Citation: | Sheng-Quan Chen, Shu-Jing Zhang, Pei-Jun Liu, Yi Wu, Si-Xuan Li, Jian-Cang Ma, Wu-Jun Li, Shao-Ying Lu, Ji-Chang Wang. Lactate metabolism and lactylation: Therapeutic and pre-clinical implications in neovascularization in peripheral artery disease[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101457 |
[1] |
M.D. Gerhard-Herman, H.L. Gornik, C. Barrett, et al., 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, Circulation. 135 (2017) e686-e725.
|
[2] |
C. Adou, J. Magne, N. Gazere, et al., Global epidemiology of lower extremity artery disease in the 21st century (2000-21): a systematic review and meta-analysis, Eur. J. Prev. Cardiol. 31 (2024) 803-811.
|
[3] |
S. Duff, M.S. Mafilios, P. Bhounsule, et al., The burden of critical limb ischemia: a review of recent literature, Vasc. Health Risk Manag. 15 (2019) 187-208.
|
[4] |
M.H. Criqui, V. Aboyans, Epidemiology of peripheral artery disease, Circ. Res. 116 (2015) 1509-1526.
|
[5] |
A. Elbadawi, I.Y. Elgendy, D. Rai, et al., Impact of Hospital Procedural Volume on Outcomes After Endovascular Revascularization for Critical Limb Ischemia, JACC. Cardiovasc. Interv. 14 (2021) 1926-1936.
|
[6] |
T.F. O'Donnell, Jr., J.K. Raines, R.C. Darling, Relationship of muscle surface pH to noninvasive hemodynamic studies in arterial occlusive diseases, Arch. Surg. 114 (1979) 600-604.
|
[7] |
R.B. Khattri, K. Kim, T. Thome, et al., Unique Metabolomic Profile of Skeletal Muscle in Chronic Limb Threatening Ischemia, J. Clin. Med. 2021. https://doi.org/10.3390/jcm10030548.
|
[8] |
L. Li, K. Chen, T. Wang, et al., Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade, Nat. Metab. 2 (2020) 882-892.
|
[9] |
R.A. Irizarry-Caro, M.M. McDaniel, G.R. Overcast, et al., TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation, Proc. Natl. Acad. Sci. U S A. 117 (2020) 30628-30638.
|
[10] |
Z. Yang, C. Yan, J. Ma, et al., Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma, Nat. Metab. 5 (2023) 61-79.
|
[11] |
X. Wang, W. Fan, N. Li, et al., YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2, Genome Biol. 24 (2023), 87.
|
[12] |
M. Certo, A. Llibre, W. Lee, et al., Understanding lactate sensing and signalling, Trends Endocrinol. Metab. 33 (2022) 722-735.
|
[13] |
G.A. Brooks, The Science and Translation of Lactate Shuttle Theory, Cell Metab. 27 (2018) 757-785.
|
[14] |
H.C. Yoo, S.J. Park, M. Nam, et al., A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells, Cell Metab. 31 (2020) 267-283.
|
[15] |
J.D. Rabinowitz, S. Enerback, Lactate: the ugly duckling of energy metabolism, Nat. Metab. 2 (2020) 566-571.
|
[16] |
F. Luo, Z. Zou, X. Liu, et al., Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis, Carcinogenesis. 38 (2017) 615-626.
|
[17] |
K. Ahmed, S. Tunaru, C. Tang, et al., An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81, Cell Metab. 11 (2010) 311-319.
|
[18] |
T.P. Brown, V. Ganapathy, Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon, Pharmacol Ther. 206 (2020), 107451.
|
[19] |
M. Harun-Or-Rashid, D.M. Inman, Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma, J. Neuroinflammation. 15 (2018), 313.
|
[20] |
B. Bartoloni, M. Mannelli, T. Gamberi, et al., The Multiple Roles of Lactate in the Skeletal Muscle, Cells. 13 (2024), 1177.
|
[21] |
D. Zhang, Z. Tang, H. Huang, et al., Metabolic regulation of gene expression by histone lactylation, Nature. 574 (2019) 575-580.
|
[22] |
D.O. Gaffney, E.Q. Jennings, C.C. Anderson, et al., Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes, Cell Chem. Biol. 27 (2020) 206-213.
