| Citation: | Amin Ullah, Yutao Wu, Rajeev K. Singla, Weidong Tian, Bairong Shen. Innovative diabetes mellitus treatment strategies: Mesenchymal stem cell-based therapy and its impact on pro- and anti-inflammatory cytokines modulation[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101497 |
| [1] |
F. Sugandh, M. Chandio, F. Raveena, et al., Advances in the management of diabetes mellitus: A focus on personalized medicine, Cureus. 15 (2023), e43697.
|
| [2] |
F.J. Pasquel, M.C. Lansang, K. Dhatariya, et al., Management of diabetes and hyperglycaemia in the hospital, Lancet Diabetes Endocrinol. 9 (2021) 174-188.
|
| [3] |
D.M. Hoang, P.T. Pham, T.Q. Bach, et al., Stem cell-based therapy for human diseases, Signal Transduct. Target. Ther. 7 (2022), 272.
|
| [4] |
T. An, Y. Chen, Y. Tu, et al., Mesenchymal stromal cell-derived extracellular vesicles in the treatment of diabetic foot ulcers: Application and challenges, Stem Cell Rev. Rep. 17 (2021) 369-378.
|
| [5] |
X. Zhuang, X. Hu, S. Zhang, et al., Mesenchymal stem cell-based therapy as a new approach for the treatment of systemic sclerosis, Clin. Rev. Allergy Immunol. 64 (2023) 284-320.
|
| [6] |
M. Kuljanin, G.I. Bell, S.E. Sherman, et al., Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation, Diabetologia 60 (2017) 1987-1998.
|
| [7] |
J Lin, W.J. Leonard, Fine-tuning cytokine signals, Annu. Rev. Immunol. 37 (2019) 295-324.
|
| [8] |
P.H. Braz-Silva, M.L. Bergamini, A.P. Mardegan, et al., Inflammatory profile of chronic apical periodontitis: A literature review, Acta Odontol. Scand. 77 (2019) 173-180.
|
| [9] |
M.M. Azuma, R.O. Samuel, J.E. Gomes-Filho, et al., The role of IL-6 on apical periodontitis: A systematic review, Int. Endod. J. 47 (2014) 615-621.
|
| [10] |
L.B. Silva, A.P. dos Santos Neto, S.M.A.S. Maia, et al., The role of TNF-α as a proinflammatory cytokine in pathological processes, Open Dent. J. 13 (2019) 332-338.
|
| [11] |
A. Ullah, R.K. Singla, Z. Batool, et al., Pro- and anti-inflammatory cytokines are the game-changers in childhood obesity-associated metabolic disorders (diabetes and non-alcoholic fatty liver diseases), Rev. Endocr. Metab. Disord. 25 (2024) 783-803.
|
| [12] |
L.V. Nedosugova, Y.V. Markina, L.A. Bochkareva, et al., Inflammatory mechanisms of diabetes and its vascular complications, Biomedicines 10 (2022), 1168.
|
| [13] |
R.A. Haeusler, T.E. McGraw, D. Accili, Biochemical and cellular properties of insulin receptor signalling, Nat. Rev. Mol. Cell Biol. 19 (2018) 31-44.
|
| [14] |
C Jia, H Chen, J Zhang, et al., Role of pyroptosis in cardiovascular diseases, Int. Immunopharmacol. 67 (2019) 311-318.
|
| [15] |
C. Peiro, O. Lorenzo, R. Carraro, et al., IL-1β inhibition in cardiovascular complications associated to diabetes mellitus, Front. Pharmacol. 8 (2017), 363.
|
| [16] |
L.C. O’Brien, E. Mezzaroma, B.W. Van Tassell, et al., Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure, Mol. Med. 20 (2014) 221-229.
|
| [17] |
D.I. Kim, S.H. Park, Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest, Biochem. Biophys. Res. Commun. 435 (2013) 702-707.
|
| [18] |
H.A. Jo, J.Y. Kim, S.H. Yang, et al., The role of local IL6/JAK2/STAT3 signaling in high glucose-induced podocyte hypertrophy, Kidney Res. Clin. Pract. 35 (2016) 212-218.
|
| [19] |
Y. Novianti, N. Nur’aeny, Exploring interleukin-10 levels in diabetes patients with and without oral diseases: A systematic review, J. Inflamm. Res. 17 (2024) 541-552.
|
| [20] |
J Huang, Q Tan, N Tai, et al., IL-10 deficiency accelerates type 1 diabetes development via modulation of innate and adaptive immune cells and gut microbiota in BDC2.5 NOD mice, Front. Immunol. 12 (2021), 702955.
