Turn off MathJax
Article Contents
Qitong Zheng, Mengyao Chen, Jialiang Ying, Zhichao Wang, Qiyuan Shan, Xia-Nan Sang, Gang Cao. The correlation between characteristics and pharmacological effects of Monoterpene glycosides and Tannins in Radix Paeoniae Alba[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101471
Citation: Qitong Zheng, Mengyao Chen, Jialiang Ying, Zhichao Wang, Qiyuan Shan, Xia-Nan Sang, Gang Cao. The correlation between characteristics and pharmacological effects of Monoterpene glycosides and Tannins in Radix Paeoniae Alba[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101471

The correlation between characteristics and pharmacological effects of Monoterpene glycosides and Tannins in Radix Paeoniae Alba

doi: 10.1016/j.jpha.2025.101471
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 82274101 and 82374123), the Natural Science Foundation of Zhejiang Province, China (Grant No.: LY24H280002), and the Research Project of Zhejiang Chinese Medical University (Grant No.: 2025JKZKTS23). Figs. 1−10 and the Graphical abstract were created using BioRender.com.

  • Received Date: Apr. 30, 2025
  • Accepted Date: Oct. 19, 2025
  • Rev Recd Date: Oct. 17, 2025
  • Available Online: Oct. 25, 2025
  • The pharmacodynamic material basis constitutes the central element of traditional Chinese medicine (TCM) in disease treatment. By summarizing the active compounds' characteristics, bioavailability, pharmacological effects, and molecular mechanisms, we can explain the complex interactions between TCMs and diseases. Previous studies have demonstrated that monoterpene glycosides and tannins are related to the pharmacological activity of Radix Paeoniae Alba (RPA). However, research on RPA has primarily focused on monoterpene glycosides, and the functional role of tannins in RPA has received little attention. Observations from animal studies indicate that monoterpene glycosides and tannins exhibit poor bioavailability. Carboxylesterase, produced by gut microbiota, is crucial for metabolizing these compounds in the intestine. Monoterpene glycosides and their gut metabolites can be absorbed into the bloodstream, exerting various pharmacological effects, including anti-inflammatory, immunomodulatory, and neuromodulator activities. In contrast, tannins consist of highly hydrophobic polyphenols that form insoluble protein-tannin complexes. Due to their inability to cross the intestinal barrier, tannins primarily exert localized pharmacological effects within the digestive system. This study systematically reviews the pharmacological activities and mechanisms of monoterpene glycosides and tannins in RPA, while establishing their therapeutic contributions to the herb's pharmacological effects.
  • loading
  • [1]
    Y. Tan, H. Chen, J. Li, et al., Efficacy, chemical constituents, and pharmacological actions of Radix paeoniae rubra and Radix paeoniae alba, Front. Pharmacol. 11 (2020), 1054.
    [2]
    X. Mu, R. Luan, Y. Gao, et al., The traditional applications, phytochemistry, pharmacology, pharmacokinetics, quality control and safety of paeoniae Radix Alba: A review, Am. J. Chin. Med. 52 (2024) 2337-2376.
    [3]
    P. Li, J. Shen, Z. Wang, et al., Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology, J. Ethnopharmacol. 269 (2021), 113708.
    [4]
    X. Sang, X. Wan, H. Zhang, et al., The most bioactive fraction of stir-fried Radix Paeoniae Alba regulating IL-6/STAT3 signaling pathway in allergic asthma mouse, J. Ethnopharmacol. 301 (2023), 115821.
    [5]
    S. Xu, L. Yang, R. Tian, et al., Species differentiation and quality assessment of Radix Paeoniae Rubra (Chi-Shao) by means of high-performance liquid chromatographic fingerprint, J. Chromatogr. A. 1216 (2009) 2163-2168.
    [6]
    N. Aimi, M. Inaba, M. Watanabe, et al., Chemical studies on the oriental plant drugs: XXIII, Tetrahedron. 25 (1969) 1825-1838.
    [7]
    F. Hsu, C. Lai, J. Cheng, Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora, Planta Med. 63 (1997) 323-325.
    [8]
    J. Wang, X. Chen, Y. Chen, et al., Pharmacological effects and mechanisms of tannic acid, Biomed. Pharmacother. 154 (2022), 113561.
    [9]
    S. Parker, B. May, C. Zhang, et al., A Pharmacological Review of Bioactive Constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch, Phytother Res. 30 (2016) 1445-1473.
    [10]
    J. Ru, P. Li, J. Wang, et al., TCMSP: A database of systems pharmacology for drug discovery from herbal medicines, J. Cheminf. 6 (2014), 13.
