Citation: | Haole Liu, Kangli Tian, Weilai Fu, Longlong Qin, Ruipu Tian, Panpan Wei, Jiawei Zou, Naqash Alam, Fizza Malik, Kexin Li, Meng Li, Boyu Xu, Jia Guo, Congcong Xia, Rong Wang, Weirong Wang, Liang Bai, Enqi Liu, Baohui Xu, Yankui Li, Sihai Zhao. Tranilast ameliorates experimental abdominal aortic aneurysm by inhibiting the NLRP3 inflammasome pathway[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2025.101453 |
[1] |
C.L. Marcaccio, M.L. Schermerhorn, Epidemiology of abdominal aortic aneurysms, Semin Vasc Surg 34 (2021) 29-37 https://doi.org/10.1053/j.semvascsurg.2021.02.004.
|
[2] |
K.D. Dansey, R.R.B. Varkevisser, N.J. Swerdlow, et al., Epidemiology of endovascular and open repair for abdominal aortic aneurysms in the United States from 2004 to 2015 and implications for screening, J Vasc Surg 74 (2021) 414-424 https://doi.org/10.1016/j.jvs.2021.01.044.
|
[3] |
G. Galyfos, F. Sigala, K. Mpananis, et al., Small abdominal aortic aneurysms: Has anything changed so far?, Trends Cardiovasc Med 30 (2020) 500-504 https://doi.org/10.1016/j.tcm.2019.11.006.
|
[4] |
B.W. Ullery, R.L. Hallett, D. Fleischmann, Epidemiology and contemporary management of abdominal aortic aneurysms, Abdom Radiol (NY) 43 (2018) 1032-1043 https://doi.org/10.1007/s00261-017-1450-7.
|
[5] |
K.C. Kent, Clinical practice. Abdominal aortic aneurysms, N Engl J Med 371 (2014) 2101-2108 https://doi.org/10.1056/NEJMcp1401430.
|
[6] |
K. Tian, C. Xia, H. Liu, et al., Temporal and quantitative analysis of aortic immunopathologies in elastase-induced mouse abdominal aortic aneurysms, J Immunol Res 2021 (2021) 6297332 https://doi.org/10.1155/2021/6297332.
|
[7] |
L.E. Bruijn, C.G. van Stroe Gomez, J.A. Curci, et al., A histopathological classification scheme for abdominal aortic aneurysm disease, JVS Vasc Sci 2 (2021) 260-273 https://doi.org/10.1016/j.jvssci.2021.09.001.
|
[8] |
H. Tanaka, B. Xu, H. Xuan, et al., Recombinant interleukin-19 suppresses the formation and progression of experimental abdominal aortic aneurysms, J Am Heart Assoc 10 (2021) e022207 https://doi.org/10.1161/JAHA.121.022207.
|
[9] |
J. Golledge, J.V. Moxon, T.P. Singh, et al., Lack of an effective drug therapy for abdominal aortic aneurysm, J Intern Med 288 (2020) 6-22 https://doi.org/10.1111/joim.12958.
|
[10] |
J. Phie, S. Thanigaimani, J. Golledge, Systematic review and meta-analysis of interventions to slow progression of abdominal aortic aneurysm in mouse models, Arterioscler Thromb Vasc Biol 41 (2021) 1504-1517 https://doi.org/10.1161/atvbaha.121.315942.
|
[11] |
S. Darakhshan, A.B. Pour, Tranilast: a review of its therapeutic applications, Pharmacol Res 91 (2015) 15-28 https://doi.org/10.1016/j.phrs.2014.10.009.
|
[12] |
K. Zhang, J. Yue, L. Yin, et al., Comprehensive bioinformatics analysis revealed potential key genes and pathways underlying abdominal aortic aneurysm, Comput Struct Biotechnol J 21 (2023) 5423-5433 https://doi.org/10.1016/j.csbj.2023.10.052.
|
[13] |
J. Shi, J. Guo, Z. Li, et al., Importance of NLRP3 inflammasome in abdominal aortic aneurysms, J Atheroscler Thromb 28 (2021) 454-466 https://doi.org/10.5551/jat.RV17048.
|
[14] |
L.-W. Brandon, NLRP3 inflammasome inhibition protects against intracranial aneurysm rupture and alters phenotype of infiltrating macrophages, J Neurol Surg B Skull Base 85 (2024) S1-S398 https://doi.org/10.1055/s-0044-1780196.
|
[15] |
H. Suzawa, S. Kikuchi, K. Ichikawa, et al., Inhibitory action of tranilast, an anti-allergic drug, on the release of cytokines and PGE2 from human monocytes-macrophages, Jpn J Pharmacol 60 (1992) 85-90 https://doi.org/10.1254/jjp.60.85.