|
| [21] |
J.C. Barry, S. Shakibakho, C. Durrer, et al., Hyporesponsiveness to the anti-inflammatory action of interleukin-10 in type 2 diabetes, Sci. Rep. 6 (2016), 21244.
|
| [22] |
E. Xiang, B. Han, Q. Zhang, et al., Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis, Stem Cell Res. Ther. 11 (2020), 336.
|
| [23] |
Y Li, J Liu, G Liao, et al., Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment, Int. J. Mol. Med. 41 (2018) 2629−2639.
|
| [24] |
T.L. Montagnoli, A.D. Santos, S.Z. Sudo, et al., Perspectives on stem cell therapy in diabetic neuropathic pain, Neurol. Int. 16 (2024) 933-944.
|
| [25] |
J. Kushioka, S.K. Chow, M. Toya, et al., Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy, Inflamm. Regen. 43 (2023), 29.
|
| [26] |
M. Gazdic, V. Volarevic, N. Arsenijevic, et al., Mesenchymal stem cells: A friend or foe in immune-mediated diseases, Stem Cell Rev. Rep. 11 (2015) 280-287.
|
| [27] |
V. Volarevic, M. Gazdic, B. Simovic Markovic, et al., Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential, BioFactors 43 (2017) 633-644.
|
| [28] |
N Song, M. Scholtemeijer, K. Shah, Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential, Trends Pharmacol. Sci. 41 (2020) 653-664.
|
| [29] |
C.R. Harrell, V. Djonov, V. Volarevic, The cross-talk between mesenchymal stem cells and immune cells in tissue repair and regeneration, Int. J. Mol. Sci. 22 (2021), 2472.
|
| [30] |
L Wang, T Liu, R Liang, et al., Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation, EBioMedicine 51 (2020), 102615.
|
| [31] |
V. Mundra, H Wu, R.I. Mahato, Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation, PLoS One 8 (2013), e77591.
|
| [32] |
R.C.S. Irawan, A. Putra, T. Setyo, et al., Secretome hypoxia-mesenchymal stem cells decrease tumor necrosis factor-α and interleukin-18 in kidney of type 2 diabetes mellitus model rats, Universa Med. 42 (2023) 320-328.
|
| [33] |
X. Sun, H. Hao, Q. Han, et al., Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats, Stem Cell Res. Ther. 8 (2017), 241.
|
| [34] |
K.S. Kim, Y.K. Choi, M.J. Kim, et al., Umbilical cord-mesenchymal stem cell-conditioned medium improves insulin resistance in C2C12 cell, Diabetes Metab. J. 45 (2021) 260-269.
|
| [35] |
G. Chen, X. Fan, X. Zheng, et al., Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance via PTEN-mediated crosstalk between the PI3K/Akt and Erk/MAPKs signaling pathways in the skeletal muscles of db/db mice, Stem Cell Res. Ther. 11 (2020), 401.
|
| [36] |
N. Zhao, Y. Gao, L. Bao, et al., Glycemic control by umbilical cord-derived mesenchymal stem cells promotes effects of fasting-mimicking diet on type 2 diabetic mice, Stem Cell Res. Ther. 12 (2021), 395.
|
| [37] |
Y Chang, M Dong, Y Wang, et al., GLP-1 gene-modified human umbilical cord mesenchymal stem cell line improves blood glucose level in type 2 diabetic mice, Stem Cells Int. 2019 (2019), 4961865.
|
| [38] |
A. Aierken, B. Li, P. Liu, et al., Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway, Stem Cell Res. Ther. 13 (2022), 164.
|
| [39] |
L. Zhang, Q. Wang, H. Su, et al., Exosomes from adipose tissues derived mesenchymal stem cells overexpressing microRNA-146a alleviate diabetic osteoporosis in rats, Cell. Mol. Bioeng. 15 (2022) 87-97.
|
| [40] |
L Zhang, Q Wang, H Su, et al., Exosomes from adipose derived mesenchymal stem cells alleviate diabetic osteoporosis in rats through suppressing NLRP3 inflammasome activation in osteoclasts, J. Biosci. Bioeng. 131 (2021) 671-678.
|
| [41] |
Q. Yang, Q. Chen, S. Li, et al., Mesenchymal stem cells ameliorate inflammation and pyroptosis in diabetic cardiomyopathy via the miRNA-223-3p/NLRP3 pathway, Diabetol. Metab. Syndr. 16 (2024), 146.
