| Citation: | Qitong Zheng, Mengyao Chen, Jialiang Ying, Zhichao Wang, Qiyuan Shan, Xia-Nan Sang, Gang Cao. The correlation between characteristics and pharmacological effects of Monoterpene glycosides and Tannins in Radix Paeoniae Alba[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101471 |
| [1] |
Y. Tan, H. Chen, J. Li, et al., Efficacy, chemical constituents, and pharmacological actions of Radix paeoniae rubra and Radix paeoniae alba, Front. Pharmacol. 11 (2020), 1054.
|
| [2] |
X. Mu, R. Luan, Y. Gao, et al., The traditional applications, phytochemistry, pharmacology, pharmacokinetics, quality control and safety of paeoniae Radix Alba: A review, Am. J. Chin. Med. 52 (2024) 2337-2376.
|
| [3] |
P. Li, J. Shen, Z. Wang, et al., Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology, J. Ethnopharmacol. 269 (2021), 113708.
|
| [4] |
X. Sang, X. Wan, H. Zhang, et al., The most bioactive fraction of stir-fried Radix Paeoniae Alba regulating IL-6/STAT3 signaling pathway in allergic asthma mouse, J. Ethnopharmacol. 301 (2023), 115821.
|
| [5] |
S. Xu, L. Yang, R. Tian, et al., Species differentiation and quality assessment of Radix Paeoniae Rubra (Chi-Shao) by means of high-performance liquid chromatographic fingerprint, J. Chromatogr. A. 1216 (2009) 2163-2168.
|
| [6] |
N. Aimi, M. Inaba, M. Watanabe, et al., Chemical studies on the oriental plant drugs: XXIII, Tetrahedron. 25 (1969) 1825-1838.
|
| [7] |
F. Hsu, C. Lai, J. Cheng, Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora, Planta Med. 63 (1997) 323-325.
|
| [8] |
J. Wang, X. Chen, Y. Chen, et al., Pharmacological effects and mechanisms of tannic acid, Biomed. Pharmacother. 154 (2022), 113561.
|
| [9] |
S. Parker, B. May, C. Zhang, et al., A Pharmacological Review of Bioactive Constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch, Phytother Res. 30 (2016) 1445-1473.
|
| [10] |
J. Ru, P. Li, J. Wang, et al., TCMSP: A database of systems pharmacology for drug discovery from herbal medicines, J. Cheminf. 6 (2014), 13.
|
| [11] |
F. Fei, H. Yang, Y. Peng, et al., Sensitive analysis and pharmacokinetic study of the isomers paeoniflorin and albiflorin after oral administration of Total Glucosides of White Paeony capsule in rats, J. Chromatogr. B. 1022 (2016) 30-37.
|
| [12] |
N. Luo, Z. Li, D. Qian, et al., Simultaneous determination of bioactive components of Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple in rat plasma and tissues by UPLC-MS/MS and its application to pharmacokinetics and tissue distribution, J. Chromatogr. B. 963 (2014) 29-39.
|
| [13] |
L. Zuo, Z. Sun, Z. Wang, et al., Tissue distribution profiles of multiple major bioactive components in rats after intravenous administration of Xuebijing injection by UHPLC-Q-Orbitrap HRMS, Biomed. Chromatogr. 33 (2019), e4400.
|
| [14] |
S. Patnaik, D. Simionescu, C. Goergen, et al., Pentagalloyl glucose and its functional role in vascular health: Biomechanics and drug-delivery characteristics, Ann. Biomed. Eng. 47 (2019) 39-59.
|
| [15] |
S. Takeda, T. Isono, Y. Wakui, et al., Absorption and excretion of paeoniflorin in rats, J. Pharm. Pharmacol. 47 (1995) 1036-1040.
|
| [16] |
Z. Zhao, J. Fu, S. Ma, et al., Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin, Theranostics. 8 (2018) 5945-5959.
|
| [17] |
J. Yu, Z. Zhao, R. Peng, et al., Gut microbiota-based pharmacokinetics and the antidepressant mechanism of paeoniflorin, Front. Pharmacol. 10 (2019), 268.
|
| [18] |
W. Cao, X. Wang, H. Li, et al., Studies on metabolism of total glucosides of paeony from Paeoniae Radix Alba in rats by UPLC-Q-TOF-MS/MS, Biomed. Chromatogr. 29 (2015) 1769-1779.