|
[23] |
N. Rabbani, M. Xue, P.J. Thornalley, Activity, regulation, copy number and function in the glyoxalase system, Biochem. Soc. Trans. 42 (2014) 419-424.
|
[24] |
J. Chen, D. Zhao, Y. Wang, et al., Lactylated Apolipoprotein C-II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis, Adv. Sci. (Weinh). 2024. https://doi.org/10.1002/advs.202406333.
|
[25] |
Y. Hu, Z. He, Z. Li, et al., Lactylation: the novel histone modification influence on gene expression, protein function, and disease, Clin. Epigenetics. 16 (2024), 72.
|
[26] |
S. Manickavinayaham, R. Velez-Cruz, A.K. Biswas, et al., E2F1 acetylation directs p300/CBP-mediated histone acetylation at DNA double-strand breaks to facilitate repair, Nat. Commun. 10 (2019), 4951.
|
[27] |
Z. Li, T. Gong, Q. Wu, et al., Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans, Sci Signal. 16 (2023), eadg1849.
|
[28] |
Z. Niu, C. Chen, S. Wang, et al., HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription, Nat. Commun. 15 (2024), 3561.
|
[29] |
B. Xie, M. Zhang, J. Li, et al., KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis, Proc. Natl. Acad. Sci. U S A. 121 (2024), e2314128121.
|
[30] |
Y. Mao, J. Zhang, Q. Zhou, et al., Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation, Cell Res. 34 (2024) 13-30.
|
[31] |
Z. Fan, Z. Liu, N. Zhang, et al., Identification of SIRT3 as an eraser of H4K16la, iScience. 26 (2023), 107757.
|
[32] |
X. Hu, X. Huang, Y. Yang, et al., Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader, Nucleic Acids Res. 52 (2024) 5529-5548.
|
[33] |
N. Narula, A.J. Dannenberg, J.W. Olin, et al., Pathology of Peripheral Artery Disease in Patients With Critical Limb Ischemia, J. Am. Coll. Cardiol. 72 (2018) 2152-2163.
|
[34] |
M.M. McDermott, L. Ferrucci, M. Gonzalez-Freire, et al., Skeletal Muscle Pathology in Peripheral Artery Disease: A Brief Review, Arterioscler. Thromb. Vasc. Biol. 40 (2020) 2577-2585.
|
[35] |
Y. Matsubara, T. Matsumoto, Y. Aoyagi, et al., Sarcopenia is a prognostic factor for overall survival in patients with critical limb ischemia, J. Vasc. Surg. 61 (2015) 945-950.
|
[36] |
G. Lundberg, E. Wahlberg, J. Swedenborg, et al., Continuous assessment of local metabolism by microdialysis in critical limb ischaemia, Eur. J. Vasc. Endovasc. Surg. 19 (2000) 605-613.
|
[37] |
C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, et al., Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia, J. Wound Care. 19 (2010) 202-206.
|
[38] |
H. Hagberg, Intracellular pH during ischemia in skeletal muscle: relationship to membrane potential, extracellular pH, tissue lactic acid and ATP, Pflugers Arch. 404 (1985) 342-347.
|
[39] |
M. Tozzi, E. Muscianisi, G. Piffaretti, et al., Microdialysis assessment of peripheral metabolism in critical limb ischemia after endovascular revascularization, Ann. Surg. Innov. Res. 2009. https://doi.org/10.1186/1750-1164-3-17.
|
[40] |
L. Liasis, G. Malietzis, G. Galyfos, et al., The emerging role of microdialysis in diabetic patients undergoing amputation for limb ischemia, Wound Repair Regen. 24 (2016) 1073-1080.
|
[41] |
M. Heil, W. Schaper, Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis), Circ. Res. 95 (2004) 449-458.
|
[42] |
C. Urbich, S. Dimmeler, Endothelial progenitor cells: characterization and role in vascular biology, Circ. Res. 95 (2004) 343-353.
|
[43] |
W. Chen, P. Xia, H. Wang, et al., The endothelial tip-stalk cell selection and shuffling during angiogenesis, J. Cell Commun. Signal. 13 (2019) 291-301.
|
[44] |
P. Carmeliet, R.K. Jain, Molecular mechanisms and clinical applications of angiogenesis, Nature. 473 (2011) 298-307.
|
[45] |
J.P. Cooke, S. Meng, Vascular Regeneration in Peripheral Artery Disease, Arterioscler. Thromb. Vasc. Biol. 40 (2020) 1627-1634.