|
[16] |
Y. Huang, H. Jiang, Y. Chen, et al., Tranilast directly targets NLRP3 to treat inflammasome-driven diseases, EMBO Mol Med 10 (2018) https://doi.org/10.15252/emmm.201708689.
|
[17] |
C.S. Zhong, B. Zeng, J.H. Qiu, et al., Gout-associated monosodium urate crystal-induced necrosis is independent of NLRP3 activity but can be suppressed by combined inhibitors for multiple signaling pathways, Acta Pharmacol Sin 43 (2022) 1324-1336 https://doi.org/10.1038/s41401-021-00749-7.
|
[18] |
H. Liu, P. Wei, W. Fu, et al., Dapagliflozin ameliorates the formation and progression of experimental abdominal aortic aneurysms by reducing aortic inflammation in mice, Oxid Med Cell Longev 2022 (2022) 8502059 https://doi.org/10.1155/2022/8502059.
|
[19] |
H. Liu, K. Tian, C. Xia, et al., Kunming mouse strain is less susceptible to elastase-induced abdominal aortic aneurysms, Animal Model Exp Med 5 (2022) 72-80 https://doi.org/10.1002/ame2.12197.
|
[20] |
K. Li, M. Li, P. Wei, et al., Cysteine leukotriene receptor antagonist-montelukast-treatment improves experimental abdominal aortic aneurysms in mice, Cardiovasc Ther 2024 (2024) 8826287 https://doi.org/10.1155/2024/8826287.
|
[21] |
N. Shiota, P.T. Kovanen, K.K. Eklund, et al., The anti-allergic compound tranilast attenuates inflammation and inhibits bone destruction in collagen-induced arthritis in mice, Br J Pharmacol 159 (2010) 626-635 https://doi.org/10.1111/j.1476-5381.2009.00561.x.
|
[22] |
T. Ikezoe, T. Shoji, J. Guo, et al., No effect of hypercholesterolemia on elastase-induced experimental abdominal aortic aneurysm progression, Biomolecules 11 (2021) https://doi.org/10.3390/biom11101434.
|
[23] |
H. Liu, J. Zhang, Z. Xue, et al., Deficiency of protein inhibitor of activated STAT3 exacerbates atherosclerosis by modulating VSMC phenotypic switching, Atherosclerosis 380 (2023) 117195 https://doi.org/10.1016/j.atherosclerosis.2023.117195.
|
[24] |
P. Ren, D. Wu, R. Appel, et al., Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice, J Am Heart Assoc 9 (2020) e014044 https://doi.org/10.1161/JAHA.119.014044.
|
[25] |
L. Bai, Z. Li, Q. Li, et al., Mediator 1 Is atherosclerosis protective by regulating macrophage polarization, Arterioscler Thromb Vasc Biol 37 (2017) 1470-1481 https://doi.org/10.1161/ATVBAHA.117.309672.
|
[26] |
M. Fatima, J. Gao, T. Han, et al., MED1 deficiency in macrophages aggravates isoproterenol-induced cardiac fibrosis in mice, Am J Pathol 192 (2022) 1016-1027 https://doi.org/10.1016/j.ajpath.2022.03.013.
|
[27] |
W. Chanput, J.J. Mes, H.F. Savelkoul, et al., Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds, Food Funct 4 (2013) 266-276 https://doi.org/10.1039/c2fo30156c.
|
[28] |
Y. Li, X. Yang, Y. He, et al., Negative regulation of NLRP3 inflammasome by SIRT1 in vascular endothelial cells, Immunobiology 222 (2017) 552-561 https://doi.org/10.1016/j.imbio.2016.11.002.
|
[29] |
J. Wang, W. Ye, J. Zou, et al., Targeting the smooth muscle cell Keap1-Nrf2-GSDMD-pyroptosis axis by cryptotanshinone prevents abdominal aortic aneurysm formation, Theranostics 14 (2024) 6516-6542 https://doi.org/10.7150/thno.98400.
|
[30] |
T.I. Emeto, S.W. Seto, J. Golledge, Targets for medical therapy to limit abdominal aortic aneurysm progression, Curr Drug Targets 15 (2014) 860-873 https://doi.org/10.2174/1389450115666140804155036.
|
[31] |
P. Ulug, J.T. Powell, M.A. Martinez, et al., Surgery for small asymptomatic abdominal aortic aneurysms, Cochrane Database Syst Rev 7 (2020) CD001835 https://doi.org/10.1002/14651858.CD001835.pub5.
|
[32] |
D. Qu, H. Guo, Y. Xu, Effects of tranilast on inflammasome and macrophage phenotype in a mouse model of myocardial infarction, J Interferon Cytokine Res 41 (2021) 102-110 https://doi.org/10.1089/jir.2020.0208.