    [11]
    F. Fei, H. Yang, Y. Peng, et al., Sensitive analysis and pharmacokinetic study of the isomers paeoniflorin and albiflorin after oral administration of Total Glucosides of White Paeony capsule in rats, J. Chromatogr. B. 1022 (2016) 30-37.
    [12]
    N. Luo, Z. Li, D. Qian, et al., Simultaneous determination of bioactive components of Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple in rat plasma and tissues by UPLC-MS/MS and its application to pharmacokinetics and tissue distribution, J. Chromatogr. B. 963 (2014) 29-39.
    [13]
    L. Zuo, Z. Sun, Z. Wang, et al., Tissue distribution profiles of multiple major bioactive components in rats after intravenous administration of Xuebijing injection by UHPLC-Q-Orbitrap HRMS, Biomed. Chromatogr. 33 (2019), e4400.
    [14]
    S. Patnaik, D. Simionescu, C. Goergen, et al., Pentagalloyl glucose and its functional role in vascular health: Biomechanics and drug-delivery characteristics, Ann. Biomed. Eng. 47 (2019) 39-59.
    [15]
    S. Takeda, T. Isono, Y. Wakui, et al., Absorption and excretion of paeoniflorin in rats, J. Pharm. Pharmacol. 47 (1995) 1036-1040.
    [16]
    Z. Zhao, J. Fu, S. Ma, et al., Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin, Theranostics. 8 (2018) 5945-5959.
    [17]
    J. Yu, Z. Zhao, R. Peng, et al., Gut microbiota-based pharmacokinetics and the antidepressant mechanism of paeoniflorin, Front. Pharmacol. 10 (2019), 268.
    [18]
    W. Cao, X. Wang, H. Li, et al., Studies on metabolism of total glucosides of paeony from Paeoniae Radix Alba in rats by UPLC-Q-TOF-MS/MS, Biomed. Chromatogr. 29 (2015) 1769-1779.
    [19]
    L. Li, A. Shaik, J. Zhang, et al., Preparation of penta-O-galloyl-β-D-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phase HPLC, J. Pharm. Biomed. Anal. 54 (2011) 545-550.
    [20]
    P. Jiamboonsri, P. Pithayanukul, R. Bavovada, et al., Factors influencing oral bioavailability of Thai mango seed kernel extract and its key phenolic principles, Molecules. 20 (2015) 21254-21273.
    [21]
    J. Gong, L. Li, Y. Lin, et al., Simultaneous determination of Gallic acid, methyl gallate, and 1,3,6-tri-O-galloyl-β-D-glucose from Turkish galls in rat plasma using liquid chromatography-tandem mass spectrometry and its application to pharmacokinetics study, Biomed. Chromatogr. 34 (2020), e4916.
    [22]
    N. Noguchi, T. Ohashi, T. Shiratori, et al., Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene, J. Gastroenterol. 42 (2007) 346-351.
    [23]
    M. Krook, A. Hagerman, Stability of polyphenols epigallocatechin gallate and pentagalloyl glucose in a simulated digestive system, Food Res. Int. 49 (2012) 112-116.
    [24]
    K. Cai, A. Hagerman, R. Minto, et al., Decreased polyphenol transport across cultured intestinal cells by a salivary proline-rich protein, Biochem. Pharmacol. 71 (2006) 1570-1580.
    [25]
    X. Wang, L. Xia, X. Zhang, et al., The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art, Biomed. Pharmacother. 149 (2022), 112800.
    [26]
    X. Liu, K. Chen, Y. Zhuang, et al., Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats, Biomed. Pharmacother. 111 (2019) 695-704.
    [27]
    Y. Xiang, Q. Zhang, S. Wei, et al., Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities, J. Pharm. Pharmacol. 72 (2020) 483-495.
    [28]
    Q. Meng, W. Meng, H. Bian, et al., Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis, Biomed. Pharmacother. 138 (2021), 111413.
    [29]
    W. Zhao, Y. Zhang, M. Zhang, et al., Effects of total glucosides of paeony on acute renal injury following ischemia-reperfusion via the lncRNA HCG18/miR-16-5p/Bcl-2 axis, Immunobiology 227 (2022), 152179.
    [30]
    X. Chang, P. Zhang, X. Xu, et al., Total glucosides of paeony inhibited autophagy and improved acute kidney injury induced by ischemia-reperfusion via the lncRNA TUG1/miR-29a/PTEN axis, Drug Des. Dev. Ther. 15 (2021) 2229-2242.
    [31]
    X. Yan, Y. Huang, Mechanism of total glucosides of paeony in hypoxia/reoxygenation-induced cardiomyocyte pyroptosis, J. Bioenerg. Biomembr. 53 (2021) 643-653.
