Turn off MathJax
Article Contents
Junren Chen, Siqi Qin, Ziwei Xing, Cheng Peng, Dan Li. Targeting angiogenesis in diabetic wound healing: New insight from chemical architecture to functional outcomes[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101475
Citation: Junren Chen, Siqi Qin, Ziwei Xing, Cheng Peng, Dan Li. Targeting angiogenesis in diabetic wound healing: New insight from chemical architecture to functional outcomes[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101475

Targeting angiogenesis in diabetic wound healing: New insight from chemical architecture to functional outcomes

doi: 10.1016/j.jpha.2025.101475
Funds:

The work was supported by the National Natural Science Foundation of China (Grant Nos.: U24A20790 and 82104477), Sichuan Science and Technology Program, China (Grant No.: 2024NSFSC0054), Sichuan Traditional Chinese Medicine Technology Industry Innovation Team, China (Grant No.: 2022C001), Science and Technology Research Project of Sichuan Administration of Traditional Chinese Medicine, China (Grant No.: 2024ZD02), and Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine, China (Grant No.: ZYYCXTD-D-202209). Figs. 1, 3, 5, 6, and Graphical abstract were drawn by using BioRender.com (https://app.biorender.com).

  • Received Date: Jun. 30, 2025
  • Accepted Date: Oct. 23, 2025
  • Rev Recd Date: Oct. 18, 2025
  • Available Online: Oct. 25, 2025
  • Diabetic wound healing (DWH) is a multifaceted process hindered by impaired angiogenesis that usually leads to increased risks of infection and amputation. Targeting impeded angiogenic signals to restore the microenvironment favoring vascular network re-establishment is a promising therapeutic strategy for diabetic wound. Natural products have emerged as potential therapeutic agents for diabetic wounds by regulating endotheliocytes functions and their cross-talks with immune cells and fibroblasts, while the similarities and differences of the chemical structures greatly determine their distinct efficient and underlying mechanisms in diabetic wound angiogenesis. In this review, relevant literature was retrieved from PubMed, Google Scholar, and Web of Science databases, covering publications from 2020 to 2025. This paper reviews the role of angiogenesis in DWH and the action of natural products in DWH by targeting angiogenesis, particularly highlighting their chemical architecture driven specific biological activity on angiogenesis, with the aim of providing references for angiogenesis-based therapeutic strategies for diabetic ulcers and promoting the development of angiogenesis-targeting agents.
  • loading
  • [1]
    D.G. Armstrong, T.W. Tan, A.J.M. Boulton, et al., Diabetic foot ulcers: A review, Jama 330 (2023) 62-75.
    [2]
    M. Ndosi, A. Wright-Hughes, S. Brown, et al., Prognosis of the infected diabetic foot ulcer: A 12-month prospective observational study, Diabet. Med. 35 (2018) 78-88.
    [3]
    C.K. Sen, Human wound and its burden: Updated 2022 compendium of estimates, Adv. Wound Care 12 (2023) 657-670.
    [4]
    K.A. Gallagher, J.L. Mills, D.G. Armstrong, et al., Current status and principles for the treatment and prevention of diabetic foot ulcers in the cardiovascular patient population: A scientific statement from the American heart association, Circulation 149 (2024) 232-253.
    [5]
    Y. Y. Guan, H. Niu, Z. Liu, et al., Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation, Sci. Adv. 7 (2021), eabj0153.
    [6]
    M. Sharifiaghdam, E. Shaabani, R. Faridi-Majidi, et al., Macrophages as a therapeutic target to promote diabetic wound healing, Mol. Ther. 30 (2022) 2891-2908.
    [7]
    J. Chen, M. Luo, Y. Chen, et al., Smart macrophage-targeting wound dressings accelerate diabetic wound healing, Chem. Eng. J. 500 (2024), 156860.
    [8]
    J. Yang, G. Xiong, H. He, et al., SFRP2 modulates functional phenotype transition and energy metabolism of macrophages during diabetic wound healing, Front. Immunol. 15 (2024), 1432402.
