| Citation: | Junren Chen, Siqi Qin, Ziwei Xing, Cheng Peng, Dan Li. Targeting angiogenesis in diabetic wound healing: New insight from chemical architecture to functional outcomes[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101475 |
| [1] |
D.G. Armstrong, T.W. Tan, A.J.M. Boulton, et al., Diabetic foot ulcers: A review, Jama 330 (2023) 62-75.
|
| [2] |
M. Ndosi, A. Wright-Hughes, S. Brown, et al., Prognosis of the infected diabetic foot ulcer: A 12-month prospective observational study, Diabet. Med. 35 (2018) 78-88.
|
| [3] |
C.K. Sen, Human wound and its burden: Updated 2022 compendium of estimates, Adv. Wound Care 12 (2023) 657-670.
|
| [4] |
K.A. Gallagher, J.L. Mills, D.G. Armstrong, et al., Current status and principles for the treatment and prevention of diabetic foot ulcers in the cardiovascular patient population: A scientific statement from the American heart association, Circulation 149 (2024) 232-253.
|
| [5] |
Y. Y. Guan, H. Niu, Z. Liu, et al., Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation, Sci. Adv. 7 (2021), eabj0153.
|
| [6] |
M. Sharifiaghdam, E. Shaabani, R. Faridi-Majidi, et al., Macrophages as a therapeutic target to promote diabetic wound healing, Mol. Ther. 30 (2022) 2891-2908.
|
| [7] |
J. Chen, M. Luo, Y. Chen, et al., Smart macrophage-targeting wound dressings accelerate diabetic wound healing, Chem. Eng. J. 500 (2024), 156860.
|
| [8] |
J. Yang, G. Xiong, H. He, et al., SFRP2 modulates functional phenotype transition and energy metabolism of macrophages during diabetic wound healing, Front. Immunol. 15 (2024), 1432402.
|
| [9] |
G. Jiang, T. Jiang, J. Chen, et al., Mitochondrial dysfunction and oxidative stress in diabetic wound, J. Biochem. Mol. Toxicol. 37 (2023), e23407.
|
| [10] |
N. Yadu, M. Singh, D. Singh, et al., Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems, Int. J. Pharm. 670 (2025), 125117.
|
| [11] |
J. Chen, M. Luo, Z. Xing, et al., Start small, think big: microRNAs in diabetes mellitus and relevant cardiorenal-liver metabolic health spectrum, Metabolism 165 (2025), 156153.
|
| [12] |
J. Chen, S. Qin, S. Liu, et al., Targeting matrix metalloproteases in diabetic wound healing, Front. Immunol. 14 (2023), 1089001.
|
| [13] |
A.S. Kumar, D. Prema, R.G. Rao, et al., Fabrication of poly (lactic-co-glycolic acid)/gelatin electro spun nanofiber patch containing CaCO3/SiO2 nanocomposite and quercetin for accelerated diabetic wound healing, Int. J. Biol. Macromol. 254 (2024), 128060.
|
| [14] |
Y. Wang, Z. Zhu, X. Lv, et al., Multifunctional carboxymethyl chitosan-based sponges loaded with epigallocatechin-3-gallate for accelerating wound healing in diabetic rats with full-thickness burns, Carbohydr. Polym. 350 (2025), 123025.
|
| [15] |
M. Bi, Y. Qin, L. Wang, et al., The protective role of resveratrol in diabetic wound healing, Phytother. Res. 37 (2023) 5193-5204.
|
| [16] |
T. Wang, Q. Liao, Y. Wu, et al., A composite hydrogel loading natural polysaccharides derived from Periplaneta americana herbal residue for diabetic wound healing, Int. J. Biol. Macromol. 164 (2020) 3846-3857.
|
| [17] |
S. El-Ashram, L.M. El-Samad, A.A. Basha, et al., Naturally-derived targeted therapy for wound healing: Beyond classical strategies, Pharmacol. Res. 170 (2021), 105749.
|
| [18] |
S. Gao, C. Chang, J. Li, et al., Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis, Drug Deliv. 25 (2018) 1779-1789.