|
[46] |
A. Helisch, W. Schaper, Arteriogenesis: the development and growth of collateral arteries, Microcirculation. 10 (2003) 83-97.
|
[47] |
M.A. Ziegler, M.R. Distasi, R.G. Bills, et al., Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion, Microcirculation. 17 (2010) 3-20.
|
[48] |
N. Resnick, S. Einav, L. Chen-Konak, et al., Hemodynamic forces as a stimulus for arteriogenesis, Endothelium. 10 (2003) 197-206.
|
[49] |
B. Park, A. Hoffman, Y. Yang, et al., Endothelial nitric oxide synthase affects both early and late collateral arterial adaptation and blood flow recovery after induction of hind limb ischemia in mice, J. Vasc. Surg. 51 (2010) 165-173.
|
[50] |
E. Vagesjo, K. Parv, D. Ahl, et al., Perivascular Macrophages Regulate Blood Flow Following Tissue Damage, Circ. Res. 128 (2021) 1694-1707.
|
[51] |
N. van Royen, I. Hoefer, I. Buschmann, et al., Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation, FASEB J. 16 (2002) 432-434.
|
[52] |
S. Belmadani, K. Matrougui, C. Kolz, et al., Amplification of coronary arteriogenic capacity of multipotent stromal cells by epidermal growth factor, Arterioscler. Thromb. Vasc. Biol, 29 (2009) 802-808.
|
[53] |
E. Deindl, I.E. Hoefer, B. Fernandez, et al., Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis, Circ. Res. 92 (2003) 561-568.
|
[54] |
I.E. Hoefer, N. van Royen, J.E. Rectenwald, et al., Direct evidence for tumor necrosis factor-alpha signaling in arteriogenesis, Circulation, 105 (2002) 1639-1641.
|
[55] |
D. Scholz, W. Ito, I. Fleming, et al., Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis), Virchows Arch. 436 (2000) 257-270.
|
[56] |
J.L. Ungerleider, T.D. Johnson, M.J. Hernandez, et al., Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model, JACC Basic Transl. Sci. 1 (2016) 32-44.
|
[57] |
T. Asahara, T. Takahashi, H. Masuda, et al., VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells, EMBO J. 18 (1999) 3964-3972.
|
[58] |
D.J. Ceradini, A.R. Kulkarni, M.J. Callaghan, et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nat. Med. 10 (2004) 858-864.
|
[59] |
J.C. Kovacic, D.W. Muller, R.M. Graham, Actions and therapeutic potential of G-CSF and GM-CSF in cardiovascular disease, J. Mol. Cell Cardiol. 42 (2007) 19-33.
|
[60] |
T. Takahashi, C. Kalka, H. Masuda, et al., Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization, Nat. Med. 5 (1999) 434-438.
|
[61] |
D. Ribatti, A. Vacca, B. Nico, et al., Postnatal vasculogenesis, Mech. Dev. 100 (2001) 157-163.
|
[62] |
L. Hu, S.C. Dai, X. Luan, et al., Dysfunction and Therapeutic Potential of Endothelial Progenitor Cells in Diabetes Mellitus, J. Clin. Med. Res. 10 (2018) 752-757.
|
[63] |
C. Jung, A. Rafnsson, A. Shemyakin, et al., Different subpopulations of endothelial progenitor cells and circulating apoptotic progenitor cells in patients with vascular disease and diabetes, Int. J. Cardiol. 143 (2010) 368-372.
|
[64] |
K. Lin, P.P. Hsu, B.P. Chen, et al., Molecular mechanism of endothelial growth arrest by laminar shear stress, Proc. Natl. Acad. Sci. U S A. 97 (2000) 9385-9389.
|
[65] |
J. Kim, Y.H. Kim, J. Kim, et al., YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation, J. Clin. Invest. 127 (2017) 3441-3461.
|
[66] |
M.J. Goumans, P. Ten Dijke, TGF-β Signaling in Control of Cardiovascular Function, Cold Spring Harb. Perspect. Biol. 2018. https://doi.org/10.1101/cshperspect.a022210.