    [9]
    G. Jiang, T. Jiang, J. Chen, et al., Mitochondrial dysfunction and oxidative stress in diabetic wound, J. Biochem. Mol. Toxicol. 37 (2023), e23407.
    [10]
    N. Yadu, M. Singh, D. Singh, et al., Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems, Int. J. Pharm. 670 (2025), 125117.
    [11]
    J. Chen, M. Luo, Z. Xing, et al., Start small, think big: microRNAs in diabetes mellitus and relevant cardiorenal-liver metabolic health spectrum, Metabolism 165 (2025), 156153.
    [12]
    J. Chen, S. Qin, S. Liu, et al., Targeting matrix metalloproteases in diabetic wound healing, Front. Immunol. 14 (2023), 1089001.
    [13]
    A.S. Kumar, D. Prema, R.G. Rao, et al., Fabrication of poly (lactic-co-glycolic acid)/gelatin electro spun nanofiber patch containing CaCO3/SiO2 nanocomposite and quercetin for accelerated diabetic wound healing, Int. J. Biol. Macromol. 254 (2024), 128060.
    [14]
    Y. Wang, Z. Zhu, X. Lv, et al., Multifunctional carboxymethyl chitosan-based sponges loaded with epigallocatechin-3-gallate for accelerating wound healing in diabetic rats with full-thickness burns, Carbohydr. Polym. 350 (2025), 123025.
    [15]
    M. Bi, Y. Qin, L. Wang, et al., The protective role of resveratrol in diabetic wound healing, Phytother. Res. 37 (2023) 5193-5204.
    [16]
    T. Wang, Q. Liao, Y. Wu, et al., A composite hydrogel loading natural polysaccharides derived from Periplaneta americana herbal residue for diabetic wound healing, Int. J. Biol. Macromol. 164 (2020) 3846-3857.
    [17]
    S. El-Ashram, L.M. El-Samad, A.A. Basha, et al., Naturally-derived targeted therapy for wound healing: Beyond classical strategies, Pharmacol. Res. 170 (2021), 105749.
    [18]
    S. Gao, C. Chang, J. Li, et al., Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis, Drug Deliv. 25 (2018) 1779-1789.
    [19]
    W. Hu, H. Yu, X. Zhou, et al., Topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway, Burns 48 (2022) 1452-1461.
    [20]
    B.S. Wang, X.F. Ma, C.Y. Zhang, et al., Astragaloside IV improves angiogenesis and promotes wound healing in diabetic rats via the activation of the SUMOylation pathway, Biomed. Environ. Sci. 34 (2021) 124-129.
    [21]
    C. Wang, Y. Lou, M. Tong, et al., Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling, Acta Pharmacol. Sin. 39 (2018) 393-404.
    [22]
    L. Wang, T. He, A. Fu, et al., Hesperidin enhances angiogenesis via modulating expression of growth and inflammatory factor in diabetic foot ulcer in rats, Eur. J. Inflamm. 16 (2018), 2058739218775255.
    [23]
    J. Zhou, M. Ni, X. Liu, et al., Curcumol promotes vascular endothelial growth factor (VEGF)-mediated diabetic wound healing in streptozotocin-induced hyperglycemic rats, Med. Sci. Monit. 23 (2017) 555-562.
    [24]
    M. Song, L. Chen, L. Zhang, et al., Cryptotanshinone enhances wound healing in type 2 diabetes with modulatory effects on inflammation, angiogenesis and extracellular matrix remodelling, Pharm. Biol. 58 (2020) 845-853.
    [25]
    L. Chen, H.L. Cheng, Y.H. Kuan, et al., Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats, Biomedicines 9 (2021), 761.
    [26]
    Y. Wu, Z. Zhou, L. Luo, et al., A non-anticoagulant heparin-like snail glycosaminoglycan promotes healing of diabetic wound, Carbohydr. Polym. 247 (2020), 116682.