|
| [19] |
W. Hu, H. Yu, X. Zhou, et al., Topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway, Burns 48 (2022) 1452-1461.
|
| [20] |
B.S. Wang, X.F. Ma, C.Y. Zhang, et al., Astragaloside IV improves angiogenesis and promotes wound healing in diabetic rats via the activation of the SUMOylation pathway, Biomed. Environ. Sci. 34 (2021) 124-129.
|
| [21] |
C. Wang, Y. Lou, M. Tong, et al., Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling, Acta Pharmacol. Sin. 39 (2018) 393-404.
|
| [22] |
L. Wang, T. He, A. Fu, et al., Hesperidin enhances angiogenesis via modulating expression of growth and inflammatory factor in diabetic foot ulcer in rats, Eur. J. Inflamm. 16 (2018), 2058739218775255.
|
| [23] |
J. Zhou, M. Ni, X. Liu, et al., Curcumol promotes vascular endothelial growth factor (VEGF)-mediated diabetic wound healing in streptozotocin-induced hyperglycemic rats, Med. Sci. Monit. 23 (2017) 555-562.
|
| [24] |
M. Song, L. Chen, L. Zhang, et al., Cryptotanshinone enhances wound healing in type 2 diabetes with modulatory effects on inflammation, angiogenesis and extracellular matrix remodelling, Pharm. Biol. 58 (2020) 845-853.
|
| [25] |
L. Chen, H.L. Cheng, Y.H. Kuan, et al., Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats, Biomedicines 9 (2021), 761.
|
| [26] |
Y. Wu, Z. Zhou, L. Luo, et al., A non-anticoagulant heparin-like snail glycosaminoglycan promotes healing of diabetic wound, Carbohydr. Polym. 247 (2020), 116682.
|
| [27] |
M. Hao, S. Wei, S. Su, et al., A multifunctional hydrogel fabricated by direct self-assembly of natural herbal small molecule mangiferin for treating diabetic wounds, ACS Appl. Mater. Interfaces 16 (2024) 24221-24234.
|
| [28] |
W.R. Singh, A. Sharma, H.S. Devi, et al., Icariin improves cutaneous wound healing in streptozotocin-induced diabetic rats, J. Tissue Viability 31 (2022) 197-206.
|
| [29] |
J. Ren, M. Yang, J. Chen, et al., Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions, Biomed. Pharmacother. 129 (2020), 110475.
|
| [30] |
W.S. Tan, P. Arulselvan, S.F. Ng, et al., Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats, BMC Complementary Altern. Med. 19 (2019), 20.
|
| [31] |
F.P. Beserra, A.J. Vieira, L.F.S. Gushiken, et al., Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis, Oxid. Med. Cell. Longev. 2019 (2019), 3182627.
|
| [32] |
J. Li, H. Chou, L. Li, et al., Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and nrf-2 pathway, Artif. Cells Nanomed. Biotechnol. 48 (2020) 96-106.
|
| [33] |
S. Dehghani, R. Dalirfardouei, M.H. Jafari Najaf Abadi, et al., Topical application of curcumin regulates the angiogenesis in diabetic-impaired cutaneous wound, Cell Biochem. Funct. 38 (2020) 558-566.
|
| [34] |
Y. Zhao, Q. Wang, S. Yan, et al., Bletilla striata polysaccharide promotes diabetic wound healing through inhibition of the NLRP3 inflammasome, Front. Pharmacol. 12 (2021), 659215.
|
| [35] |
X. Huang, J. Sun, G. Chen, et al., Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-myc signaling pathway-mediated angiogenesis, Front. Pharmacol. 10 (2019), 421.
|
| [36] |
X. Yu, Z. Liu, Y. Yu, et al., Hesperetin promotes diabetic wound healing by inhibiting ferroptosis through the activation of SIRT3, Phytother. Res. 38 (2024) 1478-1493.
|
| [37] |
Z. Lin, L. Li, L. Chen, et al., Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy, Acta Pharmacol. Sin. 45 (2024) 815-830.
|
| [38] |
Z. Jia, L. Chen, D. Gu, et al., Lentinan-loaded GelMA hydrogel accelerates diabetic wound healing through enhanced angiogenesis and immune microenvironment modulation, Int. J. Biol. Macromol. 264 (2024), 130716.
|
| [39] |
Y. Ozay, S. Guzel, O. Yumrutas, et al., Wound healing effect of kaempferol in diabetic and nondiabetic rats, J. Surg. Res. 233 (2019) 284-296.