|
[67] |
J.J. Olsen, S. Pohl, A. Deshmukh, et al., The Role of Wnt Signalling in Angiogenesis, Clin. Biochem. Rev. 38 (2017) 131-142.
|
[68] |
M.E. Pitulescu, I. Schmidt, B.D. Giaimo, et al., Dll4 and Notch signalling couples sprouting angiogenesis and artery formation, Nat. Cell Biol. 19 (2017) 915-927.
|
[69] |
K. De Bock, M. Georgiadou, S. Schoors, et al., Role of PFKFB3-driven glycolysis in vessel sprouting, Cell, 154 (2013) 651-663.
|
[70] |
O.A. Stone, M. El-Brolosy, K. Wilhelm, et al., Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells, Nat. Commun. 9 (2018), 4077.
|
[71] |
X. Li, A. Kumar, P. Carmeliet, Metabolic Pathways Fueling the Endothelial Cell Drive, Annu. Rev. Physiol. 81 (2019) 483-503.
|
[72] |
M. Jabs, A.J. Rose, L.H. Lehmann, et al., Inhibition of Endothelial Notch Signaling Impairs Fatty Acid Transport and Leads to Metabolic and Vascular Remodeling of the Adult Heart, Circulation. 137 (2018) 2592-2608.
|
[73] |
Z. Cai, G. Satyanarayana, P. Song, et al., Regulation of Ptbp1-controlled alternative splicing of pyruvate kinase muscle by Liver kinase b1 governs vascular smooth muscle cell plasticity in vivo, Cardiovasc. Res. 2024. https://doi.org/10.1093/cvr/cvae187.
|
[74] |
J.V. Ashraf, A. Al Haj Zen, Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis, Int. J. Mol. Sci. 22 (2021), 10585.
|
[75] |
M.R. Bennett, S. Sinha, G.K. Owens, Vascular Smooth Muscle Cells in Atherosclerosis, Circ. Res. 118 (2016) 692-702.
|
[76] |
M. Liu, D. Gomez, Smooth Muscle Cell Phenotypic Diversity, Arterioscler. Thromb. Vasc. Biol. 39 (2019) 1715-1723.
|
[77] |
M. Garcia-Miguel, J.A. Riquelme, I. Norambuena-Soto, et al., Autophagy mediates tumor necrosis factor-α-induced phenotype switching in vascular smooth muscle A7r5 cell line, PLoS One, 13 (2018), e0197210.
|
[78] |
B. Yu, M.M. Wong, C.M. Potter, et al., Vascular Stem/Progenitor Cell Migration Induced by Smooth Muscle Cell-Derived Chemokine (C-C Motif) Ligand 2 and Chemokine (C-X-C motif) Ligand 1 Contributes to Neointima Formation, Stem Cells, 34 (2016) 2368-2380.
|
[79] |
Y. Okada, S. Katsuda, Y. Matsui, et al., Collagen synthesis by cultured arterial smooth muscle cells during spontaneous phenotypic modulation, Acta. Pathol. Jpn. 40 (1990) 157-164.
|
[80] |
R.N. Weinreb, K. Kashiwagi, F. Kashiwagi, et al., Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells, Invest. Ophthalmol. Vis. Sci. 38 (1997) 2772-2780.
|
[81] |
H.J. Sun, X.S. Ren, X.Q. Xiong, et al., NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension, Cell Death Dis. 8 (2017), e3074.
|
[82] |
C.P. Mack, J.S. Hinson, Regulation of smooth muscle differentiation by the myocardin family of serum response factor co-factors, J. Thromb. Haemost. 3 (2005) 1976-1984.
|
[83] |
J.C. Wang, G.Y. Li, B. Wang, et al., Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation, J. Exp. Clin. Cancer Res. 38 (2019), 235.
|
[84] |
F. Dandre, G.K. Owens, Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes, Am. J. Physiol. Heart Circ. Physiol. 286 (2004) H2042-2051.
|
[85] |
C. Kupatt, R. Hinkel, A. Pfosser, et al., Cotransfection of vascular endothelial growth factor-A and platelet-derived growth factor-B via recombinant adeno-associated virus resolves chronic ischemic malperfusion role of vessel maturation, J. Am. Coll. Cardiol. 56 (2010) 414-422.