    [27]
    M. Hao, S. Wei, S. Su, et al., A multifunctional hydrogel fabricated by direct self-assembly of natural herbal small molecule mangiferin for treating diabetic wounds, ACS Appl. Mater. Interfaces 16 (2024) 24221-24234.
    [28]
    W.R. Singh, A. Sharma, H.S. Devi, et al., Icariin improves cutaneous wound healing in streptozotocin-induced diabetic rats, J. Tissue Viability 31 (2022) 197-206.
    [29]
    J. Ren, M. Yang, J. Chen, et al., Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions, Biomed. Pharmacother. 129 (2020), 110475.
    [30]
    W.S. Tan, P. Arulselvan, S.F. Ng, et al., Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats, BMC Complementary Altern. Med. 19 (2019), 20.
    [31]
    F.P. Beserra, A.J. Vieira, L.F.S. Gushiken, et al., Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis, Oxid. Med. Cell. Longev. 2019 (2019), 3182627.
    [32]
    J. Li, H. Chou, L. Li, et al., Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and nrf-2 pathway, Artif. Cells Nanomed. Biotechnol. 48 (2020) 96-106.
    [33]
    S. Dehghani, R. Dalirfardouei, M.H. Jafari Najaf Abadi, et al., Topical application of curcumin regulates the angiogenesis in diabetic-impaired cutaneous wound, Cell Biochem. Funct. 38 (2020) 558-566.
    [34]
    Y. Zhao, Q. Wang, S. Yan, et al., Bletilla striata polysaccharide promotes diabetic wound healing through inhibition of the NLRP3 inflammasome, Front. Pharmacol. 12 (2021), 659215.
    [35]
    X. Huang, J. Sun, G. Chen, et al., Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-myc signaling pathway-mediated angiogenesis, Front. Pharmacol. 10 (2019), 421.
    [36]
    X. Yu, Z. Liu, Y. Yu, et al., Hesperetin promotes diabetic wound healing by inhibiting ferroptosis through the activation of SIRT3, Phytother. Res. 38 (2024) 1478-1493.
    [37]
    Z. Lin, L. Li, L. Chen, et al., Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy, Acta Pharmacol. Sin. 45 (2024) 815-830.
    [38]
    Z. Jia, L. Chen, D. Gu, et al., Lentinan-loaded GelMA hydrogel accelerates diabetic wound healing through enhanced angiogenesis and immune microenvironment modulation, Int. J. Biol. Macromol. 264 (2024), 130716.
    [39]
    Y. Ozay, S. Guzel, O. Yumrutas, et al., Wound healing effect of kaempferol in diabetic and nondiabetic rats, J. Surg. Res. 233 (2019) 284-296.
    [40]
    Y. Ozay, S. Guzel, I.H. Erdogdu, et al., Evaluation of the wound healing properties of luteolin ointments on excision and incision wound models in diabetic and non-diabetic rats, Rec.Nat.Prod. 12 (2018) 350-366.
    [41]
    V. Kant, B.L. Jangir, M. Sharma, et al., Topical application of quercetin improves wound repair and regeneration in diabetic rats, Immunopharmacol. Immunotoxicol. 43 (2021) 536-553.
    [42]
    H.M. Abdou, D.M. Ahmad, F.A. Hamaad, Quercetin extracted from Trifolium alexandrinum enhances wound healing in 1 streptozotocin-induced diabetic rats through antioxidant and anti-inflammatory effects, J. Pharm. Pharmacol. Res. 4 (2020): 116-138.
    [43]
    S. Gao, C. Chang, X. Niu, et al., Topical application of Hydroxysafflor Yellow A accelerates the wound healing in streptozotocin induced T1DM rats, Eur. J. Pharmacol. 823 (2018) 72-78.
