Citation: | Xueqin Jiang, Hongyu Zheng, Xinlu Zhang, Minghai Tang, Jing Peng, Xiaoying Cai, Kaiyue Su, Ruijia Zhang, Neng Ye, Lei Lin, Rupei Ma, Caiyun Shen, Wenshuang Wu, Haoyu Ye. Covalent modification of Keap1 Cys489 by NU6300 activates Nrf2 signaling and suppresses NLRP3 inflammasome-mediated pyroptosis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101458 |
[1] |
J. Shi, Y. Zhao, K. Wang, et al., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature 526 (2015) 660-665.
|
[2] |
S.-M. Man, R. Karki, T.-D. Kanneganti, Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases, Immunol. Rev. 277 (2017) 61-75.
|
[3] |
S.-J. Li, A.-B. Liu, Y.-Y. Yu, et al., The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD), Front. Cell Dev. Biol. 12 (2024), 1407738.
|
[4] |
X. Liu, Z. Zhang, J. Ruan, et al., Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores, Nature 535 (2016) 153-158.
|
[5] |
J. Xu, G. Nunez, The NLRP3 inflammasome: Activation and regulation, Trends Biochem. Sci. 48 (2023) 331-344.
|
[6] |
F. Ferrara, A. Pecorelli, G. Valacchi, Redox regulation of nucleotide-binding and oligomerization domain-like receptors inflammasome, Antioxid. Redox Signal. 39 (2023) 744-770.
|
[7] |
C. Tonelli, I.-I.-C. Chio, D.A. Tuveson, Transcriptional regulation by Nrf2, Antioxid. Redox Signal. 29 (2018) 1727-1745.
|
[8] |
E.-H. Kobayashi, T. Suzuki, R. Funayama, et al., Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription, Nat. Commun. 7 (2016), 11624.
|
[9] |
K.-I. Tong, Y. Katoh, H. Kusunoki, et al., Keap1 recruits Neh2 through binding to ETGE and DLG motifs: Characterization of the two-site molecular recognition model, Mol. Cell. Biol. 26 (2006) 2887-2900.
|
[10] |
K.-R. Sekhar, G. Rachakonda, M.-L. Freeman, Cysteine-based regulation of the CUL3 adaptor protein Keap1, Toxicol. Appl. Pharmacol. 244 (2010) 21-26.
|
[11] |
T. Nguyen, P. Nioi, C.-B. Pickett, The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress, J. Biol. Chem. 284 (2009) 13291-13295.
|
[12] |
X. Liu, X. Zhang, Y. Ding, et al., Nuclear factor E2-related factor-2 negatively regulates NLRP3 inflammasome activity by inhibiting reactive oxygen species-induced NLRP3 priming, Antioxid. Redox Signal. 26 (2017) 28-43.
|
[13] |
R. Zhou, A. Tardivel, B. Thorens, et al., Thioredoxin-interacting protein links oxidative stress to inflammasome activation, Nat. Immunol. 11 (2010) 136-140.
|
[14] |
M.-P. Soares, M.-P. Seldon, I.-P. Gregoire, et al., Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation, J. Immunol. 172 (2004) 3553-3563.
|
[15] |
C. Zhao, D.-D. Gillette, X. Li, et al., Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation, J. Biol. Chem. 289 (2014) 17020-17029.
|
[16] |
X. Xia, Q. Zhang, X. Fang, et al., Nuclear factor erythroid 2-related factor 2 ameliorates disordered glucose and lipid metabolism in liver: Involvement of gasdermin D in regulating pyroptosis, Clin. Transl. Med. 15 (2025), e70233.
|
[17] |
G. Montes Diaz, R. Hupperts, J. Fraussen, et al., Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies, Autoimmun. Rev. 17 (2018) 1240-1250.
|
[18] |
H. Sabet, M.-A. Zanaty, A. Arafa, et al., Safety and effectiveness of diroximel fumarate in relapsing forms of multiple sclerosis: A systematic review and meta-analysis, Neurol. Sci. 46 (2025) 3477-3490.
|
[19] |
S. Boesch, E. Indelicato, Approval of omaveloxolone for Friedreich ataxia, Nat. Rev. Neurol. 20 (2024) 313-314.
|
[20] |
G. Clack, C. Moore, L. Ruston, et al., A phase 1 randomized, placebo-controlled study evaluating the safety, tolerability, and pharmacokinetics of enteric-coated stabilized sulforaphane (SFX-01) in male participants, Adv. Ther. 42 (2025) 216-232.
|
[21] |
K.-G. Linghu, T. Zhang, G.-T. Zhang, et al., Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy, J. Pharm. Anal. 14 (2024) 401-415.
|
[22] |
Y. Cheng, L. Cheng, X. Gao, et al., Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury, Theranostics 11 (2021) 861-877.
|
[23] |
Y. Zhang, T. Yan, D. Sun, et al., Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis, Free Radic. Biol. Med. 148 (2020) 33-41.
|
[24] |
E. Anscombe, E. Meschini, R. Mora-Vidal, et al., Identification and characterization of an irreversible inhibitor of CDK2, Chem. Biol. 22 (2015) 1159-1164.