|
[86] |
R. Cao, E. Brakenhielm, R. Pawliuk, et al., Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2, Nat. Med. 9 (2003) 604-613.
|
[87] |
X. Dai, J.E. Faber, Endothelial nitric oxide synthase deficiency causes collateral vessel rarefaction and impairs activation of a cell cycle gene network during arteriogenesis, Circ. Res. 106 (2010) 1870-1881.
|
[88] |
Y. Ma, L. Jia, Y. Wang, et al., Heme Oxygenase-1 in Macrophages Impairs the Perfusion Recovery After Hindlimb Ischemia by Suppressing Autolysosome-Dependent Degradation of NLRP3, Arterioscler. Thromb. Vasc. Biol. 41 (2021) 1710-1723.
|
[89] |
A.C. Bruce, M.R. Kelly-Goss, J.L. Heuslein, et al., Monocytes are recruited from venules during arteriogenesis in the murine spinotrapezius ligation model, Arterioscler. Thromb. Vasc. Biol. 34 (2014) 2012-2022.
|
[90] |
A. la Sala, L. Pontecorvo, A. Agresta, et al., Regulation of collateral blood vessel development by the innate and adaptive immune system, Trends Mol. Med. 18 (2012) 494-501.
|
[91] |
A. Hamm, L. Veschini, Y. Takeda, et al., PHD2 regulates arteriogenic macrophages through TIE2 signalling, EMBO Mol. Med. 5 (2013) 843-857.
|
[92] |
K.L. Spiller, R.R. Anfang, K.J. Spiller, et al., The role of macrophage phenotype in vascularization of tissue engineering scaffolds, Biomaterials. 35 (2014) 4477-4488.
|
[93] |
F.O. Martinez, S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000Prime Rep. 6 (2014), 13.
|
[94] |
A. Ntokou, J.M. Dave, A.C. Kauffman, et al., Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension, JCI. Insight. 6 (2021), e139067.
|
[95] |
Y. Ji, E.M. Lisabeth, R.R. Neubig, Transforming Growth Factor β1 Increases Expression of Contractile Genes in Human Pulmonary Arterial Smooth Muscle Cells by Potentiating Sphingosine-1-Phosphate Signaling, Mol. Pharmacol. 100 (2021) 53-60.
|
[96] |
C.B. Anders, T.M.W. Lawton, H.L. Smith, et al., Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes, J Leukoc Biol. 111 (2022) 667-693.
|
[97] |
R.C. Sainson, D.A. Johnston, H.C. Chu, et al., TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype, Blood. 111 (2008) 4997-5007.
|
[98] |
O.H. Lee, S.K. Bae, M.H. Bae, et al., Identification of angiogenic properties of insulin-like growth factor II in in vitro angiogenesis models, Br. J. Cancer. 82 (2000) 385-391.
|
[99] |
V.B. Mehta, G.E. Besner, HB-EGF promotes angiogenesis in endothelial cells via PI3-kinase and MAPK signaling pathways, Growth Factors. 25 (2007) 253-263.
|
[100] |
Y. Carmi, E. Voronov, S. Dotan, et al., The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis, J Immunol. 183 (2009) 4705-4714.
|
[101] |
N. Jetten, S. Verbruggen, M.J. Gijbels, et al., Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo, Angiogenesis. 17 (2014) 109-118.
|
[102] |
Y. Wang, Y. Fan, H. Liu, Macrophage Polarization in Response to Biomaterials for Vascularization, Ann. Biomed. Eng. 49 (2021) 1992-2005.
|
[103] |
Q. Wang, H. Ni, L. Lan, et al., Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages, Cell Res. 20 (2010) 701-712.
|
[104] |
S. Beckert, F. Farrahi, R.S. Aslam, et al., Lactate stimulates endothelial cell migration, Wound Repair Regen. 14 (2006) 321-324.
|
[105] |
V.B. Kumar, R.I. Viji, M.S. Kiran, et al., Endothelial cell response to lactate: implication of PAR modification of VEGF, J. Cell Physiol. 211 (2007) 477-485.
|
[106] |
C.J. De Saedeleer, T. Copetti, P.E. Porporato, et al., Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells, PLoS One, 7 (2012), e46571.
|
[107] |
D.C. Lee, H.A. Sohn, Z.Y. Park, et al., A lactate-induced response to hypoxia, Cell, 161 (2015) 595-609.