    [44]
    X. Mao, Z. Li, B. Li, et al., Baicalin regulates mRNA expression of VEGF-c, Ang-1/Tie2, TGF-β and Smad2/3 to inhibit wound healing in streptozotocin-induced diabetic foot ulcer rats, J. Biochem. Mol. Toxicol. 35 (2021), e22893.
    [45]
    W. Li, A.D. Kandhare, A.A. Mukherjee, et al., Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ss/Smads and Ang-1/Tie-2 signaling pathways, Excli. j. 17 (2018) 399-419.
    [46]
    G. Cao, C. Xiang, R. Zhou, et al., Notoginsenoside R1 facilitated wound healing in high-fat diet/streptozotocin-induced diabetic rats, Oxid. Med. Cell. Longev. 2022 (2022), 2476493.
    [47]
    Y.L. Ji, Y.S. Choi, H.R. Lee, H.M. An, Y.K. Lee, Evaluation of wound healing effects of ginsenoside Rg1 and red ginseng extract in STZ-induced diabetic wound model: an in vivo pilot study, bioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2021.05.05.442721v1.
    [48]
    X. Sun, X. Wang, Z. Zhao, et al., Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway, Acta Histochem. 122 (2020), 151649.
    [49]
    J. Fan, H. Liu, J. Wang, et al., Procyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2, J. Cell. Mol. Med. 25 (2021) 652-665.
    [50]
    F. Begum, S. Manandhar, G. Kumar, et al., Dehydrozingerone promotes healing of diabetic foot ulcers: A molecular insight, J. Cell Commun. Signal. 17 (2023) 673-688.
    [51]
    X. Lu, L. Qin, M. Guo, et al., A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis, Carbohydr. Polym. 289 (2022), 119437.
    [52]
    H. Zhang, M. Zhang, X. Wang, et al., Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice, Drug Deliv. 29 (2022) 174-185.
    [53]
    H. Cai, L. Huang, L. Zheng, et al., Ginsenoside (Rg-1) promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis, Life Sci. 233 (2019), 116525.
    [54]
    L. Huang, H. Cai, M. Zhang, et al., Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis, J. Pharmacol. Sci. 147 (2021) 271-283.
    [55]
    Y. Liu, Z. Li, W. Li, et al., Discovery of β-sitosterol’s effects on molecular changes in rat diabetic wounds and its impact on angiogenesis and macrophages, Int. Immunopharmacol. 126 (2024), 111283.
    [56]
    Y. Zhang, Y. Zhang, Z. Pan, et al., GDF11 promotes wound healing in diabetic mice via stimulating HIF-1α-VEGF/SDF-1α-mediated endothelial progenitor cell mobilization and neovascularization, Acta Pharmacol. Sin. 44 (2023) 999-1013.
    [57]
    P. Marin-Luevano, V. Trujillo, A. Rodriguez-Carlos, et al., Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment, Peptides 101 (2018) 135-144.
    [58]
    L. Zhu, J. Qian, Y. Jiang, et al., PlGF reduction compromises angiogenesis in diabetic foot disease through macrophages, Front. Immunol. 12 (2021), 736153.
    [59]
    Z. Chen, S. Fu, Z. Wu, et al., Relationship between plasma angiogenic growth factors and diabetic foot ulcers, Clin. Chim. Acta 482 (2018) 95-100.
    [60]
    Y. Zhang, Q. Li, J.Y. Youn, et al., Protein phosphotyrosine phosphatase 1B (PTP1B) in calpain-dependent feedback regulation of vascular endothelial growth factor receptor (VEGFR2) in endothelial cells, J. Biol. Chem. 292 (2017) 407-416.
    [61]
    X. Zhou, D. Patel, S. Sen, et al., Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis, J. Vasc. Surg. 65 (2017) 1161-1169.
    [62]
    Y. Xu, Y. Jia, N. Wu, et al., CD93 ameliorates diabetic wounds by promoting angiogenesis via the p38MAPK/MK2/HSP27 axis, Eur. J. Vasc. Endovasc. Surg. 66 (2023) 707-721.
