mach. Intell. 45 (2023) 7075-7086.[LinkOut].
|
| [120] |
K. Wang, M. Li, Fusion-based deep learning architecture for detecting drug-target binding affinity using target and drug sequence and structure, IEEE J. Biomed. Health Inform. 27 (2023) 6112-6120.[PubMed].
|
| [121] |
A.S. Rifaioglu, R. Cetin Atalay, D. Cansen Kahraman, et al., MDeePred: Novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery, Bioinformatics 37 (2021) 693-704.[PubMed].
|
| [122] |
Q. Feng, E. Dueva, A. Cherkasov, et al., Padme: A deep learning-based framework for drug-target interaction prediction, arXiv. 2018. https://arxiv.org/abs/1807.09741.
|
| [123] |
X Tang, X Lei, Y Zhang, Prediction of drug-target affinity using attention neural network, Int. J. Mol. Sci. 25 (2024), 5126.[LinkOut].
|
| [124] |
R.A. Rossi, R Zhou, N.K. Ahmed, Deep inductive graph representation learning, IEEE Trans. Knowl. Data Eng. 32 (2020) 438-452.[LinkOut].
|
| [125] |
R. Wang, X. Fang, Y. Lu, et al., The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures, J. Med. Chem. 47 (2004) 2977-2980.[PubMed].
|
| [126] |
M. Su, Q. Yang, Y. Du, et al., Comparative assessment of scoring functions: The CASF-2016 update, J Chem Inf Model 59 (2019) 895-913.[PubMed].
|
| [127] |
Z. Zhu, Z. Yao, X. Zheng, et al., Drug-target affinity prediction method based on multi-scale information interaction and graph optimization, Comput. Biol. Med. 167 (2023), 107621.[PubMed].
|
| [128] |
T. Baltrusaitis, C. Ahuja, L.P. Morency, Multimodal machine learning: A survey and taxonomy, IEEE Trans. Pattern Anal. Mach. Intell. 41 (2019) 423-443.[LinkOut].
|
| [129] |
X. Xia, C. Zhu, F. Zhong, et al., MDTips: A multimodal-data-based drug-target interaction prediction system fusing knowledge, gene expression profile, and structural data, Bioinformatics 39 (2023), btad411.[PubMed].
|
| [130] |
S.A. Danziger, J. Zeng, Y. Wang, et al., Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants, Bioinformatics 23 (2007) i104-i114.[PubMed].
|
| [131] |
C. Morris, M. Ritzert, M. Fey, et al., Weisfeiler and leman go neural: Higher-order graph neural networks, Proc. AAAI Conf. Artif. Intell. 33 (2019) 4602-4609.[LinkOut].
|
| [132] |
Z Zhu, Z Yao, G Qi, et al., Associative learning mechanism for drug-target interaction prediction, CAAI Trans. Intell. Technol. 8 (2023) 1558-1577.[LinkOut].
|
| [133] |
J. Deng, Z. Yang, I. Ojima, et al., Artificial intelligence in drug discovery: Applications and techniques, Brief. Bioinform. 23 (2022), bbab430.[PubMed].
|
| [134] |
H. Ozturk, A. Ozgur, E. Ozkirimli, DeepDTA: Deep drug-target binding affinity prediction, Bioinformatics 34 (2018) i821-i829.[PubMed].
|
| [135] |
L. Wu, H. Lin, C. Tan, et al., Self-supervised learning on graphs: Contrastive, generative, or predictive, IEEE Trans. Knowl. Data Eng. 35 (2023) 4216-4235.[LinkOut].
|
| [136] |
Z. Zhu, Y. Ding, G. Qi, et al., Drug-target affinity prediction using rotary encoding and information retention mechanisms, Eng. Appl. Artif. Intell. 147 (2025), 110239.[LinkOut].
|
| [137] |
Z. Zhu, X. Zheng, G. Qi, et al., Drug-target binding affinity prediction model based on multi-scale diffusion and interactive learning, Expert Syst. Appl. 255 (2024), 124647.[LinkOut].
|
| [138] |
M. Najm, C.A. Azencott, B. Playe, et al., Drug target identification with machine learning: How to choose negative examples, Int J Mol Sci 22 (2021), 5118.[PubMed].
|
| [139] |
L. Zhou, Z. Li, J. Yang, et al., Revealing drug-target interactions with computational models and algorithms, Molecules 24 (2019), 1714.[PubMed].
|
| [140] |
L. Yu, W. Qiu, W. Lin, et al., HGDTI: Predicting drug-target interaction by using information aggregation based on heterogeneous graph neural network, BMC Bioinformatics 23 (2022), 126.[PubMed].
|
| [141] |
E. Svensson, P.J. Hoedt, S. Hochreiter, et al., HyperPCM: Robust task-conditioned modeling of drug-target interactions, J Chem Inf Model 64 (2024) 2539-2553.[PubMed].
|
| [142] |
B. Liu, K. Pliakos, C. Vens, et al., Drug-target interaction prediction via an ensemble of weighted nearest neighbors with interaction recovery, Appl. Intell. 52 (2022) 3705-3727.[LinkOut].
|
| [143] |
T.M. Nguyen, T. Nguyen, T. Tran, Mitigating cold-start problems in drug-target affinity prediction with interaction knowledge transferring, Brief. Bioinform. 23 (2022), bbac269.[PubMed].
|
| [144] |
Z. Chu, F. Huang, H. Fu, et al., Hierarchical graph representation learning for the prediction of drug-target binding affinity, Inf. Sci. 613 (2022) 507-523.[LinkOut].
|