|
| [42] |
B. Liu, Y. Wei, J. He, et al., Human umbilical cord-derived mesenchymal stromal cells improve myocardial fibrosis and restore miRNA-133a expression in diabetic cardiomyopathy, Stem Cell Res. Ther. 15 (2024), 120.
|
| [43] |
L.M. Mahmoud, A.A.A. Abdel Mageed, J.M. Saadallah, et al., Interleukin 1β receptor blocker (Anakinra) and regenerative stem cell therapy: Two novel approaches effectively ameliorating diabetic cardiomyopathy, Naunyn Schmiedeberg’s Arch. Pharmacol. 397 (2024) 8023-8041.
|
| [44] |
L. Jin, Z. Deng, J. Zhang, et al., Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy, J. Transl. Med. 17 (2019), 251.
|
| [45] |
Y Lin, F Zhang, X Lian, et al., Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-I21/Smad2 signaling pathway, Cell. Mol. Biol. 65 (2019) 123-126.
|
| [46] |
C Zhang, G Zhou, Y Chen, et al., Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways, Mol. Med. Rep. 17 (2017) 71-78.
|
| [47] |
Y Wang, J Liu, H Wang, et al., Mesenchymal stem cell-derived exosomes ameliorate diabetic kidney disease through the NLRP3 signaling pathway, Stem Cells 41 (2023) 368-383.
|
| [48] |
Y Wang, D Lu, et al., Mesenchymal stem cell-derived exosomes ameliorate diabetic kidney disease through NOD2 signaling pathway, Ren. Fail. 46 (2024) 2381597.
|
| [49] |
W Zhang, Y Wang, Y Kong, Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1, Invest. Ophthalmol. Vis. Sci. 60 (2019), 294.
|
| [50] |
Y Ou, Y Yang, Y Wang, et al., Effects of extracellular vesicles derived from human umbilical cord blood mesenchymal stem cells on cell immunity in nonobese mice, Stem Cells Int. 2024 (2024) 4775285.
|
| [51] |
C Yu, K Yang, X Meng, et al., Downregulation of long noncoding RNA MIAT in the retina of diabetic rats with tail-vein injection of human umbilical-cord mesenchymal stem cells, Int. J. Med. Sci. 17 (2020) 591-598.
|
| [52] |
J. Tong, G. Yao, Y. Chen, et al., Mesenchymal stem cells regulate microglial polarization via inhibition of the HMGB1/TLR4 signaling pathway in diabetic retinopathy, Inflammation 47 (2024) 1728-1743.
|
| [53] |
J. Wang, W. Zhang, G.H. He, et al., Transfection with CXCR4 potentiates homing of mesenchymal stem cells in vitro and therapy of diabetic retinopathy in vivo, Int. J. Ophthalmol. 11 (2018) 766-772.
|
| [54] |
L Rong, W Wei, Y Fang, et al., Clinical-grade human embryonic stem cell-derived mesenchymal stromal cells ameliorate diabetic retinopathy in db/db mice, Cytotherapy 26 (2024) 606-615.
|
| [55] |
K Zhao, J Liu, G Dong, et al., Preliminary research on the effects and mechanisms of umbilical cord-derived mesenchymal stem cells in streptozotocin-induced diabetic retinopathy, Int. J. Mol. Med. 46 (2020) 849-858.
|
| [56] |
Y Chen, G Yao, J Tong, et al., MSC-derived small extracellular vesicles alleviate diabetic retinopathy by delivering miR-22-3p to inhibit NLRP3 inflammasome activation, Stem Cells 42 (2024) 64-75.
|
| [57] |
N. Abu-Shahba, M. Mahmoud, A.M. El-Erian, et al., Impact of type 2 diabetes mellitus on the immunoregulatory characteristics of adipose tissue-derived mesenchymal stem cells, Int. J. Biochem. Cell Biol. 140 (2021), 106072.
|
| [58] |
N. Kotikalapudi, S.J.P. Sampath, S. Sukesh Narayan, et al., The promise(s) of mesenchymal stem cell therapy in averting preclinical diabetes: Lessons from in vivo and in vitro model systems, Sci. Rep. 11 (2021), 16983.
|
| [59] |
A. Banerjee, D.K. Singla, MSC exosomes attenuate sterile inflammation and necroptosis associated with TAK1-pJNK-NFKB mediated cardiomyopathy in diabetic ApoE KO mice, Front. Immunol. 15 (2024), 1348043.