|
| [40] |
Y. Ozay, S. Guzel, I.H. Erdogdu, et al., Evaluation of the wound healing properties of luteolin ointments on excision and incision wound models in diabetic and non-diabetic rats, Rec.Nat.Prod. 12 (2018) 350-366.
|
| [41] |
V. Kant, B.L. Jangir, M. Sharma, et al., Topical application of quercetin improves wound repair and regeneration in diabetic rats, Immunopharmacol. Immunotoxicol. 43 (2021) 536-553.
|
| [42] |
H.M. Abdou, D.M. Ahmad, F.A. Hamaad, Quercetin extracted from Trifolium alexandrinum enhances wound healing in 1 streptozotocin-induced diabetic rats through antioxidant and anti-inflammatory effects, J. Pharm. Pharmacol. Res. 4 (2020): 116-138.
|
| [43] |
S. Gao, C. Chang, X. Niu, et al., Topical application of Hydroxysafflor Yellow A accelerates the wound healing in streptozotocin induced T1DM rats, Eur. J. Pharmacol. 823 (2018) 72-78.
|
| [44] |
X. Mao, Z. Li, B. Li, et al., Baicalin regulates mRNA expression of VEGF-c, Ang-1/Tie2, TGF-β and Smad2/3 to inhibit wound healing in streptozotocin-induced diabetic foot ulcer rats, J. Biochem. Mol. Toxicol. 35 (2021), e22893.
|
| [45] |
W. Li, A.D. Kandhare, A.A. Mukherjee, et al., Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ss/Smads and Ang-1/Tie-2 signaling pathways, Excli. j. 17 (2018) 399-419.
|
| [46] |
G. Cao, C. Xiang, R. Zhou, et al., Notoginsenoside R1 facilitated wound healing in high-fat diet/streptozotocin-induced diabetic rats, Oxid. Med. Cell. Longev. 2022 (2022), 2476493.
|
| [47] |
Y.L. Ji, Y.S. Choi, H.R. Lee, H.M. An, Y.K. Lee, Evaluation of wound healing effects of ginsenoside Rg1 and red ginseng extract in STZ-induced diabetic wound model: an in vivo pilot study, bioRxiv. 2021.
|
| [48] |
X. Sun, X. Wang, Z. Zhao, et al., Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway, Acta Histochem. 122 (2020), 151649.
|
| [49] |
J. Fan, H. Liu, J. Wang, et al., Procyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2, J. Cell. Mol. Med. 25 (2021) 652-665.
|
| [50] |
F. Begum, S. Manandhar, G. Kumar, et al., Dehydrozingerone promotes healing of diabetic foot ulcers: A molecular insight, J. Cell Commun. Signal. 17 (2023) 673-688.
|
| [51] |
X. Lu, L. Qin, M. Guo, et al., A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis, Carbohydr. Polym. 289 (2022), 119437.
|
| [52] |
H. Zhang, M. Zhang, X. Wang, et al., Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice, Drug Deliv. 29 (2022) 174-185.
|
| [53] |
H. Cai, L. Huang, L. Zheng, et al., Ginsenoside (Rg-1) promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis, Life Sci. 233 (2019), 116525.
|
| [54] |
L. Huang, H. Cai, M. Zhang, et al., Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis, J. Pharmacol. Sci. 147 (2021) 271-283.
|
| [55] |
Y. Liu, Z. Li, W. Li, et al., Discovery of β-sitosterol’s effects on molecular changes in rat diabetic wounds and its impact on angiogenesis and macrophages, Int. Immunopharmacol. 126 (2024), 111283.
|
| [56] |
Y. Zhang, Y. Zhang, Z. Pan, et al., GDF11 promotes wound healing in diabetic mice via stimulating HIF-1α-VEGF/SDF-1α-mediated endothelial progenitor cell mobilization and neovascularization, Acta Pharmacol. Sin. 44 (2023) 999-1013.
|
| [57] |
P. Marin-Luevano, V. Trujillo, A. Rodriguez-Carlos, et al., Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment, Peptides 101 (2018) 135-144.
|
| [58] |
L. Zhu, J. Qian, Y. Jiang, et al., PlGF reduction compromises angiogenesis in diabetic foot disease through macrophages, Front. Immunol. 12 (2021), 736153.