    [32]
    Z. Zhao, Y. Han, Z. Zhang, et al., Total glucosides of paeony improves the immunomodulatory capacity of MSCs partially via the miR-124/STAT3 pathway in oral lichen planus, Biomed. Pharmacother. 105 (2018) 151-158.
    [33]
    K. Wang, Y. Wu, J. Su, et al., Total glucosides of paeony regulates JAK2/STAT3 activation and macrophage proliferation in diabetic rat kidneys, Am. J. Chin. Med. 40 (2012) 521-536.
    [34]
    C. Liang, H. Jiang, W. Feng, et al., Total glucosides of paeony ameliorate pristane-induced lupus nephritis by inducing PD-1 ligands+ macrophages via activating IL-4/STAT6/PD-L2 signaling, Front. Immunol. 12 (2021), 683249.
    [35]
    H. Li, X. Cao, W. Dang, et al., Total Glucosides of Paeony protects against collagen-induced mouse arthritis via inhibiting follicular helper T cell differentiation, Phytomedicine. 65 (2019), 153091.
    [36]
    B. Li, S. He, R. Liu, et al., Total glucosides of paeony attenuates animal psoriasis induced inflammatory response through inhibiting STAT1 and STAT3 phosphorylation, J. Ethnopharmacol. 243 (2019), 112121.
    [37]
    S. Li, J. Bai, G. Fan, et al., Total glucosides of paeony alleviates Scleroderma by inhibiting type I interferon responses, J. Ethnopharmacol. 302 (2023), 115897.
    [38]
    Y. Zheng, W. Wei, Total glucosides of paeony suppresses adjuvant arthritis in rats and intervenes cytokine-signaling between different types of synoviocytes, Int. Immunopharmacol. 5 (2005) 1560-1573.
    [39]
    L. Jin, Y. Guo, W. Mao, et al., Total glucosides of paeony inhibit breast cancer growth by inhibiting TAMs infiltration through NF-κB/CCL2 signaling, Phytomedicine. 104 (2022), 154307.
    [40]
    M. Naveed, L. Han, M. Hasnat, et al., Suppression of TGP on myocardial remodeling by regulating the NF-κB pathway, Biomed. Pharmacother. 108 (2018) 1460-1468.
    [41]
    G. Chen, X. Ji, Y. Li, et al., Mechanisms of total glucosides of paeony in alleviating methotrexate-induced liver injury, Drug. Des. Dev. Ther. 19 (2025) 3407-3423.
    [42]
    M. Shen, R. Men, X. Fan, et al., Total glucosides of paeony decreases apoptosis of hepatocytes and inhibits maturation of dendritic cells in autoimmune hepatitis, Biomed. Pharmacother. 124 (2020), 109911.
    [43]
    M. Zheng, C. Liu, Y. Fan, et al., Total glucosides of paeony (TGP) extracted from Radix Paeoniae Alba exerts neuroprotective effects in MPTP-induced experimental Parkinsonism by regulating the cAMP/PKA/CREB signaling pathway, J. Ethnopharmacol. 245 (2019), 112182.
    [44]
    X. Cao, J. Ni, X. Wang, et al., Total glucosides of Paeony restores intestinal barrier function through inhibiting Lyn/Snail signaling pathway in colitis mice, Phytomedicine. 87 (2021) 153590.
    [45]
    L. Su, H. Lu, D. Zhang, et al., Total paeony glycoside relieves neuroinflammation to exert antidepressant effect via the interplay between NLRP3 inflammasome, pyroptosis and autophagy, Phytomedicine. 128 (2024), 155519.
    [46]
    Z. Jiang, J. Chen, et, Anti-inflammatory effects of paeoniflorin caused by regulation of the hif1a/miR-210/caspase1/GSDMD signaling pathway in astrocytes: A novel strategy for hypoxia-induced brain injury in rats, Immunopharmacol. Immunotoxicol. 43 (2021) 410-418.
    [47]
    J. Cheng, M. Chen, H. Wan, et al., Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation, J. Ethnopharmacol. 274 (2021), 114046.
    [48]
    Z. He, P. Huan, L. Wang, et al., Paeoniflorin ameliorates cognitive impairment in Parkinson’s disease via JNK/p53 signaling, Metab. Brain. Dis. 37 (2022) 1057-1070.
    [49]
    W. Li, W. Tao, J. Chen, et al., Paeoniflorin suppresses IL-33 production by macrophages, Immunopharmacol. Immunotoxicol. 42 (2020) 286-293.