|
| [60] |
G.M. da Costa Manso, J. Elias-Oliveira, J.B. Guimaraes, et al., Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile, Regen. Ther. 22 (2023) 79-89.
|
| [61] |
R. Spolski, P Li, W.J. Leonard, Biology and regulation of IL-2: From molecular mechanisms to human therapy, Nat. Rev. Immunol. 18 (2018) 648-659.
|
| [62] |
M.R. Mohammadi, S.M. Rodriguez, J.C. Luong, et al., Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation, Commun. Biol. 4 (2021), 685.
|
| [63] |
Y Zou, W Xiao, D Liu, et al., Human umbilical cord mesenchymal stem cells improve disease characterization of Sjogren’s syndrome in NOD mice through regulation of gut microbiota and Treg/Th17 cellular immunity, Immun. Inflamm. Dis. 12 (2024) e1139.
|
| [64] |
N.T. Nguyen, H.T. Phan, P.M. Le, et al., Safety and efficacy of autologous adipose tissue-derived stem cell transplantation in aging-related low-grade inflammation patients: A single-group, open-label, phase I clinical trial, Trials 25 (2024), 309.
|
| [65] |
H. Rahavi, S.M. Hashemi, M. Soleimani, et al., Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model, J. Diabetes Res. 2015 (2015), 878535.
|
| [66] |
C. Corradi-Perini, T.M. Santos, N.O.S. Camara, et al., Co-transplantation of xenogeneic bone marrow-derived mesenchymal stem cells alleviates rejection of pancreatic islets in non-obese diabetic mice, Transplant. Proc. 49 (2017) 902-905.
|
| [67] |
J Wang, H Liu, G Yue, et al., Human placenta-derived mesenchymal stem cells ameliorate diabetic kidney disease by modulating the T helper 17 cell/regulatory T-cell balance through the programmed death 1/programmed death-ligand 1 pathway, Diabetes Obes. Metab. 26 (2024) 32-45.
|
| [68] |
H.C. Chandramoorthy, I. Bin-Jaliah, H. Karari, et al., MSCs ameliorates DPN induced cellular pathology via [Ca2+] i homeostasis and scavenging the pro-inflammatory cytokines, J. Cell. Physiol. 233 (2018) 1330-1341.
|
| [69] |
R. Navabi, B. Negahdari, E. Hajizadeh-Saffar, et al., Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic non-human primate model, Life Sci. 276 (2021), 119374.
|
| [70] |
W Sheng, Q Song, X Su, et al., Sodium alginate/gelatin hydrogels loaded with adipose-derived mesenchymal stem cells promote wound healing in diabetic rats, J. Cosmet. Dermatol. 22 (2023) 1670-1679.
|
| [71] |
S. Daneshmandi, M.H. Karimi, A.A. Pourfathollah, TGF-β engineered mesenchymal stem cells (TGF-β/MSCs) for treatment of Type 1 diabetes (T1D) mice model, Int. Immunopharmacol. 44 (2017) 191-196.
|
| [72] |
B. Niknam, J.M. Ayenehdeh, et al., Adipose tissue-derived mesenchymal stromal cells modulate inflammatory response and improve allograft islet transplant in mice model of type 1 diabetes, Endocr. Res. 49 (2024) 223-231.
|
| [73] |
B. Isildar, S. Ozkan, M. Ercin, et al., 2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: Immunomodulation and beta-cell regeneration, Inflamm. Regen. 42 (2022), 55.
|
| [74] |
W Gou, W Hua, L. Swaby, et al., Stem cell therapy improves human islet graft survival in mice via regulation of macrophages, Diabetes 71 (2022) 2642-2655.
|
| [75] |
S.M. Hashemi, Z.M. Hassan, N. Hossein-Khannazer, et al., Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice, Inflammopharmacology 28 (2020) 585-601.
|
| [76] |
M. Aliyu, F.T. Zohora, A.U. Anka, et al., Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach, Int. Immunopharmacol. 111 (2022), 109130.
|
| [77] |
B.O. Duman, A.E. Sariboyaci, E. Karaoz, Bio-engineering of 3-D cell sheets for diabetic rats: Interaction between mesenchymal stem cells and beta cells in functional islet regeneration system, Tissue Cell 79 (2022), 101919.
|
| [78] |
G Wang, L Zeng, C Gong, et al., Extracellular vesicles derived from mouse adipose-derived mesenchymal stem cells promote diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving dendritic cells, Exp. Eye Res. 231 (2023), 109484.