|
| [59] |
Z. Chen, S. Fu, Z. Wu, et al., Relationship between plasma angiogenic growth factors and diabetic foot ulcers, Clin. Chim. Acta 482 (2018) 95-100.
|
| [60] |
Y. Zhang, Q. Li, J.Y. Youn, et al., Protein phosphotyrosine phosphatase 1B (PTP1B) in calpain-dependent feedback regulation of vascular endothelial growth factor receptor (VEGFR2) in endothelial cells, J. Biol. Chem. 292 (2017) 407-416.
|
| [61] |
X. Zhou, D. Patel, S. Sen, et al., Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis, J. Vasc. Surg. 65 (2017) 1161-1169.
|
| [62] |
Y. Xu, Y. Jia, N. Wu, et al., CD93 ameliorates diabetic wounds by promoting angiogenesis via the p38MAPK/MK2/HSP27 axis, Eur. J. Vasc. Endovasc. Surg. 66 (2023) 707-721.
|
| [63] |
F. Wang, B. Liu, Z. Yu, et al., Effects of CD100 promote wound healing in diabetic mice, J. Mol. Histol. 49 (2018) 277-287.
|
| [64] |
M. Li, H. Ma, S. Zhang, et al., Potential therapeutic effect of NK1R antagonist in diabetic non-healing wound and depression, Front. Endocrinol. 13 (2023), 1077514.
|
| [65] |
L. Chen, L. Qin, C. Chen, et al., Serum exosomes accelerate diabetic wound healing by promoting angiogenesis and ECM formation, Cell Biol. Int. 45 (2021) 1976-1985.
|
| [66] |
J. Chen, K. Zhong, S. Qin, et al., Astragalin: A food-origin flavonoid with therapeutic effect for multiple diseases, Front. Pharmacol. 14 (2023), 1265960.
|
| [67] |
J. Zhao, S. Yang, B. Shu, et al., Transient high glucose causes persistent vascular dysfunction and delayed wound healing by the DNMT1-mediated ang-1/NF-κB pathway, J. Investig. Dermatol. 141 (2021) 1573-1584.
|
| [68] |
Y. Hong, J. Li, Y. Zhong, et al., Elabela inhibits TRAF1/NF-κB induced oxidative DNA damage to promote diabetic foot ulcer wound healing, iScience 26 (2023), 107601.
|
| [69] |
C. Chen, L. Lin, J.W. Chen, et al., CXCL5 suppression recovers neovascularization and accelerates wound healing in diabetes mellitus, Cardiovasc. Diabetol. 22 (2023), 172.
|
| [70] |
Z. Chen, J.M. Haus, L.A. DiPietro, et al., Neutralization of excessive CCL28 improves wound healing in diabetic mice, Front. Pharmacol. 14 (2023), 1087924.
|
| [71] |
W.D. Short, E. Steen, A. Kaul, et al., IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3, FASEB J. 36 (2022), e22298.
|
| [72] |
X. Wang, Y. Ji, P. Feng, et al., The m6A reader IGF2BP2 regulates macrophage phenotypic activation and inflammatory diseases by stabilizing TSC1 and PPARγ, Adv. Sci. 8 (2021), 2100209.
|
| [73] |
C. Chen, Y. Tang, X. Zhu, et al., P311 promotes IL-4 receptor-mediated M2 polarization of macrophages to enhance angiogenesis for efficient skin wound healing, J. Investig. Dermatol. 143 (2023) 648-660.e6.
|
| [74] |
J.P.B. Littig, R. Moellmer, A.M. Estes, et al., Increased population of CD40+ fibroblasts is associated with impaired wound healing and chronic inflammation in diabetic foot ulcers, J. Clin. Med. 11 (2022), 6335.
|
| [75] |
J. Qiu, C. Shu, X. Li, et al., PAQR3 depletion accelerates diabetic wound healing by promoting angiogenesis through inhibiting STUB1-mediated PPARγ degradation, Lab. Investig. 102 (2022) 1121-1131.
|
| [76] |
J. Liu, M. Qu, C. Wang, et al., A dual-cross-linked hydrogel patch for promoting diabetic wound healing, Small 18 (2022), 2106172.