|
[108] |
F. Vegran, R. Boidot, C. Michiels, et al., Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis, Cancer Res. 71 (2011) 2550-2560.
|
[109] |
G.X. Ruan, A. Kazlauskas, Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis, J. Biol. Chem. 288 (2013) 21161-21172.
|
[110] |
M. Fan, K. Yang, X. Wang, et al., LACTATE IMPAIRS VASCULAR PERMEABILITY BY INHIBITING HSPA12B EXPRESSION VIA GPR81-DEPENDENT SIGNALING IN SEPSIS, Shock. 58 (2022) 304-312.
|
[111] |
M. Fan, K. Yang, X. Wang, et al., Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction, Sci. Adv. 9 (2023), eadc9465.
|
[112] |
Y. Wang, L. Chen, M. Zhang, et al., Exercise-induced endothelial Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway, Atherosclerosis, 375 (2023) 45-58.
|
[113] |
M. Dong, Y. Zhang, M. Chen, et al., ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT, Acta. Pharm. Sin. B. 14 (2024) 3027-3048.
|
[114] |
T.M. Butler, M.J. Siegman, High-energy phosphate metabolism in vascular smooth muscle, Annu. Rev. Physiol. 47 (1985) 629-643.
|
[115] |
J. Shi, Y. Yang, A. Cheng, et al., Metabolism of vascular smooth muscle cells in vascular diseases, Am. J. Physiol. Heart Circ. Physiol. 319 (2020) H613-H631.
|
[116] |
J.H. Kim, K.H. Bae, J.K. Byun, et al., Lactate dehydrogenase-A is indispensable for vascular smooth muscle cell proliferation and migration, Biochem. Biophys. Res. Commun. 492 (2017) 41-47.
|
[117] |
J. Niu, C. Wu, M. Zhang, et al., κ-opioid receptor stimulation alleviates rat vascular smooth muscle cell calcification via PFKFB3-lactate signaling, Aging (Albany NY). 13 (2021) 14355-14371.
|
[118] |
X. Zhao, F. Tan, X. Cao, et al., PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis, Acta. Biochim. Biophys. Sin. (Shanghai), 52 (2020) 9-17.
|
[119] |
L. Yang, L. Gao, T. Nickel, et al., Lactate Promotes Synthetic Phenotype in Vascular Smooth Muscle Cells, Circ. Res. 121 (2017) 1251-1262.
|
[120] |
J. Yang, G.R. Gourley, A. Gilbertsen, et al., High Glucose Levels Promote Switch to Synthetic Vascular Smooth Muscle Cells via Lactate/GPR81, Cells. 13 (2024), 236.
|
[121] |
Y. Hu, C. Zhang, Y. Fan, et al., Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression, Korean J. Physiol. Pharmacol. 26 (2022) 519-530.
|
[122] |
X. Li, M. Chen, X. Chen, et al., TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation, Eur. Heart J. 45 (2024) 4219-4235.
|
[123] |
X. Xu, D.D. Zhang, P. Kong, et al., Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia, Cell Rep. 42 (2023), 112869.
|
[124] |
W. Ma, K. Jia, H. Cheng, et al., Orphan Nuclear Receptor NR4A3 Promotes Vascular Calcification via Histone Lactylation, Circ Res. 134 (2024) 1427-1447.
|
[125] |
O.R. Colegio, N.Q. Chu, A.L. Szabo, et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, Nature. 513 (2014) 559-563.
|
[126] |
K. Yang, J. Xu, M. Fan, et al., Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-κB Activation via GPR81-Mediated Signaling, Front. Immunol. 11 (2020), 587913.
|
[127] |
N. Liu, J. Luo, D. Kuang, et al., Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression, J. Clin. Invest. 129 (2019) 631-646.
|
[128] |
J. Zhang, J. Muri, G. Fitzgerald, et al., Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization, Cell Metab. 31 (2020) 1136-1153.
|
[129] |
X. Chu, C. Di, P. Chang, et al., Lactylated Histone H3K18 as a Potential Biomarker for the Diagnosis and Predicting the Severity of Septic Shock, Front. Immunol. 12 (2021), 786666.
|
[130] |
R.Y. Pan, L. He, J. Zhang, et al., Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease, Cell Metab. 34 (2022) 634-648.