|
| [19] |
L. Li, A. Shaik, J. Zhang, et al., Preparation of penta-O-galloyl-β-D-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phase HPLC, J. Pharm. Biomed. Anal. 54 (2011) 545-550.
|
| [20] |
P. Jiamboonsri, P. Pithayanukul, R. Bavovada, et al., Factors influencing oral bioavailability of Thai mango seed kernel extract and its key phenolic principles, Molecules. 20 (2015) 21254-21273.
|
| [21] |
J. Gong, L. Li, Y. Lin, et al., Simultaneous determination of Gallic acid, methyl gallate, and 1,3,6-tri-O-galloyl-β-D-glucose from Turkish galls in rat plasma using liquid chromatography-tandem mass spectrometry and its application to pharmacokinetics study, Biomed. Chromatogr. 34 (2020), e4916.
|
| [22] |
N. Noguchi, T. Ohashi, T. Shiratori, et al., Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene, J. Gastroenterol. 42 (2007) 346-351.
|
| [23] |
M. Krook, A. Hagerman, Stability of polyphenols epigallocatechin gallate and pentagalloyl glucose in a simulated digestive system, Food Res. Int. 49 (2012) 112-116.
|
| [24] |
K. Cai, A. Hagerman, R. Minto, et al., Decreased polyphenol transport across cultured intestinal cells by a salivary proline-rich protein, Biochem. Pharmacol. 71 (2006) 1570-1580.
|
| [25] |
X. Wang, L. Xia, X. Zhang, et al., The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art, Biomed. Pharmacother. 149 (2022), 112800.
|
| [26] |
X. Liu, K. Chen, Y. Zhuang, et al., Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats, Biomed. Pharmacother. 111 (2019) 695-704.
|
| [27] |
Y. Xiang, Q. Zhang, S. Wei, et al., Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities, J. Pharm. Pharmacol. 72 (2020) 483-495.
|
| [28] |
Q. Meng, W. Meng, H. Bian, et al., Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis, Biomed. Pharmacother. 138 (2021), 111413.
|
| [29] |
W. Zhao, Y. Zhang, M. Zhang, et al., Effects of total glucosides of paeony on acute renal injury following ischemia-reperfusion via the lncRNA HCG18/miR-16-5p/Bcl-2 axis, Immunobiology 227 (2022), 152179.
|
| [30] |
X. Chang, P. Zhang, X. Xu, et al., Total glucosides of paeony inhibited autophagy and improved acute kidney injury induced by ischemia-reperfusion via the lncRNA TUG1/miR-29a/PTEN axis, Drug Des. Dev. Ther. 15 (2021) 2229-2242.
|
| [31] |
X. Yan, Y. Huang, Mechanism of total glucosides of paeony in hypoxia/reoxygenation-induced cardiomyocyte pyroptosis, J. Bioenerg. Biomembr. 53 (2021) 643-653.
|
| [32] |
Z. Zhao, Y. Han, Z. Zhang, et al., Total glucosides of paeony improves the immunomodulatory capacity of MSCs partially via the miR-124/STAT3 pathway in oral lichen planus, Biomed. Pharmacother. 105 (2018) 151-158.
|
| [33] |
K. Wang, Y. Wu, J. Su, et al., Total glucosides of paeony regulates JAK2/STAT3 activation and macrophage proliferation in diabetic rat kidneys, Am. J. Chin. Med. 40 (2012) 521-536.
|
| [34] |
C. Liang, H. Jiang, W. Feng, et al., Total glucosides of paeony ameliorate pristane-induced lupus nephritis by inducing PD-1 ligands+ macrophages via activating IL-4/STAT6/PD-L2 signaling, Front. Immunol. 12 (2021), 683249.
|
| [35] |
H. Li, X. Cao, W. Dang, et al., Total Glucosides of Paeony protects against collagen-induced mouse arthritis via inhibiting follicular helper T cell differentiation, Phytomedicine. 65 (2019), 153091.
|
| [36] |
B. Li, S. He, R. Liu, et al., Total glucosides of paeony attenuates animal psoriasis induced inflammatory response through inhibiting STAT1 and STAT3 phosphorylation, J. Ethnopharmacol. 243 (2019), 112121.
|
| [37] |
S. Li, J. Bai, G. Fan, et al., Total glucosides of paeony alleviates Scleroderma by inhibiting type I interferon responses, J. Ethnopharmacol. 302 (2023), 115897.