    [50]
    J. Yu, Z. Xiao, R. Zhao, et al., Paeoniflorin suppressed IL-22 via p38 MAPK pathway and exerts anti-psoriatic effect, Life Sci. 180 (2017) 17-22.
    [51]
    H. Zhang, Y. Qi, Y. Yuan, et al., Paeoniflorin ameliorates experimental autoimmune encephalomyelitis via inhibition of dendritic cell function and Th17 cell differentiation, Sci. Rep. 7 (2017), 41887.
    [52]
    X. Sun, X. Wang, Z. Zhao, et al., Paeoniflorin inhibited nod-like receptor protein-3 inflammasome and NF-κB-mediated inflammatory reactions in diabetic foot ulcer by inhibiting the chemokine receptor CXCR2, Drug Dev. Res. 82 (2021) 404-411.
    [53]
    J. Li, S. Ren, M. Li, et al., Paeoniflorin protects against dextran sulfate sodium (DSS)-induced colitis in mice through inhibition of inflammation and eosinophil infiltration, Int. Immunopharmacol. 97 (2021), 107667.
    [54]
    Z. Chen, X. Ma, Y. Zhu, et al., Paeoniflorin ameliorates ANIT-induced cholestasis by activating Nrf2 through an PI3K/Akt-dependent pathway in rats, Phytother. Res. 29 (2015) 1768-1775.
    [55]
    B. Liu, J. Lin, L. Bai, et al., Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway, Front. Pharmacol. 10 (2019), 978.
    [56]
    C. Liang, W. Lu, F. Qiu, et al., Paeoniflorin ameliorates murine lupus nephritis by increasing CD4+Foxp3+Treg cells via enhancing mTNFα-TNFR2 pathway, Biochem. Pharmacol. 185 (2021) 114434.
    [57]
    J. Zhang, W. Hua, X. Zhao, et al., Paeoniflorin alleviates endothelial dysfunction caused by overexpression of soluble fms-like tyrosine kinase 1 and soluble endoglin in preeclampsia via VEGFA upregulation, Biosci. Biotechnol. Biochem. 85 (2021) 814-823.
    [58]
    H. Park, H. Choi, B. Kim, et al., Paeoniflorin enhances endometrial receptivity through leukemia inhibitory factor, Biomolecules. 11 (2021), 439.
    [59]
    Y. Chen, R. Zhang, W. Zhao, et al., Paeoniflorin exhibits antitumor effects in nasopharyngeal carcinoma cells through downregulation of NEDD4, American journal of translational research 11 (2019) 7579-7590.
    [60]
    Z. Zhu, C. Li, X. Gu, et al., Paeoniflorin alleviated muscle atrophy in cancer Cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling, Toxicol. Appl. Pharmacol. 484 (2024), 116846.
    [61]
    Y. Zheng, G. Xiao, S. Tong, et al., Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling, World J. Gastroenterol. 21 (2015) 7197-7207.
    [62]
    F. Fei, L. Aa, Q. Qi, et al., Paeoniflorin inhibits Th1 and Th17 cells in gut-associated lymphoid tissues to produce anti-arthritis activities, Inflammopharmacology. 27 (2019) 1193-1203.
    [63]
    X. Deng, Y. Li, X. Li, et al., Paeoniflorin Protects against Acetaminophen-Induced Liver Injury in Mice via JNK Signaling Pathway, Molecules. 27 (2022), 8534.
    [64]
    T. Liu, N. Zhang, L. Kong, et al., Paeoniflorin alleviates liver injury in hypercholesterolemic rats through the ROCK/AMPK pathway, Front. Pharmacol. 13 (2022), 968717.
    [65]
    S. Liu, Y. Li, C. Wu, Paeoniflorin suppresses the apoptosis and inflammation of human coronary artery endothelial cells induced by oxidized low-density lipoprotein by regulating the Wnt/β-catenin pathway, Pharm. Biol. 61 (2023) 1454-1461.
    [66]
    J. Zhou, L. Wang, J. Wang, et al., Paeoniflorin and Albiflorin Attenuate Neuropathic Pain via MAPK Pathway in Chronic Constriction Injury Rats, Evid. Based Complementary Altern. Med. 2016 (2016), 8082753.
    [67]
    Y. Zhu, L. Wang, D. Zhao, et al., Antidepressant-like effects of albiflorin involved the NO signaling pathway in rats model of chronic restraint stress, Chin. J. Nat. Med. 18 (2020) 872-880.
    [68]
    Z. Qiu, J. He, X. Liu, et al., Anti-PTSD-like effects of albiflorin extracted from Radix paeoniae Alba, J. Ethnopharmacol. 198 (2017) 324-330.