    [63]
    F. Wang, B. Liu, Z. Yu, et al., Effects of CD100 promote wound healing in diabetic mice, J. Mol. Histol. 49 (2018) 277-287.
    [64]
    M. Li, H. Ma, S. Zhang, et al., Potential therapeutic effect of NK1R antagonist in diabetic non-healing wound and depression, Front. Endocrinol. 13 (2023), 1077514.
    [65]
    L. Chen, L. Qin, C. Chen, et al., Serum exosomes accelerate diabetic wound healing by promoting angiogenesis and ECM formation, Cell Biol. Int. 45 (2021) 1976-1985.
    [66]
    J. Chen, K. Zhong, S. Qin, et al., Astragalin: A food-origin flavonoid with therapeutic effect for multiple diseases, Front. Pharmacol. 14 (2023), 1265960.
    [67]
    J. Zhao, S. Yang, B. Shu, et al., Transient high glucose causes persistent vascular dysfunction and delayed wound healing by the DNMT1-mediated ang-1/NF-κB pathway, J. Investig. Dermatol. 141 (2021) 1573-1584.
    [68]
    Y. Hong, J. Li, Y. Zhong, et al., Elabela inhibits TRAF1/NF-κB induced oxidative DNA damage to promote diabetic foot ulcer wound healing, iScience 26 (2023), 107601.
    [69]
    C. Chen, L. Lin, J.W. Chen, et al., CXCL5 suppression recovers neovascularization and accelerates wound healing in diabetes mellitus, Cardiovasc. Diabetol. 22 (2023), 172.
    [70]
    Z. Chen, J.M. Haus, L.A. DiPietro, et al., Neutralization of excessive CCL28 improves wound healing in diabetic mice, Front. Pharmacol. 14 (2023), 1087924.
    [71]
    W.D. Short, E. Steen, A. Kaul, et al., IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3, FASEB J. 36 (2022), e22298.
    [72]
    X. Wang, Y. Ji, P. Feng, et al., The m6A reader IGF2BP2 regulates macrophage phenotypic activation and inflammatory diseases by stabilizing TSC1 and PPARγ, Adv. Sci. 8 (2021), 2100209.
    [73]
    C. Chen, Y. Tang, X. Zhu, et al., P311 promotes IL-4 receptor-mediated M2 polarization of macrophages to enhance angiogenesis for efficient skin wound healing, J. Investig. Dermatol. 143 (2023) 648-660.e6.
    [74]
    J.P.B. Littig, R. Moellmer, A.M. Estes, et al., Increased population of CD40+ fibroblasts is associated with impaired wound healing and chronic inflammation in diabetic foot ulcers, J. Clin. Med. 11 (2022), 6335.
    [75]
    J. Qiu, C. Shu, X. Li, et al., PAQR3 depletion accelerates diabetic wound healing by promoting angiogenesis through inhibiting STUB1-mediated PPARγ degradation, Lab. Investig. 102 (2022) 1121-1131.
    [76]
    J. Liu, M. Qu, C. Wang, et al., A dual-cross-linked hydrogel patch for promoting diabetic wound healing, Small 18 (2022), 2106172.
    [77]
    P. Ye, Y. Yang, M. Liu, et al., Co-delivery of morphologically switchable Au nanowire and hemoglobin-resveratrol nanoparticles in the microneedle for diabetic wound healing therapy, Adv. Mater. 37 (2025), 2419430.
    [78]
    H. Yang, L. Song, B. Sun, et al., Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing, Mater. Today Bio 12 (2021), 100139.
    [79]
    Z. Zhou, T. Deng, M. Tao, et al., Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization, Biomaterials 299 (2023), 122141.
    [80]
    S.W. Jere, N.N. Houreld, H. Abrahamse, Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing, Cytokine Growth Factor Rev. 50 (2019) 52-59.