|
| [79] |
W. Su, S. Yu, Y. Yin, et al., Diabetic microenvironment preconditioning of adipose tissue-derived mesenchymal stem cells enhances their anti-diabetic, anti-long-term complications, and anti-inflammatory effects in type 2 diabetic rats, Stem Cell Res. Ther. 13 (2022), 422.
|
| [80] |
Y Wang, P Song, L Wu, et al., In situ photo-crosslinked adhesive hydrogel loaded with mesenchymal stem cell-derived extracellular vesicles promotes diabetic wound healing, J. Mater. Chem. B 11 (2023) 837-851.
|
| [81] |
J Chen, Y Liu, J Zhang, et al., External application of human umbilical cord-derived mesenchymal stem cells in hyaluronic acid gel repairs foot wounds of types I and II diabetic rats through paracrine action mode, Stem Cells Transl. Med. 12 (2023) 689-706.
|
| [82] |
J Xue, N Sun, Y Liu, Self-assembled nano-peptide hydrogels with human umbilical cord mesenchymal stem cell spheroids accelerate diabetic skin wound healing by inhibiting inflammation and promoting angiogenesis [corrigendum, Int. J. Nanomed. 17 (2022) 3057-3058.
|
| [83] |
Y Zhang, W Jiang, L Kong, et al., PLGA@IL-8 nanoparticles-loaded acellular dermal matrix as a delivery system for exogenous MSCs in diabetic wound healing, Int. J. Biol. Macromol. 224 (2023) 688-698.
|
| [84] |
X Li, Z Zheng, X Li, et al., Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: Response and correction of immunological anomalies, Curr. Pharm. Des. 19 (2013) 4893-4899.
|
| [85] |
Y. Shi, S. Wang, W. Zhang, et al., Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-1α/TGF-β1/SMAD pathway, Stem Cell Res. Ther. 13 (2022), 314.
|
| [86] |
Y. Du, W. Chen, Y. Li, et al., Study on the regulatory effect of Panax notoginseng saponins combined with bone mesenchymal stem cell transplantation on IRAK1/TRAF6-NF-κB pathway in patients with diabetic cutaneous ulcers, J. Orthop. Surg. Res. 18 (2023), 80.
|
| [87] |
Q Liang, D Zhou, X Ge, et al., Exosomes from adipose-derived mesenchymal stem cell improve diabetic wound healing and inhibit fibrosis via miR-128-1-5p/TGF-β1/Smad axis, Mol. Cell. Endocrinol. 588 (2024), 112213.
|
| [88] |
H. Xu, J. Wang, D. Wu, et al., A hybrid hydrogel encapsulating human umbilical cord mesenchymal stem cells enhances diabetic wound healing, J. Mater. Sci. Mater. Med. 33 (2022), 60.
|
| [89] |
Y. Liu, J. Chen, H. Liang, et al., Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling, Stem Cell Res. Ther. 13 (2022), 258.
|
| [90] |
H. Zhang, X. Wang, B. Hu, et al., Human umbilical cord mesenchymal stem cells attenuate diabetic nephropathy through the IGF1R-CHK2-p53 signalling axis in male rats with type 2 diabetes mellitus, J. Zhejiang Univ. SCIENCE B 25 (2024) 568-580.
|
| [91] |
F Zhang, C Wang, X Wen, et al., Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103+ DCs-mediated CD8+ T cell responses, J. Cell. Mol. Med. 24 (2020) 5817-5831.
|
| [92] |
A.H. Hamza, W.M. Al-Bishri, L.A. Damiati, et al., Mesenchymal stem cells: A future experimental exploration for recession of diabetic nephropathy, Ren. Fail. 39 (2017) 67-76.
|
| [93] |
A.F. Evangelista, M.A. Vannier-Santos, G.S. de Assis Silva, et al., Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades, J. Neuroinflammation 15 (2018), 189.
|
| [94] |
J. He, B. Liu, X. Du, et al., Amelioration of diabetic nephropathy in mice by a single intravenous injection of human mesenchymal stromal cells at early and later disease stages is associated with restoration of autophagy, Stem Cell Res. Ther. 15 (2024), 66.
|
| [95] |
B. Fan, C. Li, A. Szalad, et al., Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes, Diabetologia 63 (2020) 431-443.