|
| [38] |
Y. Zheng, W. Wei, Total glucosides of paeony suppresses adjuvant arthritis in rats and intervenes cytokine-signaling between different types of synoviocytes, Int. Immunopharmacol. 5 (2005) 1560-1573.
|
| [39] |
L. Jin, Y. Guo, W. Mao, et al., Total glucosides of paeony inhibit breast cancer growth by inhibiting TAMs infiltration through NF-κB/CCL2 signaling, Phytomedicine. 104 (2022), 154307.
|
| [40] |
M. Naveed, L. Han, M. Hasnat, et al., Suppression of TGP on myocardial remodeling by regulating the NF-κB pathway, Biomed. Pharmacother. 108 (2018) 1460-1468.
|
| [41] |
G. Chen, X. Ji, Y. Li, et al., Mechanisms of total glucosides of paeony in alleviating methotrexate-induced liver injury, Drug. Des. Dev. Ther. 19 (2025) 3407-3423.
|
| [42] |
M. Shen, R. Men, X. Fan, et al., Total glucosides of paeony decreases apoptosis of hepatocytes and inhibits maturation of dendritic cells in autoimmune hepatitis, Biomed. Pharmacother. 124 (2020), 109911.
|
| [43] |
M. Zheng, C. Liu, Y. Fan, et al., Total glucosides of paeony (TGP) extracted from Radix Paeoniae Alba exerts neuroprotective effects in MPTP-induced experimental Parkinsonism by regulating the cAMP/PKA/CREB signaling pathway, J. Ethnopharmacol. 245 (2019), 112182.
|
| [44] |
X. Cao, J. Ni, X. Wang, et al., Total glucosides of Paeony restores intestinal barrier function through inhibiting Lyn/Snail signaling pathway in colitis mice, Phytomedicine. 87 (2021) 153590.
|
| [45] |
L. Su, H. Lu, D. Zhang, et al., Total paeony glycoside relieves neuroinflammation to exert antidepressant effect via the interplay between NLRP3 inflammasome, pyroptosis and autophagy, Phytomedicine. 128 (2024), 155519.
|
| [46] |
Z. Jiang, J. Chen, et, Anti-inflammatory effects of paeoniflorin caused by regulation of the hif1a/miR-210/caspase1/GSDMD signaling pathway in astrocytes: A novel strategy for hypoxia-induced brain injury in rats, Immunopharmacol. Immunotoxicol. 43 (2021) 410-418.
|
| [47] |
J. Cheng, M. Chen, H. Wan, et al., Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation, J. Ethnopharmacol. 274 (2021), 114046.
|
| [48] |
Z. He, P. Huan, L. Wang, et al., Paeoniflorin ameliorates cognitive impairment in Parkinson’s disease via JNK/p53 signaling, Metab. Brain. Dis. 37 (2022) 1057-1070.
|
| [49] |
W. Li, W. Tao, J. Chen, et al., Paeoniflorin suppresses IL-33 production by macrophages, Immunopharmacol. Immunotoxicol. 42 (2020) 286-293.
|
| [50] |
J. Yu, Z. Xiao, R. Zhao, et al., Paeoniflorin suppressed IL-22 via p38 MAPK pathway and exerts anti-psoriatic effect, Life Sci. 180 (2017) 17-22.
|
| [51] |
H. Zhang, Y. Qi, Y. Yuan, et al., Paeoniflorin ameliorates experimental autoimmune encephalomyelitis via inhibition of dendritic cell function and Th17 cell differentiation, Sci. Rep. 7 (2017), 41887.
|
| [52] |
X. Sun, X. Wang, Z. Zhao, et al., Paeoniflorin inhibited nod-like receptor protein-3 inflammasome and NF-κB-mediated inflammatory reactions in diabetic foot ulcer by inhibiting the chemokine receptor CXCR2, Drug Dev. Res. 82 (2021) 404-411.
|
| [53] |
J. Li, S. Ren, M. Li, et al., Paeoniflorin protects against dextran sulfate sodium (DSS)-induced colitis in mice through inhibition of inflammation and eosinophil infiltration, Int. Immunopharmacol. 97 (2021), 107667.
|
| [54] |
Z. Chen, X. Ma, Y. Zhu, et al., Paeoniflorin ameliorates ANIT-induced cholestasis by activating Nrf2 through an PI3K/Akt-dependent pathway in rats, Phytother. Res. 29 (2015) 1768-1775.
|
| [55] |
B. Liu, J. Lin, L. Bai, et al., Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway, Front. Pharmacol. 10 (2019), 978.