|
| [77] |
P. Ye, Y. Yang, M. Liu, et al., Co-delivery of morphologically switchable Au nanowire and hemoglobin-resveratrol nanoparticles in the microneedle for diabetic wound healing therapy, Adv. Mater. 37 (2025), 2419430.
|
| [78] |
H. Yang, L. Song, B. Sun, et al., Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing, Mater. Today Bio 12 (2021), 100139.
|
| [79] |
Z. Zhou, T. Deng, M. Tao, et al., Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization, Biomaterials 299 (2023), 122141.
|
| [80] |
S.W. Jere, N.N. Houreld, H. Abrahamse, Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing, Cytokine Growth Factor Rev. 50 (2019) 52-59.
|
| [81] |
H. Zhang, M. Liu, J. Lu, et al., Intracellular acidosis via activation of Akt-Girdin signaling promotes post ischemic angiogenesis during hyperglycemia, Int. J. Cardiol. 277 (2019) 205-211.
|
| [82] |
X. Li, G. Wu, F. Han, et al., SIRT1 activation promotes angiogenesis in diabetic wounds by protecting endothelial cells against oxidative stress, Arch. Biochem. Biophys. 661 (2019) 117-124.
|
| [83] |
T. Chen, P. Song, M. He, et al., Sphingosine-1-phosphate derived from PRP-Exos promotes angiogenesis in diabetic wound healing via the S1PR1/AKT/FN1 signalling pathway, Burns Trauma 11 (2023), tkad003.
|
| [84] |
C. Liu, M.H.Y. Teo, S.L.T. Pek, et al., A multifunctional role of leucine-rich α-2-glycoprotein 1 in cutaneous wound healing under normal and diabetic conditions, Diabetes 69 (2020) 2467-2480.
|
| [85] |
T. Xu, S. Qing, J. Zhao, et al., Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/ENOS signaling and angiogenesis, Acta Pharmacol. Sin. 44 (2023) 1790-1800.
|
| [86] |
L. Song, X. Chang, L. Hu, et al., Accelerating wound closure with metrnl in normal and diabetic mouse skin, Diabetes 72 (2023) 1692-1706.
|
| [87] |
Y. Li, R. Sun, J. Zou, et al., Dual roles of the AMP-activated protein kinase pathway in angiogenesis, Cells 8 (2019), 752.
|
| [88] |
J.G. Leu, M.H. Chiang, C Chen, et al., Adenine accelerated the diabetic wound healing by PPAR delta and angiogenic regulation, Eur. J. Pharmacol. 818 (2018) 569-577.
|
| [89] |
M. Chang, T.T. Nguyen, Strategy for treatment of infected diabetic foot ulcers, Acc. Chem. Res. 54 (2021) 1080-1093.
|
| [90] |
Q. Zhao, J. Xu, X. Han, et al., Growth differentiation factor 10 induces angiogenesis to promote wound healing in rats with diabetic foot ulcers by activating TGF-β1/Smad3 signaling pathway, Front. Endocrinol. 13 (2023), 1013018.
|
| [91] |
S. Ehnert, H. Rinderknecht, C Liu, et al., Increased levels of BAMBI inhibit canonical TGF-β signaling in chronic wound tissues, Cells 12 (2023), 2095.
|
| [92] |
K. Karnam, K. Sedmaki, P. Sharma, et al., Pharmacological blockade of HDAC3 accelerates diabetic wound healing by regulating macrophage activation, Life Sci. 321 (2023), 121574.
|
| [93] |
S. Yang, S. Wang, L. Chen, et al., Neutrophil extracellular traps delay diabetic wound healing by inducing endothelial-to-mesenchymal transition via the hippo pathway, Int. J. Biol. Sci. 19 (2023) 347-361.
|
| [94] |
A.J. Whittam, Z.N. Maan, D. Duscher, et al., Small molecule inhibition of dipeptidyl peptidase-4 enhances bone marrow progenitor cell function and angiogenesis in diabetic wounds, Transl. Res. 205 (2019) 51-63.
|
| [95] |
F. Zhang, Y. Liu, S. Wang, et al., Interleukin-25-mediated-IL-17RB upregulation promotes cutaneous wound healing in diabetic mice by improving endothelial cell functions, Front. Immunol. 13 (2022), 809755.