|
[25] |
X. Jiang, X. Zhang, X. Cai, et al., NU6300 covalently reacts with cysteine-191 of gasdermin D to block its cleavage and palmitoylation, Sci. Adv. 10 (2024), eadi9284.
|
[26] |
S. Paik, J.-K. Kim, P. Silwal, et al., An update on the regulatory mechanisms of NLRP3 inflammasome activation, Cell. Mol. Immunol. 18 (2021) 1141-1160.
|
[27] |
A. Luengo, Z. Li, D.-Y. Gui, et al., Increased demand for NAD+ relative to ATP drives aerobic glycolysis, Mol. Cell 81 (2021), 691-707.e6.
|
[28] |
Y. Qiu, Y. Huang, M. Chen, et al., Mitochondrial DNA in NLRP3 inflammasome activation, Int. Immunopharmacol. 108 (2022), 108719.
|
[29] |
Y. Xue, Y. Zhang, L. Chen, et al., Citrulline protects against LPS-induced acute lung injury by inhibiting ROS/NLRP3-dependent pyroptosis and apoptosis via the Nrf2 signaling pathway, Exp. Ther. Med. 24 (2022), 632.
|
[30] |
A. Kobayashi, M.-I. Kang, H. Okawa, et al., Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2, Mol. Cell. Biol. 24 (2004) 7130-7139.
|
[31] |
T. Wolfram, M. Schwarz, M. Reuss, et al., N-acetylcysteine as modulator of the essential trace elements copper and zinc, Antioxidants (Basel) 9 (2020), 1117.
|
[32] |
A. Wree, A. Eguchi, M.-D. McGeough, et al., NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice, Hepatology 59 (2014) 898-910.
|
[33] |
C. Cai, H. Ma, J. Peng, et al., USP25 regulates KEAP1-NRF2 anti-oxidation axis and its inactivation protects acetaminophen-induced liver injury in male mice, Nat. Commun. 14 (2023), 3648.
|
[34] |
A. Reuben, H. Tillman, R.-J. Fontana, et al., Outcomes in adults with acute liver failure between 1998 and 2013: An observational cohort study, Ann. Intern. Med. 164 (2016) 724-732.
|
[35] |
P. Santus, J.-C. Signorello, F. Danzo, et al., Anti-inflammatory and anti-oxidant properties of N-acetylcysteine: A fresh perspective, J. Clin. Med. 13 (2024), 4127.
|
[36] |
D. Zhang, F. Mao, S. Wang, et al., Role of transcription factor Nrf2 in pyroptosis in spinal cord injury by regulating GSDMD, Neurochem. Res. 48 (2023) 172-187.
|
[37] |
A. Vazquez, J. Liu, Y. Zhou, et al., Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited, BMC Syst. Biol. 4 (2010), 58.
|
[38] |
E. KhalKhal, M. Rezaei-Tavirani, M. Rostamii-Nejad, Pharmaceutical advances and proteomics researches, Iran. J. Pharm. Res. 18 (2019) 51-67.
|
[39] |
P. Hennig, M. Garstkiewicz, S. Grossi, et al., The crosstalk between Nrf2 and inflammasomes, Int. J. Mol. Sci. 19 (2018), 562.
|
[40] |
S. Qiu, Z. Liang, Q. Wu, et al., Hepatic lipid accumulation induced by a high-fat diet is regulated by Nrf2 through multiple pathways, FASEB. J. 36 (2022), e22280.
|
[41] |
R. Zhou, A.-S. Yazdi, P. Menu, et al., A role for mitochondria in NLRP3 inflammasome activation, Nature 469 (2011) 221-225.
|
[42] |
M.-J. Kim, J.-H. Jeon, Recent advances in understanding Nrf2 agonism and its potential clinical application to metabolic and inflammatory diseases, Int. J. Mol. Sci. 23 (2022), 2846.
|
[43] |
I.-P. Taufani, J.-H. Situmorang, R. Febriansah, et al., Mitochondrial ROS induced by ML385, an Nrf2 inhibitor aggravates the ferroptosis induced by RSL3 in human lung epithelial BEAS-2B cells, Hum. Exp. Toxicol. 42 (2023), 9603271221149663.
|
[44] |
M. Dodson, R. Castro-Portuguez, D.-D. Zhang, NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis, Redox Biol. 23 (2019), 101107.
|
[45] |
K.-M. Holmstrom, R.-V. Kostov, A.-T. Dinkova-Kostova, The multifaceted role of Nrf2 in mitochondrial function, Curr. Opin. Toxicol. 1 (2016) 80-91.
|
[46] |
M. McMahon, K. Itoh, M. Yamamoto, et al., Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression, J. Biol. Chem. 278 (2003) 21592-21600.
|
[47] |
T. Suzuki, M. Yamamoto, Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress, J. Biol. Chem. 292 (2017) 16817-16824.
|
[48] |
S. Dayalan Naidu, A.-T. Dinkova-Kostova, KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease, Open Biol. 10 (2020), 200105.
|
[49] |
D.-A. Abed, M. Goldstein, H. Albanyan, et al., Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents, Acta Pharm. Sin. B 5 (2015) 285-299.
|