    [81]
    H. Zhang, M. Liu, J. Lu, et al., Intracellular acidosis via activation of Akt-Girdin signaling promotes post ischemic angiogenesis during hyperglycemia, Int. J. Cardiol. 277 (2019) 205-211.
    [82]
    X. Li, G. Wu, F. Han, et al., SIRT1 activation promotes angiogenesis in diabetic wounds by protecting endothelial cells against oxidative stress, Arch. Biochem. Biophys. 661 (2019) 117-124.
    [83]
    T. Chen, P. Song, M. He, et al., Sphingosine-1-phosphate derived from PRP-Exos promotes angiogenesis in diabetic wound healing via the S1PR1/AKT/FN1 signalling pathway, Burns Trauma 11 (2023), tkad003.
    [84]
    C. Liu, M.H.Y. Teo, S.L.T. Pek, et al., A multifunctional role of leucine-rich α-2-glycoprotein 1 in cutaneous wound healing under normal and diabetic conditions, Diabetes 69 (2020) 2467-2480.
    [85]
    T. Xu, S. Qing, J. Zhao, et al., Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/ENOS signaling and angiogenesis, Acta Pharmacol. Sin. 44 (2023) 1790-1800.
    [86]
    L. Song, X. Chang, L. Hu, et al., Accelerating wound closure with metrnl in normal and diabetic mouse skin, Diabetes 72 (2023) 1692-1706.
    [87]
    Y. Li, R. Sun, J. Zou, et al., Dual roles of the AMP-activated protein kinase pathway in angiogenesis, Cells 8 (2019), 752.
    [88]
    J.G. Leu, M.H. Chiang, C Chen, et al., Adenine accelerated the diabetic wound healing by PPAR delta and angiogenic regulation, Eur. J. Pharmacol. 818 (2018) 569-577.
    [89]
    M. Chang, T.T. Nguyen, Strategy for treatment of infected diabetic foot ulcers, Acc. Chem. Res. 54 (2021) 1080-1093.
    [90]
    Q. Zhao, J. Xu, X. Han, et al., Growth differentiation factor 10 induces angiogenesis to promote wound healing in rats with diabetic foot ulcers by activating TGF-β1/Smad3 signaling pathway, Front. Endocrinol. 13 (2023), 1013018.
    [91]
    S. Ehnert, H. Rinderknecht, C Liu, et al., Increased levels of BAMBI inhibit canonical TGF-β signaling in chronic wound tissues, Cells 12 (2023), 2095.
    [92]
    K. Karnam, K. Sedmaki, P. Sharma, et al., Pharmacological blockade of HDAC3 accelerates diabetic wound healing by regulating macrophage activation, Life Sci. 321 (2023), 121574.
    [93]
    S. Yang, S. Wang, L. Chen, et al., Neutrophil extracellular traps delay diabetic wound healing by inducing endothelial-to-mesenchymal transition via the hippo pathway, Int. J. Biol. Sci. 19 (2023) 347-361.
    [94]
    A.J. Whittam, Z.N. Maan, D. Duscher, et al., Small molecule inhibition of dipeptidyl peptidase-4 enhances bone marrow progenitor cell function and angiogenesis in diabetic wounds, Transl. Res. 205 (2019) 51-63.
    [95]
    F. Zhang, Y. Liu, S. Wang, et al., Interleukin-25-mediated-IL-17RB upregulation promotes cutaneous wound healing in diabetic mice by improving endothelial cell functions, Front. Immunol. 13 (2022), 809755.
    [96]
    W. Wang, X. Yan, Y. Lin, et al., Wnt7a promotes wound healing by regulation of angiogenesis and inflammation: Issues on diabetes and obesity, J. Dermatol. Sci. 91 (2018) 124-133.
    [97]
    E. Kim, S.H. Seo, Y. Hwang, et al., Inhibiting the cytosolic function of CXXC5 accelerates diabetic wound healing by enhancing angiogenesis and skin repair, Exp. Mol. Med. 55 (2023) 1770-1782.