    [69]
    Y. Xu, Y. Mei, X. Shi, et al., Albiflorin ameliorates memory deficits in APP/PS1 transgenic mice via ameliorating mitochondrial dysfunction, Brain Res. 1719 (2019) 113-123.
    [70]
    X. Xu, H. Liu, Y. Pan, et al., Albiflorin attenuates inflammation and apoptosis by upregulating AMPK-mediated expression of CDX2 in a mouse model of ulcerative colitis, Trop. J. Pharm. Res. 19 (2020) 995-999.
    [71]
    M. Jeong, J. Park, D. Youn, et al., Albiflorin ameliorates obesity by inducing thermogenic genes via AMPK and PI3K/AKT in vivo and in vitro, Metabolism. 73 (2017) 85-99.
    [72]
    X. Zhou, S. Fouda, X. Zeng, et al., Characterization of the therapeutic profile of albiflorin for the metabolic syndrome, Front. Pharmacol. 10 (2019), 1151.
    [73]
    W. Zhong, E. Li, R. Hao, et al., Anti-anaphylactic potential of benzoylpaeoniflorin through inhibiting HDC and MAPKs from Paeonia lactiflora, Chin. J. Nat. Med. 19 (2021) 825-835.
    [74]
    C. Kim, H. Sim, J.S. Bae, Benzoylpaeoniflorin activates anti-inflammatory mechanisms to mitigate sepsis in cell-culture and mouse sepsis models, Int. J. Mol. Sci. 23 (2022), 13130.
    [75]
    Y. Bi, X. Wang, L. Han, et al., Selective inhibition of organic cation transporter 1 by benzoylpaeoniflorin attenuates hepatic lipid accumulation through AMPK activation, J. Nat. Prod. 86 (2023) 191-198.
    [76]
    K. Wang, W. Hu, Oxypaeoniflorin improves myocardial ischemia/reperfusion injury by activating the Sirt1/Foxo1 signaling pathway, Acta Biochim. Pol. 67 (2020), 239-245.
    [77]
    C.K. Yoo, J.H. Hwang, K. Lee, et al., Anti-inflammatory effects of moutan cortex radicis extract, paeoniflorin and oxypaeoniflorin through TLR signaling pathway in RAW264.7 Cells, 6 (2018) 26-31.
    [78]
    G. Fan, T. Zhu, R. Wang, et al., Oxypaeoniflorin prevents acute lung injury induced by lipopolysaccharide through the PTEN/AKT pathway in a Sirt1-dependent manner, Oxid. Med. Cell. Longev. 2021 (2021). 6878026.
    [79]
    M. Zhang, L. Feng, M. Zhu, et al., Antioxidative and anti-inflammatory activities of paeoniflorin and oxypaeoniflora on AGEs-induced mesangial cell damage, Planta Med. 79 (2013) 1319-1323.
    [80]
    P. Behrendt, P. Perin, N. Menzel, et al., Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry, Antivir. Res. 147 (2017) 19-28.
    [81]
    Z. Tu, M. Xu, J. Zhang, et al., Pentagalloylglucose inhibits the replication of rabies virus via mediation of the miR-455/SOCS3/STAT3/IL-6 pathway, J. Virol. 93 (2019), e00539-19.
    [82]
    S. Jang, S. Hyam, J. Jeong, et al., Penta-O-galloyl-β-D-glucose ameliorates inflammation by inhibiting MyD88/NF-κB and MyD88/MAPK signalling pathways, Br. J. Pharmacol. 170 (2013) 1078-1091.
    [83]
    J. Tong, J. Fang, T. Zhu, et al., Pentagalloylglucose reduces AGE-induced inflammation by activating Nrf2/HO-1 and inhibiting the JAK2/STAT3 pathway in mesangial cells, J. Pharmacol. Sci. 147 (2021) 305-314.
    [84]
    V. Parasaram, N. Nosoudi, A. Chowdhury, et al., Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions, Biochem. Biophys. Res. Commun. 499 (2018) 24-29.
    [85]
    Q. Zhang, J. Nie, S. Chen, et al., Protective effects of ethyl gallate and pentagalloylglucose, the active components of Qingwen Baidu Decoction, against lipopolysaccharide-induced acute lung injury in rats, Drug Des. Dev. Ther. 13 (2018) 71-77.
    [86]
    Q. Zhang, S. Cheng, Z. Xin, et al., 1,2,3,4,6-O-pentagalloylglucose protects against acute lung injury by activating the AMPK/PI3K/Akt/Nrf2 pathway, Int. J. Mol. Sci. 23 (2022), 14423.