|
| [56] |
C. Liang, W. Lu, F. Qiu, et al., Paeoniflorin ameliorates murine lupus nephritis by increasing CD4+Foxp3+Treg cells via enhancing mTNFα-TNFR2 pathway, Biochem. Pharmacol. 185 (2021) 114434.
|
| [57] |
J. Zhang, W. Hua, X. Zhao, et al., Paeoniflorin alleviates endothelial dysfunction caused by overexpression of soluble fms-like tyrosine kinase 1 and soluble endoglin in preeclampsia via VEGFA upregulation, Biosci. Biotechnol. Biochem. 85 (2021) 814-823.
|
| [58] |
H. Park, H. Choi, B. Kim, et al., Paeoniflorin enhances endometrial receptivity through leukemia inhibitory factor, Biomolecules. 11 (2021), 439.
|
| [59] |
Y. Chen, R. Zhang, W. Zhao, et al., Paeoniflorin exhibits antitumor effects in nasopharyngeal carcinoma cells through downregulation of NEDD4, American journal of translational research 11 (2019) 7579-7590.
|
| [60] |
Z. Zhu, C. Li, X. Gu, et al., Paeoniflorin alleviated muscle atrophy in cancer Cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling, Toxicol. Appl. Pharmacol. 484 (2024), 116846.
|
| [61] |
Y. Zheng, G. Xiao, S. Tong, et al., Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling, World J. Gastroenterol. 21 (2015) 7197-7207.
|
| [62] |
F. Fei, L. Aa, Q. Qi, et al., Paeoniflorin inhibits Th1 and Th17 cells in gut-associated lymphoid tissues to produce anti-arthritis activities, Inflammopharmacology. 27 (2019) 1193-1203.
|
| [63] |
X. Deng, Y. Li, X. Li, et al., Paeoniflorin Protects against Acetaminophen-Induced Liver Injury in Mice via JNK Signaling Pathway, Molecules. 27 (2022), 8534.
|
| [64] |
T. Liu, N. Zhang, L. Kong, et al., Paeoniflorin alleviates liver injury in hypercholesterolemic rats through the ROCK/AMPK pathway, Front. Pharmacol. 13 (2022), 968717.
|
| [65] |
S. Liu, Y. Li, C. Wu, Paeoniflorin suppresses the apoptosis and inflammation of human coronary artery endothelial cells induced by oxidized low-density lipoprotein by regulating the Wnt/β-catenin pathway, Pharm. Biol. 61 (2023) 1454-1461.
|
| [66] |
J. Zhou, L. Wang, J. Wang, et al., Paeoniflorin and Albiflorin Attenuate Neuropathic Pain via MAPK Pathway in Chronic Constriction Injury Rats, Evid. Based Complementary Altern. Med. 2016 (2016), 8082753.
|
| [67] |
Y. Zhu, L. Wang, D. Zhao, et al., Antidepressant-like effects of albiflorin involved the NO signaling pathway in rats model of chronic restraint stress, Chin. J. Nat. Med. 18 (2020) 872-880.
|
| [68] |
Z. Qiu, J. He, X. Liu, et al., Anti-PTSD-like effects of albiflorin extracted from Radix paeoniae Alba, J. Ethnopharmacol. 198 (2017) 324-330.
|
| [69] |
Y. Xu, Y. Mei, X. Shi, et al., Albiflorin ameliorates memory deficits in APP/PS1 transgenic mice via ameliorating mitochondrial dysfunction, Brain Res. 1719 (2019) 113-123.
|
| [70] |
X. Xu, H. Liu, Y. Pan, et al., Albiflorin attenuates inflammation and apoptosis by upregulating AMPK-mediated expression of CDX2 in a mouse model of ulcerative colitis, Trop. J. Pharm. Res. 19 (2020) 995-999.
|
| [71] |
M. Jeong, J. Park, D. Youn, et al., Albiflorin ameliorates obesity by inducing thermogenic genes via AMPK and PI3K/AKT in vivo and in vitro, Metabolism. 73 (2017) 85-99.
|
| [72] |
X. Zhou, S. Fouda, X. Zeng, et al., Characterization of the therapeutic profile of albiflorin for the metabolic syndrome, Front. Pharmacol. 10 (2019), 1151.
|
| [73] |
W. Zhong, E. Li, R. Hao, et al., Anti-anaphylactic potential of benzoylpaeoniflorin through inhibiting HDC and MAPKs from Paeonia lactiflora, Chin. J. Nat. Med. 19 (2021) 825-835.