|
| [96] |
L. Gao, N. Zhang, Y. Zhang, et al., Overexpression of apelin in Wharton’ jelly mesenchymal stem cell reverses insulin resistance and promotes pancreatic β cell proliferation in type 2 diabetic rats, Stem Cell Res. Ther. 9 (2018), 339.
|
| [97] |
J. Cui, M. Wang, W. Zhang, et al., Enhancing insulin sensitivity in type 2 diabetes mellitus using apelin-loaded small extracellular vesicles from Wharton’s jelly-derived mesenchymal stem cells: A novel therapeutic approach, Diabetol. Metab. Syndr. 16 (2024), 84.
|
| [98] |
Y Bai, J Wang, Z He, et al., Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-inflammatory cytokines, Med. Sci. Monit. 25 (2019) 3069-3076.
|
| [99] |
K. Tamama, S.S. Kerpedjieva, Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells, Adv. Wound Care 1 (2012) 177-182.
|
| [100] |
C. Liu, Y. Xu, Y. Lu, et al., Mesenchymal stromal cells pretreated with proinflammatory cytokines enhance skin wound healing via IL-6-dependent M2 polarization, Stem Cell Res. Ther. 13 (2022), 414.
|
| [101] |
M. van de Vyver, C. Niesler, K.H. Myburgh, et al., Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice, Mol. Cell. Endocrinol. 426 (2016) 1-10.
|
| [102] |
Y Zheng, S Wu, H Ke, et al., Secretion of IL-6 and IL-8 in the senescence of bone marrow mesenchymal stem cells is regulated by autophagy via FoxO3a, Exp. Gerontol. 172 (2023), 112062.
|
| [103] |
A Yang, Y Lu, J Xing, et al., IL-8 enhances therapeutic effects of BMSCs on bone regeneration via CXCR2-mediated PI3k/Akt signaling pathway, Cell. Physiol. Biochem. 48 (2018) 361-370.
|
| [104] |
I.P. Sutrisman, A.D. Antari, A. Putra, et al., Secretome hypoxia-mesenchymal stem cells regulate IL-10 concentrations in STZ-induced type 1 diabetes rats, CBS Int. Journal 1 (2022) 56-64.
|
| [105] |
B. Sazli, D. Lindarto, R. Hasan, et al., Secretome of hypoxia-preconditioned mesenchymal stem cells enhance angiogenesis in diabetic rats with peripheral artery disease, Med. Arch. 77 (2023), 90.
|
| [106] |
S.A. Abdelrahman, M.A. Samak, S.M. Shalaby, Fluoxetine pretreatment enhances neurogenic, angiogenic and immunomodulatory effects of MSCs on experimentally induced diabetic neuropathy, Cell Tissue Res. 374 (2018) 83-97.
|
| [107] |
O.M. Ahmed, A.S. Saleh, E.A. Ahmed, et al., Efficiency of bone marrow-derived mesenchymal stem cells and hesperetin in the treatment of streptozotocin-induced type 1 diabetes in wistar rats, Pharmaceuticals 16 (2023), 859.
|
| [108] |
S.M. Kadry, M.H. El-Dakdoky, N.Z. Haggag, et al., Melatonin improves the therapeutic role of mesenchymal stem cells in diabetic rats, Toxicol. Mech. Meth. 28 (2018) 529-538.
|
| [109] |
W. Liu, M. Yu, D. Xie, et al., Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway, Stem Cell Res. Ther. 11 (2020), 259.
|
| [110] |
S. Zhang, L. Chen, G. Zhang, et al., Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages, Stem Cell Res. Ther. 11 (2020), 39.
|
| [111] |
H Liu, R Yang, S Zhao, et al., Collagen scaffolds derived from bovine skin loaded with MSC optimized M1 macrophages remodeling and chronic diabetic wounds healing, Bioeng. Transl. Med. 8 (2023) e10467.
|
| [112] |
R.R. Khasawneh, E. Abu-El-Rub, F.A. Almahasneh, et al., Addressing the impact of high glucose microenvironment on the immunosuppressive characteristics of human mesenchymal stem cells, IUBMB Life 76 (2024) 286-295.
|
| [113] |
K. Cui, Y. Chen, H. Zhong, et al., Transplantation of IL-10-overexpressing bone marrow-derived mesenchymal stem cells ameliorates diabetic-induced impaired fracture healing in mice, Cell. Mol. Bioeng. 13 (2020) 155-163.
|
| [114] |
M. Izadi, A. Sadr Hashemi Nejad, M. Moazenchi, et al., Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: A phase I/II randomized placebo-controlled clinical trial, Stem Cell Res. Ther. 13 (2022), 264.