    [98]
    I. Toygar, A. Tureyen, D. Demir, et al., Effect of allicin on wound healing: An experimental diabetes model, J. Wound Care 29 (2020) 388-392.
    [99]
    V.V.S.R. Karri, G. Kuppusamy, S.V. Talluri, et al., Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing, Int. J. Biol. Macromol. 93 (2016) 1519-1529.
    [100]
    S. Yadav, D.K. Arya, P. Pandey, et al., ECM mimicking biodegradable nanofibrous scaffold enriched with curcumin/ZnO to accelerate diabetic wound healing via multifunctional bioactivity, Int. J. Nanomed. 17 (2022) 6843-6859.
    [101]
    Q. Yang, D. Fang, J. Chen, et al., LncRNAs associated with oxidative stress in diabetic wound healing: Regulatory mechanisms and application prospects, Theranostics 13 (2023) 3655-3674.
    [102]
    P. Victor, D. Sarada, K.M. Ramkumar, Pharmacological activation of Nrf2 promotes wound healing, Eur. J. Pharmacol. 886 (2020), 173395.
    [103]
    J. Chen, K. Zhong, Y. Jing, et al., Procyanidin B2: A promising multi-functional food-derived pigment for human diseases, Food Chem. 420 (2023), 136101.
    [104]
    H. Liu, R. Ai, B. Liu et al., Dual ROS/glucose-responsive quercetin-loaded supramolecular hydrogel for diabetic wound healing, Biomacromolecules 26 (2025) 1541-1554.
    [105]
    W. Xiong, X. Zhang, J. Hu, et al., PF-PEG@ASIV-EXO hydrogel accelerates diabetic wound healing by ferroptosis resistance and promoting angiogenesis, ACS Biomater. Sci. Eng. 10 (2024) 6263-6285.
    [106]
    T.Y. Qiu, J. Huang, L.P. Wang, et al., Inhibition of miR-200b promotes angiogenesis in endothelial cells by activating the notch pathway, Cell J. 23 (2021) 51-60.
    [107]
    G. Pizzino, N. Irrera, F. Galfo, et al., Effects of the antagomiRs 15b and 200b on the altered healing pattern of diabetic mice, Br. J. Pharmacol. 175 (2018) 644-655.
    [108]
    R. Ren, K. Ma, Y. Jiang, et al., Endothelial miR-196b-5p regulates angiogenesis via the hypoxia/miR-196b-5p/HMGA2/HIF1α loop, Am. J. Physiol. Cell Physiol. 324 (2023) C407-C419.
    [109]
    C.J. Lin, Y.M. Lan, M.Q. Ou, et al., Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats, J. Endocrinol. Investig. 42 (2019) 1307-1317.
    [110]
    B. Icli, W. Wu, D. Ozdemir, et al., microRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells, FASEB J. 33 (2019) 5599-5614.
    [111]
    Y. Xiong, L. Chen, C. Yan, et al., Circulating exosomal miR-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing, Small 16 (2020), 1904044.
    [112]
    J. Liu, J. Wang, W. Fu, et al., miR-195-5p and miR-205-5p in extracellular vesicles isolated from diabetic foot ulcer wound fluid decrease angiogenesis by inhibiting VEGFA expression, Aging 13 (2021) 19805-19821.
    [113]
    Q. Li, H. Zhao, W. Chen, et al., Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis, Int. J. Biochem. Cell Biol. 114 (2019), 105570.
    [114]
    Q. Yu, L. Liu, X. Zhang, et al., miR-221-3p targets HIPK2 to promote diabetic wound healing, Microvasc. Res. 140 (2022), 104306.
    [115]
    Z. Fan, X. Chen, L. Wang, et al., LncRNA SNHG8 regulates the migration and angiogenesis of pHUVECs induced by high glucose via the TRPM7/ERK1/2 signaling axis, Sci. Rep. 13 (2023), 22485.