|
| [74] |
C. Kim, H. Sim, J.S. Bae, Benzoylpaeoniflorin activates anti-inflammatory mechanisms to mitigate sepsis in cell-culture and mouse sepsis models, Int. J. Mol. Sci. 23 (2022), 13130.
|
| [75] |
Y. Bi, X. Wang, L. Han, et al., Selective inhibition of organic cation transporter 1 by benzoylpaeoniflorin attenuates hepatic lipid accumulation through AMPK activation, J. Nat. Prod. 86 (2023) 191-198.
|
| [76] |
K. Wang, W. Hu, Oxypaeoniflorin improves myocardial ischemia/reperfusion injury by activating the Sirt1/Foxo1 signaling pathway, Acta Biochim. Pol. 67 (2020), 239-245.
|
| [77] |
C.K. Yoo, J.H. Hwang, K. Lee, et al., Anti-inflammatory effects of moutan cortex radicis extract, paeoniflorin and oxypaeoniflorin through TLR signaling pathway in RAW264.7 Cells, 6 (2018) 26-31.
|
| [78] |
G. Fan, T. Zhu, R. Wang, et al., Oxypaeoniflorin prevents acute lung injury induced by lipopolysaccharide through the PTEN/AKT pathway in a Sirt1-dependent manner, Oxid. Med. Cell. Longev. 2021 (2021). 6878026.
|
| [79] |
M. Zhang, L. Feng, M. Zhu, et al., Antioxidative and anti-inflammatory activities of paeoniflorin and oxypaeoniflora on AGEs-induced mesangial cell damage, Planta Med. 79 (2013) 1319-1323.
|
| [80] |
P. Behrendt, P. Perin, N. Menzel, et al., Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry, Antivir. Res. 147 (2017) 19-28.
|
| [81] |
Z. Tu, M. Xu, J. Zhang, et al., Pentagalloylglucose inhibits the replication of rabies virus via mediation of the miR-455/SOCS3/STAT3/IL-6 pathway, J. Virol. 93 (2019), e00539-19.
|
| [82] |
S. Jang, S. Hyam, J. Jeong, et al., Penta-O-galloyl-β-D-glucose ameliorates inflammation by inhibiting MyD88/NF-κB and MyD88/MAPK signalling pathways, Br. J. Pharmacol. 170 (2013) 1078-1091.
|
| [83] |
J. Tong, J. Fang, T. Zhu, et al., Pentagalloylglucose reduces AGE-induced inflammation by activating Nrf2/HO-1 and inhibiting the JAK2/STAT3 pathway in mesangial cells, J. Pharmacol. Sci. 147 (2021) 305-314.
|
| [84] |
V. Parasaram, N. Nosoudi, A. Chowdhury, et al., Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions, Biochem. Biophys. Res. Commun. 499 (2018) 24-29.
|
| [85] |
Q. Zhang, J. Nie, S. Chen, et al., Protective effects of ethyl gallate and pentagalloylglucose, the active components of Qingwen Baidu Decoction, against lipopolysaccharide-induced acute lung injury in rats, Drug Des. Dev. Ther. 13 (2018) 71-77.
|
| [86] |
Q. Zhang, S. Cheng, Z. Xin, et al., 1,2,3,4,6-O-pentagalloylglucose protects against acute lung injury by activating the AMPK/PI3K/Akt/Nrf2 pathway, Int. J. Mol. Sci. 23 (2022), 14423.
|
| [87] |
K. Hua, T. Way, J. Lin, Pentagalloylglucose inhibits estrogen receptor alpha by lysosome-dependent depletion and modulates ErbB/PI3K/Akt pathway in human breast cancer MCF-7 cells, Mol. Carcinog. 45 (2006) 551-560.
|
| [88] |
G. Oh, H. Pae, H. Oh, et al., In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells, Cancer Lett. 174 (2001) 17-24.
|
| [89] |
S. Kawk, Y. Kang, Y. Kim, 1,2,3,4,6-Penta-O-galloyl-β-D-glucose suppresses colon cancer through induction of tumor suppressor, Bioorg. Med. Chem. Lett. 28 (2018) 2117-2123.