    [87]
    K. Hua, T. Way, J. Lin, Pentagalloylglucose inhibits estrogen receptor alpha by lysosome-dependent depletion and modulates ErbB/PI3K/Akt pathway in human breast cancer MCF-7 cells, Mol. Carcinog. 45 (2006) 551-560.
    [88]
    G. Oh, H. Pae, H. Oh, et al., In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells, Cancer Lett. 174 (2001) 17-24.
    [89]
    S. Kawk, Y. Kang, Y. Kim, 1,2,3,4,6-Penta-O-galloyl-β-D-glucose suppresses colon cancer through induction of tumor suppressor, Bioorg. Med. Chem. Lett. 28 (2018) 2117-2123.
    [90]
    J. Chan, Y. Tay, Noncoding RNA:RNA regulatory networks in cancer, Int. J. Mol. Sci. 19 (2018), 1310.
    [91]
    X. Zhang, M. Hamblin, K. Yin, The long noncoding RNA Malat1: Its physiological and pathophysiological functions, RNA. Biol. 14 (2017) 1705-1714.
    [92]
    W. Li, Y. Yang, Y. Li, et al., Sirt5 attenuates cisplatin-induced acute kidney injury through regulation of Nrf2/HO-1 and bcl-2, BioMed. Res. Int. 2019 (2019), 4745132.
    [93]
    G. Xu, L. Mo, C. Wu, et al., The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury, Ren. Fail. 41 (2019) 955-966.
    [94]
    Q. Zhu, X. Qi, Y. Wu, et al., Clinical study of total glucosides of paeony for the treatment of diabetic kidney disease in patients with diabetes mellitus, Int. Urol. Nephrol. 48 (2016) 1873-1880.
    [95]
    L. Zhou, T. Cao, Y. Wang, et al., Clinical observation on the treatment of oral lichen planus with total glucosides of paeony capsule combined with corticosteroids, Int. Immunopharmacol. 36 (2016) 106-110.
    [96]
    D. Hebenstreit, G. Wirnsberger, J. Horejshoeck, et al., Signaling mechanisms, interaction partners, and target genes of STAT6, Cytokine Growth Factor Rev. 17 (2006) 173-188.
    [97]
    N. Xiang, X. Li, M. Zhang, et al., Total glucosides of paeony can reduce the hepatotoxicity caused by methotrexate and leflunomide combination treatment of active rheumatoid arthritis, Int. Immunopharmacol. 28 (2015) 802-807.
    [98]
    Y. Zhou, L. Jin, F. Kong, et al., Clinical and immunological consequences of total glucosides of paeony treatment in Sjogren’s syndrome: A randomized controlled pilot trial, Int. Immunopharmacol. 39 (2016) 314-319.
    [99]
    W. Dai, Y. Bao, J. Fan, et al., Levo-corydalmine attenuates microglia activation and neuropathic pain by suppressing ASK1-p38 MAPK/NF-κB signaling pathways in rat spinal cord, Reg. Anesth. Pain Med. 45 (2020) 219-229.
    [100]
    M. Karin, Y. Neriah, Phosphorylation meets ubiquitination: The control of NF-κB activity, Annu. Rev. Immunol. 18 (2000) 621-663.
    [101]
    Y. Wang, H. Zhang, G. Du, et al., Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway, Int. Immunopharmacol. 36 (2016) 67-72.
    [102]
    Y. Chen, K. Chen, J. Ding, et al., Neural substrates of amodal and modality-specific semantic processing within the temporal lobe: A lesion-behavior mapping study of semantic dementia, Cortex. 120 (2019) 78-91.
    [103]
    W. Pang, X. Qi, C. Cao, et al., Inhibitory effects of TGP on KGF-induced hyperproliferation of HaCaT cells via suppression of the p38 MAPK/NF-κB p65 pathway, Mol. Med. Rep. 18 (2018) 2207-2215.
    [104]
    Y. Li, W. Liu, L. Li, et al., Neuroprotective effects of a GIP analogue in the MPTP Parkinson’s disease mouse model, Neuropharmacology. 101 (2016) 255-263.
    [105]
    Y. Chen, Y. Wang, L. Xu, et al., Influence of total glucosides of paeony on PD-1/PD-L1 expression in primary Sjogren’s syndrome, Int. J. Rheum. Dis. 22 (2019).
    [106]
    W. Liu, T. Ruan, X. Ji, et al., The Gli1-Snailaxis contributes toSalmonellaTyphimurium-induced disruption of intercellular junctions of intestinal epithelial cells, Cell. Microbiol. 22 (2020), e13211.