    [116]
    J. Wan, Y. Bao, L. Hou, et al., lncRNA ANRIL accelerates wound healing in diabetic foot ulcers via modulating HIF1A/VEGFA signaling through interacting with FUS, J. Gene Med. 25 (2023), e3462.
    [117]
    W. Peng, P. He, L. Liu, et al., LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers, Lab. Investig. 101 (2021) 1071-1083.
    [118]
    J. Guo, L. Yin, Y. Chen, et al., Autologous blood transfusion augments impaired wound healing in diabetic mice by enhancing lncRNA H19 expression via the HIF-1α signaling pathway, Cell Commun. Signal. 16 (2018), 84.
    [119]
    S.B. Lotito, B. Frei, Dietary flavonoids attenuate tumor necrosis factor α-induced adhesion molecule expression in human aortic endothelial cells, J. Biol. Chem. 281 (2006) 37102-37110.
    [120]
    L. Martinez-Fernandez, Z. Pons, M. Margalef, et al., Regulation of vascular endothelial genes by dietary flavonoids: Structure-expression relationship studies and the role of the transcription factor KLF-2, J. Nutr. Biochem. 26 (2015) 277-284.
    [121]
    S. Cyboran-Mikolajczyk, K. Solarska-Sciuk, K. Mieszala, et al., The impact of O-glycosylation on cyanidin interaction with RBCs and HMEC-1 cells: Structure-activity relationships, Int. J. Mol. Sci. 20 (2019), 1928.
    [122]
    F. Blando, N. Calabriso, H. Berland, et al., Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables, Int. J. Mol. Sci. 19 (2018), 169.
    [123]
    K.D. Croft, D. Zhang, R. Jiang, et al., Structural requirements of flavonoids to induce heme oxygenase-1 expression, Free. Radic. Biol. Med. 113 (2017) 165-175.
    [124]
    M.R. Kang, K.H. Park, S.J. Oh, et al., Cardiovascular protective effect of glabridin: Implications in LDL oxidation and inflammation, Int. Immunopharmacol. 29 (2015) 914-918.
    [125]
    J.D. Kim, L Liu, W Guo, et al., Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion, J. Nutr. Biochem. 17 (2006) 165-176.
    [126]
    C. Liu, J. Han, O. Marcelina, et al., Discovery of salidroside-derivated glycoside analogues as novel angiogenesis agents to treat diabetic hind limb ischemia, J. Med. Chem. 65 (2022) 135-162.
    [127]
    H.H. Kwok, G Guo, J.K. Lau, et al., Stereoisomers ginsenosides-20(S)-Rg3 and-20(R)-Rg3 differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma, Biochem. Pharmacol. 83 (2012) 893-902.
    [128]
    W Zhang, H Wang, H Cui, et al., Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect, Eur. J. Med. Chem. 183 (2019), 111695.
    [129]
    H. Shi, X.Y. Li, Y. Chen, et al., Quercetin induces apoptosis via downregulation of vascular endothelial growth factor/Akt signaling pathway in acute myeloid leukemia cells, Front. Pharmacol. 11 (2020), 534171.
    [130]
    Y.P. Zhang, S.M. Dong, Z.Y. Li, et al., Shoutai Pill synergistically inhibits internal reproductive organ apoptosis: Coordinated EGFR/PI3K/AKT modulation in primary ovarian insufficiency, J. Ethnopharmacol. 352 (2025), 120247.
    [131]
    J. Wu, X. Jin, W. Li, et al., A proteomics-based study of the mechanism of oxymatrine to ameliorate hepatic fibrosis in mice, J. Chromatogr. B 1247 (2024), 124280.
    [132]
    H. Deng, Q. Lei, Y. Wu, et al., Activity-based protein profiling: Recent advances in medicinal chemistry, Eur. J. Med. Chem. 191 (2020), 112151.
    [133]
    Y. Tu, L. Tan, H. Tao, et al., CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products, Phytomedicine 116 (2023), 154862.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (64) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return