|
| [90] |
J. Chan, Y. Tay, Noncoding RNA:RNA regulatory networks in cancer, Int. J. Mol. Sci. 19 (2018), 1310.
|
| [91] |
X. Zhang, M. Hamblin, K. Yin, The long noncoding RNA Malat1: Its physiological and pathophysiological functions, RNA. Biol. 14 (2017) 1705-1714.
|
| [92] |
W. Li, Y. Yang, Y. Li, et al., Sirt5 attenuates cisplatin-induced acute kidney injury through regulation of Nrf2/HO-1 and bcl-2, BioMed. Res. Int. 2019 (2019), 4745132.
|
| [93] |
G. Xu, L. Mo, C. Wu, et al., The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury, Ren. Fail. 41 (2019) 955-966.
|
| [94] |
Q. Zhu, X. Qi, Y. Wu, et al., Clinical study of total glucosides of paeony for the treatment of diabetic kidney disease in patients with diabetes mellitus, Int. Urol. Nephrol. 48 (2016) 1873-1880.
|
| [95] |
L. Zhou, T. Cao, Y. Wang, et al., Clinical observation on the treatment of oral lichen planus with total glucosides of paeony capsule combined with corticosteroids, Int. Immunopharmacol. 36 (2016) 106-110.
|
| [96] |
D. Hebenstreit, G. Wirnsberger, J. Horejshoeck, et al., Signaling mechanisms, interaction partners, and target genes of STAT6, Cytokine Growth Factor Rev. 17 (2006) 173-188.
|
| [97] |
N. Xiang, X. Li, M. Zhang, et al., Total glucosides of paeony can reduce the hepatotoxicity caused by methotrexate and leflunomide combination treatment of active rheumatoid arthritis, Int. Immunopharmacol. 28 (2015) 802-807.
|
| [98] |
Y. Zhou, L. Jin, F. Kong, et al., Clinical and immunological consequences of total glucosides of paeony treatment in Sjogren’s syndrome: A randomized controlled pilot trial, Int. Immunopharmacol. 39 (2016) 314-319.
|
| [99] |
W. Dai, Y. Bao, J. Fan, et al., Levo-corydalmine attenuates microglia activation and neuropathic pain by suppressing ASK1-p38 MAPK/NF-κB signaling pathways in rat spinal cord, Reg. Anesth. Pain Med. 45 (2020) 219-229.
|
| [100] |
M. Karin, Y. Neriah, Phosphorylation meets ubiquitination: The control of NF-κB activity, Annu. Rev. Immunol. 18 (2000) 621-663.
|
| [101] |
Y. Wang, H. Zhang, G. Du, et al., Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway, Int. Immunopharmacol. 36 (2016) 67-72.
|
| [102] |
Y. Chen, K. Chen, J. Ding, et al., Neural substrates of amodal and modality-specific semantic processing within the temporal lobe: A lesion-behavior mapping study of semantic dementia, Cortex. 120 (2019) 78-91.
|
| [103] |
W. Pang, X. Qi, C. Cao, et al., Inhibitory effects of TGP on KGF-induced hyperproliferation of HaCaT cells via suppression of the p38 MAPK/NF-κB p65 pathway, Mol. Med. Rep. 18 (2018) 2207-2215.
|
| [104] |
Y. Li, W. Liu, L. Li, et al., Neuroprotective effects of a GIP analogue in the MPTP Parkinson’s disease mouse model, Neuropharmacology. 101 (2016) 255-263.
|
| [105] |
Y. Chen, Y. Wang, L. Xu, et al., Influence of total glucosides of paeony on PD-1/PD-L1 expression in primary Sjogren’s syndrome, Int. J. Rheum. Dis. 22 (2019).
|
| [106] |
W. Liu, T. Ruan, X. Ji, et al., The Gli1-Snailaxis contributes toSalmonellaTyphimurium-induced disruption of intercellular junctions of intestinal epithelial cells, Cell. Microbiol. 22 (2020), e13211.
|
| [107] |
S. Feng, D. Fox, S. Man, Mechanisms of gasdermin family members in inflammasome signaling and cell death, J. Mol. Biol. 430 (2018) 3068-3080.
|
| [108] |
D. Tian, M. Wang, A. Liu, et al., Antidepressant effect of paeoniflorin is through inhibiting pyroptosis CASP-11/GSDMD pathway, Mol. Neurobiol. 58 (2021) 761-776.
|
| [109] |
R. Schellino, M. Boido, A. Vercelli, JNK signaling pathway involvement in spinal cord neuron development and death, Cells. 8 (2019), 1576.