|
| [96] |
W. Wang, X. Yan, Y. Lin, et al., Wnt7a promotes wound healing by regulation of angiogenesis and inflammation: Issues on diabetes and obesity, J. Dermatol. Sci. 91 (2018) 124-133.
|
| [97] |
E. Kim, S.H. Seo, Y. Hwang, et al., Inhibiting the cytosolic function of CXXC5 accelerates diabetic wound healing by enhancing angiogenesis and skin repair, Exp. Mol. Med. 55 (2023) 1770-1782.
|
| [98] |
I. Toygar, A. Tureyen, D. Demir, et al., Effect of allicin on wound healing: An experimental diabetes model, J. Wound Care 29 (2020) 388-392.
|
| [99] |
V.V.S.R. Karri, G. Kuppusamy, S.V. Talluri, et al., Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing, Int. J. Biol. Macromol. 93 (2016) 1519-1529.
|
| [100] |
S. Yadav, D.K. Arya, P. Pandey, et al., ECM mimicking biodegradable nanofibrous scaffold enriched with curcumin/ZnO to accelerate diabetic wound healing via multifunctional bioactivity, Int. J. Nanomed. 17 (2022) 6843-6859.
|
| [101] |
Q. Yang, D. Fang, J. Chen, et al., LncRNAs associated with oxidative stress in diabetic wound healing: Regulatory mechanisms and application prospects, Theranostics 13 (2023) 3655-3674.
|
| [102] |
P. Victor, D. Sarada, K.M. Ramkumar, Pharmacological activation of Nrf2 promotes wound healing, Eur. J. Pharmacol. 886 (2020), 173395.
|
| [103] |
J. Chen, K. Zhong, Y. Jing, et al., Procyanidin B2: A promising multi-functional food-derived pigment for human diseases, Food Chem. 420 (2023), 136101.
|
| [104] |
H. Liu, R. Ai, B. Liu et al., Dual ROS/glucose-responsive quercetin-loaded supramolecular hydrogel for diabetic wound healing, Biomacromolecules 26 (2025) 1541-1554.
|
| [105] |
W. Xiong, X. Zhang, J. Hu, et al., PF-PEG@ASIV-EXO hydrogel accelerates diabetic wound healing by ferroptosis resistance and promoting angiogenesis, ACS Biomater. Sci. Eng. 10 (2024) 6263-6285.
|
| [106] |
T.Y. Qiu, J. Huang, L.P. Wang, et al., Inhibition of miR-200b promotes angiogenesis in endothelial cells by activating the notch pathway, Cell J. 23 (2021) 51-60.
|
| [107] |
G. Pizzino, N. Irrera, F. Galfo, et al., Effects of the antagomiRs 15b and 200b on the altered healing pattern of diabetic mice, Br. J. Pharmacol. 175 (2018) 644-655.
|
| [108] |
R. Ren, K. Ma, Y. Jiang, et al., Endothelial miR-196b-5p regulates angiogenesis via the hypoxia/miR-196b-5p/HMGA2/HIF1α loop, Am. J. Physiol. Cell Physiol. 324 (2023) C407-C419.
|
| [109] |
C.J. Lin, Y.M. Lan, M.Q. Ou, et al., Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats, J. Endocrinol. Investig. 42 (2019) 1307-1317.
|
| [110] |
B. Icli, W. Wu, D. Ozdemir, et al., microRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells, FASEB J. 33 (2019) 5599-5614.
|
| [111] |
Y. Xiong, L. Chen, C. Yan, et al., Circulating exosomal miR-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing, Small 16 (2020), 1904044.
|
| [112] |
J. Liu, J. Wang, W. Fu, et al., miR-195-5p and miR-205-5p in extracellular vesicles isolated from diabetic foot ulcer wound fluid decrease angiogenesis by inhibiting VEGFA expression, Aging 13 (2021) 19805-19821.
|
| [113] |
Q. Li, H. Zhao, W. Chen, et al., Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis, Int. J. Biochem. Cell Biol. 114 (2019), 105570.
|
| [114] |
Q. Yu, L. Liu, X. Zhang, et al., miR-221-3p targets HIPK2 to promote diabetic wound healing, Microvasc. Res. 140 (2022), 104306.