|
| [115] |
E. Roeb, Interleukin-13 (IL-13): A pleiotropic cytokine involved in wound healing and fibrosis, Int. J. Mol. Sci. 24 (2023), 12884.
|
| [116] |
F. Ferro, R. Spelat, G. Shaw, et al., Regenerative and anti-inflammatory potential of regularly fed, starved cells and extracellular vesicles in vivo, Cells 11 (2022), 2696.
|
| [117] |
I. Boumaza, S. Srinivasan, W.T. Witt, et al., Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia, J. Autoimmun. 32 (2009) 33-42.
|
| [118] |
M.J. McGeachy, D.J. Cua, S.L. Gaffen, The IL-17 family of cytokines in health and disease, Immunity 50 (2019) 892-906.
|
| [119] |
P.J. Tsai, H.S. Wang, G.J. Lin, et al., Undifferentiated Wharton’s jelly mesenchymal stem cell transplantation induces insulin-producing cell differentiation and suppression of T-cell-mediated autoimmunity in nonobese diabetic mice, Cell Transplant. 24 (2015) 1555-1570.
|
| [120] |
X. Chen, Y. Peng, H. Xue, et al., miR-21 regulating PVT1/PTEN/IL-17 axis towards the treatment of infectious diabetic wound healing by modified GO-derived biomaterial in mouse models, J. Nanobiotechnol. 20 (2022), 309.
|
| [121] |
X Kou, J Liu, D Wang, et al., Exocrine pancreas regeneration modifies original pancreas to alleviate diabetes in mouse models, Sci. Transl. Med. 14 (2022) eabg9170.
|
| [122] |
S. Bolivar, R. Anfossi, C. Humeres, et al., IFN-β plays both pro- and anti-inflammatory roles in the rat cardiac fibroblast through differential STAT protein activation, Front. Pharmacol. 9 (2018), 1368.
|
| [123] |
M.A. Mrahleh, S. Matar, H. Jafar, et al., Human Wharton’s jelly-derived mesenchymal stromal cells primed by tumor necrosis factor-α and interferon-γ modulate the innate and adaptive immune cells of type 1 diabetic patients, Front. Immunol. 12 (2021), 732549.
|
| [124] |
V. Vaithilingam, M.D.M. Evans, D.M. Lewy, et al., Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted, Sci. Rep. 7 (2017), 10059.
|
| [125] |
G.A. Gregory, T.I.G. Robinson, S.E. Linklater, et al., Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study, Lancet Diabetes Endocrinol. 10 (2022) 741-760.
|
| [126] |
S. Gao, T. Chen, Z. Wang, et al., Immuno-activated mesenchymal stem cell living electrospun nanofibers for promoting diabetic wound repair, J. Nanobiotechnol. 20 (2022), 294.
|
| [127] |
L Yang, J He, W Jiang, et al., Interferon-gamma treatment of human umbilical cord Mesenchymal Stem cells can significantly reduce damage associated with Diabetic Peripheral neuropathy in mice, Curr. Stem Cell Res. Ther. 19 (2024) 1129-1141.
|
| [128] |
R. Primavera, S. Regmi, R. Yarani, et al., Precision delivery of human bone marrow-derived mesenchymal stem cells into the pancreas via intra-arterial injection prevents the onset of diabetes, Stem Cells Transl. Med. 13 (2024) 559-571.
|
| [129] |
W Zhang, L Zhou, J Dang, et al., Human Gingiva-Derived Mesenchymal Stem Cells Ameliorate Streptozoticin-induced T1DM in mice via Suppression of T effector cells and Up-regulating Treg Subsets, Sci. Rep. 7 (2017), 15249.
|
| [130] |
Z Deng, T Fan, C Xiao, et al., TGF-β signaling in health, disease and therapeutics, Signal Transduct. Target. Ther. 9 (2024), 61.
|
| [131] |
C. Ji, J. Zhang, H. Shi, et al., Single-cell RNA transcriptomic reveal the mechanism of MSC derived small extracellular vesicles against DKD fibrosis, J. Nanobiotechnol. 22 (2024), 339.
|
| [132] |
C Yang, Z Zhong, S Wang, et al., HIF-1: Structure, biology and natural modulators, Chin. J. Nat. Med. 19 (2021) 521-527.
|
| [133] |
J Fan, H Lv, J Li, et al., Roles of Nrf2/HO-1 and HIF-1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury, J. Cell. Physiol. 234 (2019) 7695-7707.