    [107]
    S. Feng, D. Fox, S. Man, Mechanisms of gasdermin family members in inflammasome signaling and cell death, J. Mol. Biol. 430 (2018) 3068-3080.
    [108]
    D. Tian, M. Wang, A. Liu, et al., Antidepressant effect of paeoniflorin is through inhibiting pyroptosis CASP-11/GSDMD pathway, Mol. Neurobiol. 58 (2021) 761-776.
    [109]
    R. Schellino, M. Boido, A. Vercelli, JNK signaling pathway involvement in spinal cord neuron development and death, Cells. 8 (2019), 1576.
    [110]
    L. Wang, F. Wang, M. Gershwin, Human autoimmune diseases: A comprehensive update, J. Intern. Med. 278 (2015) 369-395.
    [111]
    X. Wu, X. Qi, J. Wang, et al., Paeoniflorin attenuates the allergic contact dermatitis response via inhibiting the IFN-γ production and the NF-κB/IκBα signaling pathway in T lymphocytes, Int. Immunopharmacol. 96 (2021), 107687.
    [112]
    S. Darici, H. Alkhaldi, G. Horne, et al., Targeting PI3K/Akt/mTOR in AML: Rationale and clinical evidence, J. Clin. Med. 9 (2020), 2934.
    [113]
    S. Yang, J. Wang, D. Brand, et al., Role of TNF receptor 2 signal in regulatory T cells and its therapeutic implications, Front. Immunol. 9 (2018), 784.
    [114]
    D. McCoy, D. Haig, J. Kotler, Egg donation and gestational surrogacy: Pregnancy is riskier with an unrelated embryo, Early. Hum. Dev. 196 (2024), 106072.
    [115]
    R. Hayman, J. Brockelsby, L. Kenny, et al., Preeclampsia: The endothelium, circulating factor(s) and vascular endothelial growth factor, J. Soc. Gynecol. Investig. 6 (1999) 3-10.
    [116]
    W. Li, Z. Qi, Z. Wei, et al., Paeoniflorin inhibits proliferation and induces apoptosis of human glioma cells via microRNA-16 upregulation and matrix metalloproteinase-9 downregulation, Mol. Med. Rep. 12 (2015) 2735-2740.
    [117]
    L. Chen, H. Qi, D. Jiang, et al., The new use of an ancient remedy: a double-blinded randomized study on the treatment of rheumatoid arthritis, Am. J. Chin. Med. 41 (2013) 263-280.
    [118]
    L. Li, H. Wang, S. Zhao, et al., Paeoniflorin ameliorates lipopolysaccharide-induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats, Phytother. Res. 36 (2022) 2558-2571.
    [119]
    X. Han, S. Hu, Q. Yang, et al., Paeoniflorin ameliorates airway inflammation and immune response in ovalbumin induced asthmatic mice: From oxidative stress to autophagy, Phytomedicine. 96 (2022), 153835.
    [120]
    Q. Shang, H. Xu, X. Lu, et al., A multi-center randomized double-blind placebo-controlled trial of Xiongshao Capsule in preventing restenosis after percutaneous coronary intervention: a subgroup analysis of senile patients, Chin. J. Integr. Med. 17 (2011) 669-674.
    [121]
    M. Haghighi, I. Salehi, P. Erfani, et al., Additional ECT increases BDNF-levels in patients suffering from major depressive disorders compared to patients treated with citalopram only, J. Psychiatr. Res. 47 (2013) 908-915.
    [122]
    K. Iwamoto, M. Bundo, T. Kato, Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis, Hum. Mol. Genet. 14 (2005) 241-253.
    [123]
    X. Wang, L. Su, J. Tan, et al., Albiflorin alleviates DSS-induced ulcerative colitis in mice by reducing inflammation and oxidative stress, Iran. J. Basic Med. Sci. 26 (2023) 48-56.
    [124]
    L. Hyrsova, T. Smutny, F. Trejtnar, et al., Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation, Drug Metab. Rev. 48 (2016) 139-158.
    [125]
    S. Shen, F. He, C. Cheng, et al., Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway, Biomed. Pharmacother. 133 (2021), 110990.
    [126]
    C. Torres-Leon, J. Ventura-Sobrevilla, L. Serna-Cock, et al., Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties, J. Funct. Foods. 37 (2017) 176-189.
    [127]
    J. Zeng, J. Han, Z. Liu, et al., Pentagalloylglucose disrupts the PALB2-BRCA2 interaction and potentiates tumor sensitivity to PARP inhibitor and radiotherapy, Cancer Lett. 546 (2022), 215851.
    [128]
    C. Yan, Z. Zhou, Ellagic acid and pentagalloylglucose are potential inhibitors of prion protein fibrillization, Int. J. Biol. Macromol. 172 (2021) 371-380.