|
| [115] |
Z. Fan, X. Chen, L. Wang, et al., LncRNA SNHG8 regulates the migration and angiogenesis of pHUVECs induced by high glucose via the TRPM7/ERK1/2 signaling axis, Sci. Rep. 13 (2023), 22485.
|
| [116] |
J. Wan, Y. Bao, L. Hou, et al., lncRNA ANRIL accelerates wound healing in diabetic foot ulcers via modulating HIF1A/VEGFA signaling through interacting with FUS, J. Gene Med. 25 (2023), e3462.
|
| [117] |
W. Peng, P. He, L. Liu, et al., LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers, Lab. Investig. 101 (2021) 1071-1083.
|
| [118] |
J. Guo, L. Yin, Y. Chen, et al., Autologous blood transfusion augments impaired wound healing in diabetic mice by enhancing lncRNA H19 expression via the HIF-1α signaling pathway, Cell Commun. Signal. 16 (2018), 84.
|
| [119] |
S.B. Lotito, B. Frei, Dietary flavonoids attenuate tumor necrosis factor α-induced adhesion molecule expression in human aortic endothelial cells, J. Biol. Chem. 281 (2006) 37102-37110.
|
| [120] |
L. Martinez-Fernandez, Z. Pons, M. Margalef, et al., Regulation of vascular endothelial genes by dietary flavonoids: Structure-expression relationship studies and the role of the transcription factor KLF-2, J. Nutr. Biochem. 26 (2015) 277-284.
|
| [121] |
S. Cyboran-Mikolajczyk, K. Solarska-Sciuk, K. Mieszala, et al., The impact of O-glycosylation on cyanidin interaction with RBCs and HMEC-1 cells: Structure-activity relationships, Int. J. Mol. Sci. 20 (2019), 1928.
|
| [122] |
F. Blando, N. Calabriso, H. Berland, et al., Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables, Int. J. Mol. Sci. 19 (2018), 169.
|
| [123] |
K.D. Croft, D. Zhang, R. Jiang, et al., Structural requirements of flavonoids to induce heme oxygenase-1 expression, Free. Radic. Biol. Med. 113 (2017) 165-175.
|
| [124] |
M.R. Kang, K.H. Park, S.J. Oh, et al., Cardiovascular protective effect of glabridin: Implications in LDL oxidation and inflammation, Int. Immunopharmacol. 29 (2015) 914-918.
|
| [125] |
J.D. Kim, L Liu, W Guo, et al., Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion, J. Nutr. Biochem. 17 (2006) 165-176.
|
| [126] |
C. Liu, J. Han, O. Marcelina, et al., Discovery of salidroside-derivated glycoside analogues as novel angiogenesis agents to treat diabetic hind limb ischemia, J. Med. Chem. 65 (2022) 135-162.
|
| [127] |
H.H. Kwok, G Guo, J.K. Lau, et al., Stereoisomers ginsenosides-20(S)-Rg3 and-20(R)-Rg3 differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma, Biochem. Pharmacol. 83 (2012) 893-902.
|
| [128] |
W Zhang, H Wang, H Cui, et al., Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect, Eur. J. Med. Chem. 183 (2019), 111695.
|
| [129] |
H. Shi, X.Y. Li, Y. Chen, et al., Quercetin induces apoptosis via downregulation of vascular endothelial growth factor/Akt signaling pathway in acute myeloid leukemia cells, Front. Pharmacol. 11 (2020), 534171.
|
| [130] |
Y.P. Zhang, S.M. Dong, Z.Y. Li, et al., Shoutai Pill synergistically inhibits internal reproductive organ apoptosis: Coordinated EGFR/PI3K/AKT modulation in primary ovarian insufficiency, J. Ethnopharmacol. 352 (2025), 120247.
|
| [131] |
J. Wu, X. Jin, W. Li, et al., A proteomics-based study of the mechanism of oxymatrine to ameliorate hepatic fibrosis in mice, J. Chromatogr. B 1247 (2024), 124280.
|
| [132] |
H. Deng, Q. Lei, Y. Wu, et al., Activity-based protein profiling: Recent advances in medicinal chemistry, Eur. J. Med. Chem. 191 (2020), 112151.
|
| [133] |
Y. Tu, L. Tan, H. Tao, et al., CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products, Phytomedicine 116 (2023), 154862.
|