|
[131] |
T. Desgeorges, E. Galle, J. Zhang, et al., Histone lactylation in macrophages is predictive for gene expression changes during ischemia induced-muscle regeneration, Mol. Metab. 83 (2024), 101923.
|
[132] |
L. Chen, M. Zhang, X. Yang, et al., Methyl-CpG-binding 2 K271 lactylation-mediated M2 macrophage polarization inhibits atherosclerosis, Theranostics, 14 (2024) 4256-4277.
|
[133] |
B. Cui, Y. Luo, P. Tian, et al., Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells, J Clin Invest. 129 (2019) 1030-1046.
|
[134] |
H. Chen, Y. Li, H. Li, et al., NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance, Nature. 631 (2024) 663-669.
|
[135] |
J. Wei, X.Y. Chen, Z.J. Wang, et al., Galloflavin mitigates acute kidney injury by suppressing LDHA-dependent macrophage glycolysis, Int. Immunopharmacol. 150 (2025), 114265.
|
[136] |
B. Alobaidi, S.M. Hashimi, A.I. Alqosaibi, et al., Targeting the monocarboxylate transporter MCT2 and lactate dehydrogenase A LDHA in cancer cells with FX-11 and AR-C155858 inhibitors, Eur. Rev. Med. Pharmacol. Sci. 27 (2023) 6605-6617.
|
[137] |
B. Pajak, E. Siwiak, M. Soltyka, et al., 2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents, Int. J. Mol. Sci. 21 (2019), 234.
|
[138] |
T. Tataranni, C. Piccoli, Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications, Oxid. Med. Cell. Longev. 2019. https://doi.org/10.1155/2019/8201079.
|
[139] |
A. Silva, B. Antunes, A. Batista, et al., In Vivo Anticancer Activity of AZD3965: A Systematic Review, Molecules. 2021. https://doi.org/10.3390/molecules27010181.
|
[140] |
F. Zhang, T. Gu, J. Li, et al., Emodin regulated lactate metabolism by inhibiting MCT1 to delay non-small cell lung cancer progression, Hum. Cell. 38 (2024), 11.
|
[141] |
M.C. Choi, S.K. Kim, Y.J. Choi, et al., Role of monocarboxylate transporter I/lactate dehydrogenase B-mediated lactate recycling in tamoxifen-resistant breast cancer cells, Arch. Pharm. Res. 46 (2023) 907-923.
|
[142] |
N. Zhang, Y. Zhang, J. Xu, et al., α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure, Cell Res. 33 (2023) 679-698.
|
[143] |
D. Benjamin, D. Robay, S.K. Hindupur, et al., Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells, Cell Rep. 25 (2018) 3047-3058.
|
[144] |
B. Nancolas, L. Guo, R. Zhou, et al., The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters, Biochem J. 473 (2016) 929-936.
|
[145] |
Z. Shen, L. Jiang, Y. Yuan, et al., Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury, CNS Neurosci Ther. 21 (2015) 271-279.
|
[146] |
J. Yuan, M. Yang, Z. Wu, et al., The Lactate-Primed KAT8-PCK2 Axis Exacerbates Hepatic Ferroptosis During Ischemia/Reperfusion Injury by Reprogramming OXSM-Dependent Mitochondrial Fatty Acid Synthesis, Adv. Sci. (Weinh). 12 (2025), e2414141.
|
[147] |
M. Sun, Y. Zhang, R. Mao, et al., MeCP2 Lactylation Protects against Ischemic Brain Injury by Transcriptionally Regulating Neuronal Apoptosis, Adv. Sci. (Weinh). 12(2025), e2415309.
|
[148] |
L. Wang, D. Li, F. Yao, et al., Serpina3k lactylation protects from cardiac ischemia reperfusion injury, Nat. Commun. 16 (2025), 1012.
|
[149] |
H. She, Y. Hu, G. Zhao, et al., Dexmedetomidine Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting MDH2 Lactylation via Regulating Metabolic Reprogramming, Adv. Sci. (Weinh). 11 (2024), e2409499.
|
[150] |
I. Elia, M. Rossi, S. Stegen, et al., Breast cancer cells rely on environmental pyruvate to shape the metastatic niche, Nature. 568 (2019) 117-121.
|