|
| [134] |
M. Hepp, A. Werion, A. De Greef, et al., Oxidative stress-induced Sirtuin1 downregulation correlates to HIF-1α, GLUT-1, and VEGF-A upregulation in Th1 autoimmune Hashimoto’s thyroiditis, Int. J. Mol. Sci. 22 (2021), 3806.
|
| [135] |
H Zhao, H Huang, A. Alam, et al., VEGF mitigates histone-induced pyroptosis in the remote liver injury associated with renal allograft ischemia-reperfusion injury in rats, Am. J. Transplant. 18 (2018) 1890-1903.
|
| [136] |
X Li, X Zhang, J Xia, et al., Macrophage HIF-2α suppresses NLRP3 inflammasome activation and alleviates insulin resistance, Cell Rep. 36 (2021), 109607.
|
| [137] |
Q Jiang, X Geng, J. Warren, et al., Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic and apoptotic cell death following ischemic stroke, Neuroscience 448 (2020) 126-139.
|
| [138] |
D Yuan, S Guan, Z Wang, et al., HIF-1α aggravated traumatic brain injury by NLRP3 inflammasome-mediated pyroptosis and activation of microglia, J. Chem. Neuroanat. 116 (2021), 101994.
|
| [139] |
L Yu, W Zhang, X Han, et al., Hypoxia-induced ROS contribute to myoblast pyroptosis during obstructive sleep apnea via the NF-κB/HIF-1α signaling pathway, Oxid. Med. Cell. Longev. 2019 (2019), 4596368.
|
| [140] |
S. Appelberg, S. Gupta, S. Svensson Akusjarvi, et al., Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells, Emerg. Microbes Infect. 9 (2020) 1748-1760.
|
| [141] |
T Wang, Y Gao, R Yue, et al., Ginsenoside Rg1 alleviates podocyte injury induced by hyperlipidemia via targeting the mTOR/NF-κB/NLRP3 axis, Evid. Based Complementary Altern. Med. 2020 (2020) 2735714.
|
| [142] |
J Huang, J Xia, L Huang, et al., HIF-1α promotes NLRP3 inflammasome activation in bleomycin-induced acute lung injury, Mol. Med. Rep. 20 (2019) 3424-3432.
|
| [143] |
H. Chen, Y. Deng, X. Gan, et al., NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma, Mol. Neurodegener. 15 (2020), 26.
|
| [144] |
Y Bai, L Huang, Y Fan, et al., Marrow mesenchymal stem cell mediates diabetic nephropathy progression via modulation of Smad2/3/WTAP/m6A/ENO1 axis, FASEB J. 38 (2024) e23729.
|
| [145] |
A.R. Khalatbary, M. Omraninava, D. Nasiry, et al., Exosomes derived from human adipose mesenchymal stem cells loaded bioengineered three-dimensional amniotic membrane-scaffold-accelerated diabetic wound healing, Arch. Dermatol. Res. 315 (2023) 2853-2870.
|
| [146] |
Y. Nakafusa, N. Nitta, K. Ishii, et al., Acceptance of murine islet allografts without immunosuppression in inguinal subcutaneous white adipose tissue pretreated with bFGF, Diabetes 71 (2022) 1721-1734.
|
| [147] |
C. Wu, W. Liu, Y. Liu, et al., Human umbilical cord mesenchymal stem cell-derived TGFBI attenuates streptozotocin-induced type 1 diabetes mellitus by inhibiting T-cell proliferation, Hum. Cell 36 (2023) 997-1010.
|
| [148] |
L Liu, Y Zhou, X Zhao, et al., Bone marrow mesenchymal stem cell-derived exosomes alleviate diabetic kidney disease in rats by inhibiting apoptosis and inflammation, Front. Biosci. (Landmark Ed) 28 (2023) 203.
|
| [149] |
G. Lupo, A. Agafonova, A. Cosentino, et al., Protective effects of human pericyte-like adipose-derived mesenchymal stem cells on human retinal endothelial cells in an in vitro model of diabetic retinopathy: Evidence for autologous cell therapy, Int. J. Mol. Sci. 24 (2023), 913.
|
| [150] |
M. Sargazi, N. Karbalaei, S. Karbalay-Doust, et al., Wharton’s jelly mesenchymal stem cell conditioned medium ameliorates diabetes-induced testicular damage and sperm abnormalities by mitigating oxidative stress, apoptosis, and inflammation, Stem Cells Int. 2024 (2024) 7084913.
|