|
| [110] |
L. Wang, F. Wang, M. Gershwin, Human autoimmune diseases: A comprehensive update, J. Intern. Med. 278 (2015) 369-395.
|
| [111] |
X. Wu, X. Qi, J. Wang, et al., Paeoniflorin attenuates the allergic contact dermatitis response via inhibiting the IFN-γ production and the NF-κB/IκBα signaling pathway in T lymphocytes, Int. Immunopharmacol. 96 (2021), 107687.
|
| [112] |
S. Darici, H. Alkhaldi, G. Horne, et al., Targeting PI3K/Akt/mTOR in AML: Rationale and clinical evidence, J. Clin. Med. 9 (2020), 2934.
|
| [113] |
S. Yang, J. Wang, D. Brand, et al., Role of TNF receptor 2 signal in regulatory T cells and its therapeutic implications, Front. Immunol. 9 (2018), 784.
|
| [114] |
D. McCoy, D. Haig, J. Kotler, Egg donation and gestational surrogacy: Pregnancy is riskier with an unrelated embryo, Early. Hum. Dev. 196 (2024), 106072.
|
| [115] |
R. Hayman, J. Brockelsby, L. Kenny, et al., Preeclampsia: The endothelium, circulating factor(s) and vascular endothelial growth factor, J. Soc. Gynecol. Investig. 6 (1999) 3-10.
|
| [116] |
W. Li, Z. Qi, Z. Wei, et al., Paeoniflorin inhibits proliferation and induces apoptosis of human glioma cells via microRNA-16 upregulation and matrix metalloproteinase-9 downregulation, Mol. Med. Rep. 12 (2015) 2735-2740.
|
| [117] |
L. Chen, H. Qi, D. Jiang, et al., The new use of an ancient remedy: a double-blinded randomized study on the treatment of rheumatoid arthritis, Am. J. Chin. Med. 41 (2013) 263-280.
|
| [118] |
L. Li, H. Wang, S. Zhao, et al., Paeoniflorin ameliorates lipopolysaccharide-induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats, Phytother. Res. 36 (2022) 2558-2571.
|
| [119] |
X. Han, S. Hu, Q. Yang, et al., Paeoniflorin ameliorates airway inflammation and immune response in ovalbumin induced asthmatic mice: From oxidative stress to autophagy, Phytomedicine. 96 (2022), 153835.
|
| [120] |
Q. Shang, H. Xu, X. Lu, et al., A multi-center randomized double-blind placebo-controlled trial of Xiongshao Capsule in preventing restenosis after percutaneous coronary intervention: a subgroup analysis of senile patients, Chin. J. Integr. Med. 17 (2011) 669-674.
|
| [121] |
M. Haghighi, I. Salehi, P. Erfani, et al., Additional ECT increases BDNF-levels in patients suffering from major depressive disorders compared to patients treated with citalopram only, J. Psychiatr. Res. 47 (2013) 908-915.
|
| [122] |
K. Iwamoto, M. Bundo, T. Kato, Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis, Hum. Mol. Genet. 14 (2005) 241-253.
|
| [123] |
X. Wang, L. Su, J. Tan, et al., Albiflorin alleviates DSS-induced ulcerative colitis in mice by reducing inflammation and oxidative stress, Iran. J. Basic Med. Sci. 26 (2023) 48-56.
|
| [124] |
L. Hyrsova, T. Smutny, F. Trejtnar, et al., Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation, Drug Metab. Rev. 48 (2016) 139-158.
|
| [125] |
S. Shen, F. He, C. Cheng, et al., Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway, Biomed. Pharmacother. 133 (2021), 110990.
|
| [126] |
C. Torres-Leon, J. Ventura-Sobrevilla, L. Serna-Cock, et al., Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties, J. Funct. Foods. 37 (2017) 176-189.
|
| [127] |
J. Zeng, J. Han, Z. Liu, et al., Pentagalloylglucose disrupts the PALB2-BRCA2 interaction and potentiates tumor sensitivity to PARP inhibitor and radiotherapy, Cancer Lett. 546 (2022), 215851.
|
| [128] |
C. Yan, Z. Zhou, Ellagic acid and pentagalloylglucose are potential inhibitors of prion protein fibrillization, Int. J. Biol. Macromol. 172 (2021) 371-380.