|
[33] |
M.A. Dale, M.K. Ruhlman, B.T. Baxter, Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy, Arterioscler Thromb Vasc Biol 35 (2015) 1746-1755 https://doi.org/10.1161/ATVBAHA.115.305269.
|
[34] |
J. Raffort, F. Lareyre, M. Clement, et al., Monocytes and macrophages in abdominal aortic aneurysm, Nat Rev Cardiol 14 (2017) 457-471 https://doi.org/10.1038/nrcardio.2017.52.
|
[35] |
S.E. Huang, C.H. Kuo, S.Y. Shiao, et al., Soluble CD93 lectin-like domain sequesters HMGB1 to ameliorate inflammatory diseases, Theranostics 13 (2023) 4059-4078 https://doi.org/10.7150/thno.84935.
|
[36] |
M.A. Dale, W. Xiong, J.S. Carson, et al., Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization, J Immunol 196 (2016) 4536-4543 https://doi.org/10.4049/jimmunol.1502454.
|
[37] |
F. Usui, K. Shirasuna, H. Kimura, et al., Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm, Arterioscler Thromb Vasc Biol 35 (2015) 127-136 https://doi.org/10.1161/ATVBAHA.114.303763.
|
[38] |
M. Takahashi, NLRP3 inflammasome as a common denominator of atherosclerosis and abdominal aortic aneurysm, Circ J 85 (2021) 2129-2136 https://doi.org/10.1253/circj.CJ-21-0258.
|
[39] |
T. Zhuang, S. Li, X. Yi, et al., Tranilast directly targets NLRP3 to protect melanocytes from keratinocyte-derived IL-1beta under oxidative stress, Front Cell Dev Biol 8 (2020) 588 https://doi.org/10.3389/fcell.2020.00588.
|
[40] |
L. Huang, Y. Dong, J. Wu, et al., Sinomenine-induced histamine release-like anaphylactoid reactions are blocked by tranilast via inhibiting NF-kappaB signaling, Pharmacol Res 125 (2017) 150-160 https://doi.org/10.1016/j.phrs.2017.08.014.
|
[41] |
K. Isoda, K. Akita, K. Kitamura, et al., Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation, Int J Cardiol 270 (2018) 221-227 https://doi.org/10.1016/j.ijcard.2018.05.072.
|
[42] |
M.Y. Henein, S. Vancheri, G. Longo, et al., The role of inflammation in cardiovascular disease, Int J Mol Sci 23 (2022) https://doi.org/10.3390/ijms232112906.
|
[43] |
M. Zhang, W. Sui, C. Cheng, et al., Erythropoietin promotes abdominal aortic aneurysms in mice through angiogenesis and inflammatory infiltration, Sci Transl Med 13 (2021) https://doi.org/10.1126/scitranslmed.aaz4959.
|
[44] |
M. Isaji, H. Miyata, Y. Ajisawa, et al., Tranilast inhibits the proliferation, chemotaxis and tube formation of human microvascular endothelial cells in vitro and angiogenesis in vivo, Br J Pharmacol 122 (1997) 1061-1066 https://doi.org/10.1038/sj.bjp.0701493.
|
[45] |
G. Chai, S. Liu, H. Yang, et al., NLRP3 blockade suppresses pro-inflammatory and pro-angiogenic cytokine secretion in diabetic retinopathy, Diabetes Metab Syndr Obes 13 (2020) 3047-3058 https://doi.org/10.2147/DMSO.S264215.
|
[46] |
B. Xu, Y. Iida, K.J. Glover, et al., Inhibition of VEGF (vascular endothelial growth factor)-A or its receptor activity suppresses experimental aneurysm progression in the aortic elastase infusion model, Arterioscler Thromb Vasc Biol 39 (2019) 1652-1666 https://doi.org/10.1161/ATVBAHA.119.312497.
|
[47] |
M. Kobayashi, J. Matsubara, M. Matsushita, et al., Expression of angiogenesis and angiogenic factors in human aortic vascular disease, J Surg Res 106 (2002) 239-245 https://doi.org/10.1006/jsre.2002.6468.
|
[48] |
J. Yu, S. Liu, J. Huang, et al., Current theories and clinical trial evidence for limiting human abdominal aortic aneurysm growth, Curr Drug Targets 19 (2018) 1302-1308 https://doi.org/10.2174/1389450118666171113114310.
|
[49] |
L.M. Weaver, C.D. Loftin, C.G. Zhan, Development of pharmacotherapies for abdominal aortic aneurysms, Biomed Pharmacother 153 (2022) 113340 https://doi.org/10.1016/j.biopha.2022.113340.
|