    [129]
    K. Kim, W. Gu, I. Lee, et al., High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway, PLoS One. 7 (2012), e47713.
    [130]
    K. Ono, T. Sawada, Y. Murata, et al., Pentagalloylglucose, an antisecretory component of Paeoniae radix, inhibits gastric H+, K+-ATPase, Clin. Chim. Acta. 290 (2000) 159-167.
    [131]
    G. Gyemant, A. Zajacz, B. Becsi, et al., Evidence for pentagalloyl glucose binding to human salivary α-amylase through aromatic amino acid residues, Biochim. Biophys. Acta. 1794 (2009) 291-296.
    [132]
    Q. Zhang, J. Liu, H. Duan, et al., Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress, J. Adv. Res. 34 (2021) 43-63.
    [133]
    V. Parasaram, X. Wang, P. Krisanarungson, et al., Targeted delivery of pentagalloyl glucose inhibits matrix metalloproteinase activity and preserves elastin in emphysematous lungs, Respir. Res. 22 (2021), 249.
    [134]
    C. Wen, N. Dechsupa, Z. Yu, et al., Pentagalloyl Glucose: A review of anticancer properties, molecular targets, mechanisms of action, pharmacokinetics, and safety profile, Molecules. 28 (2023), 4856.
    [135]
    J. Golledge, S. Thanigaimani, J. Phie, A systematic review and meta-analysis of the effect of pentagalloyl glucose administration on aortic expansion in animal models, Biomedicines. 9 (2021), 1442.
    [136]
    X. Tian, M. Xu, P. Deng, et al., Chinese herbs in treating and preventing abortion: A quantitative analysis of clinical data, Hong Kong Tradit. Chin. Med. J. 6 (2011) 15-18.
    [137]
    W. Xu, L. Xu, B. Deng, et al., The potential impact of Radix Paeoniae Alba in embryonic development of mice, Phytother. Res. 31 (2017) 1376-1383.
    [138]
    B. Yan, X. Chen, Y. Chen, et al., Aqueous extract of Paeoniae Radix Alba (Paeonia lactiflora Pall.) ameliorates DSS-induced colitis in mice by tunning the intestinal physical barrier, immune responses, and microbiota, J. Ethnopharmacol. 294 (2022), 115365.
    [139]
    T. Bae, J. Jang, H. Lee, et al., Paeonia lactiflora root extract suppresses cancer Cachexia by down-regulating muscular NF-κB signalling and muscle-specific E3 ubiquitin ligases in cancer-bearing mice, J. Ethnopharmacol. 246 (2020), 112222.
    [140]
    T. Ou, C. Wu, J. Hsu, et al., Paeonia lactiflora Pall. inhibits bladder cancer growth involving phosphorylation of Chk2 in vitro and in vivo, J. Ethnopharmacol. 135 (2011) 162-172.
    [141]
    X. Zhang, H. Qiu, C. Li, et al., The positive role of traditional Chinese medicine as an adjunctive therapy for cancer, Biosci. Trends. 15 (2021) 283-298.
    [142]
    J. Kuo, C. Wang, T. Lee, et al., Paeoniae Radix Reduces PDGF-stimulated hepatic stellate cell migration, Planta Med. 78 (2012) 341-348.
    [143]
    C. Chen, W. Gong, J. Tian, et al., Radix Paeoniae Alba attenuates Radix Bupleuri-induced hepatotoxicity by modulating gut microbiota to alleviate the inhibition of saikosaponins on glutathione synthetase, J. Pharm. Anal. 13 (2023) 640-659.
    [144]
    X. Wan, Y. Fang, M. Qin, et al., Protective effect of MP-40 mitigates BDL-induced hepatic fibrosis by inhibiting the NLRP3-mediated pyroptosis, Front. Pharmacol. 15 (2024), 1479503.
    [145]
    X. Li, W. Wang, Y. Su, et al., Inhibitory effect of an aqueous extract of Radix Paeoniae Alba on calcium oxalate nephrolithiasis in a rat model, Ren. Fail. 39 (2017) 120-129.
    [146]
    Y. Wang, S. Gao, R. Li, et al., Antidepressant-like effects of the Radix bupleuri and Radix paeoniae alba drug pair, Neurosci. Lett. 633 (2016) 14-20.
    [147]
    G. Jo, S. Kim, M. Kim, et al., Protective effect ofPaeoniae Radix albaroot extract on immune alterations in mice with atopic dermatitis, J. Toxicol. Environ. Health Part A. 81 (2018) 502-511.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (80) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return