|
| [129] |
K. Kim, W. Gu, I. Lee, et al., High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway, PLoS One. 7 (2012), e47713.
|
| [130] |
K. Ono, T. Sawada, Y. Murata, et al., Pentagalloylglucose, an antisecretory component of Paeoniae radix, inhibits gastric H+, K+-ATPase, Clin. Chim. Acta. 290 (2000) 159-167.
|
| [131] |
G. Gyemant, A. Zajacz, B. Becsi, et al., Evidence for pentagalloyl glucose binding to human salivary α-amylase through aromatic amino acid residues, Biochim. Biophys. Acta. 1794 (2009) 291-296.
|
| [132] |
Q. Zhang, J. Liu, H. Duan, et al., Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress, J. Adv. Res. 34 (2021) 43-63.
|
| [133] |
V. Parasaram, X. Wang, P. Krisanarungson, et al., Targeted delivery of pentagalloyl glucose inhibits matrix metalloproteinase activity and preserves elastin in emphysematous lungs, Respir. Res. 22 (2021), 249.
|
| [134] |
C. Wen, N. Dechsupa, Z. Yu, et al., Pentagalloyl Glucose: A review of anticancer properties, molecular targets, mechanisms of action, pharmacokinetics, and safety profile, Molecules. 28 (2023), 4856.
|
| [135] |
J. Golledge, S. Thanigaimani, J. Phie, A systematic review and meta-analysis of the effect of pentagalloyl glucose administration on aortic expansion in animal models, Biomedicines. 9 (2021), 1442.
|
| [136] |
X. Tian, M. Xu, P. Deng, et al., Chinese herbs in treating and preventing abortion: A quantitative analysis of clinical data, Hong Kong Tradit. Chin. Med. J. 6 (2011) 15-18.
|
| [137] |
W. Xu, L. Xu, B. Deng, et al., The potential impact of Radix Paeoniae Alba in embryonic development of mice, Phytother. Res. 31 (2017) 1376-1383.
|
| [138] |
B. Yan, X. Chen, Y. Chen, et al., Aqueous extract of Paeoniae Radix Alba (Paeonia lactiflora Pall.) ameliorates DSS-induced colitis in mice by tunning the intestinal physical barrier, immune responses, and microbiota, J. Ethnopharmacol. 294 (2022), 115365.
|
| [139] |
T. Bae, J. Jang, H. Lee, et al., Paeonia lactiflora root extract suppresses cancer Cachexia by down-regulating muscular NF-κB signalling and muscle-specific E3 ubiquitin ligases in cancer-bearing mice, J. Ethnopharmacol. 246 (2020), 112222.
|
| [140] |
T. Ou, C. Wu, J. Hsu, et al., Paeonia lactiflora Pall. inhibits bladder cancer growth involving phosphorylation of Chk2 in vitro and in vivo, J. Ethnopharmacol. 135 (2011) 162-172.
|
| [141] |
X. Zhang, H. Qiu, C. Li, et al., The positive role of traditional Chinese medicine as an adjunctive therapy for cancer, Biosci. Trends. 15 (2021) 283-298.
|
| [142] |
J. Kuo, C. Wang, T. Lee, et al., Paeoniae Radix Reduces PDGF-stimulated hepatic stellate cell migration, Planta Med. 78 (2012) 341-348.
|
| [143] |
C. Chen, W. Gong, J. Tian, et al., Radix Paeoniae Alba attenuates Radix Bupleuri-induced hepatotoxicity by modulating gut microbiota to alleviate the inhibition of saikosaponins on glutathione synthetase, J. Pharm. Anal. 13 (2023) 640-659.
|
| [144] |
X. Wan, Y. Fang, M. Qin, et al., Protective effect of MP-40 mitigates BDL-induced hepatic fibrosis by inhibiting the NLRP3-mediated pyroptosis, Front. Pharmacol. 15 (2024), 1479503.
|
| [145] |
X. Li, W. Wang, Y. Su, et al., Inhibitory effect of an aqueous extract of Radix Paeoniae Alba on calcium oxalate nephrolithiasis in a rat model, Ren. Fail. 39 (2017) 120-129.
|
| [146] |
Y. Wang, S. Gao, R. Li, et al., Antidepressant-like effects of the Radix bupleuri and Radix paeoniae alba drug pair, Neurosci. Lett. 633 (2016) 14-20.
|
| [147] |
G. Jo, S. Kim, M. Kim, et al., Protective effect ofPaeoniae Radix albaroot extract on immune alterations in mice with atopic dermatitis, J. Toxicol. Environ. Health Part A. 81 (2018) 502-511.
|