Volume 15 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
Wenhao Wang, Xuan Gao, Lin Liu, Sheng Guo, Jin-ao Duan, Ping Xiao. Zebrafish as a vertebrate model for high-throughput drug toxicity screening: Mechanisms, novel techniques, and future perspectives[J]. Journal of Pharmaceutical Analysis, 2025, 15(9): 101195. doi: 10.1016/j.jpha.2025.101195
Citation: Wenhao Wang, Xuan Gao, Lin Liu, Sheng Guo, Jin-ao Duan, Ping Xiao. Zebrafish as a vertebrate model for high-throughput drug toxicity screening: Mechanisms, novel techniques, and future perspectives[J]. Journal of Pharmaceutical Analysis, 2025, 15(9): 101195. doi: 10.1016/j.jpha.2025.101195

Zebrafish as a vertebrate model for high-throughput drug toxicity screening: Mechanisms, novel techniques, and future perspectives

doi: 10.1016/j.jpha.2025.101195
Funds:

This work was supported by the Jiangsu Province University Basic Science (natural science) Research Major Project (Grant No.: 24KJA360007, China), Nanjing University of Chinese Medicine TCM First-class Discipline “Leading Plan” Scientific Research Project (Grant No.: ZYXYL2024-001, China), National Natural Science Foundation of China (Grant Nos.: U21A20408, 81873189, China), Jiangsu Provincial TCM Science and Technology Development Program Project (Grant No.: MS2021004, China), High-Level Key Discipline Construction Project of the National Administration of Traditional Chinese Medicine-Resource Chemistry of Chinese Medicinal Materials (Grant No.: ZYYZDXK-2023083, China), National Administration of Traditional Chinese Medicine Chinese Medicine Innovation Team and Talent Support Program Project (Grant No.: ZYYCXTD-D-202005, China), and Innovation and Entrepreneurship Training Program for College Students (Grant No.: 202410315138Y, China).

  • Received Date: Nov. 12, 2024
  • Accepted Date: Jan. 09, 2025
  • Rev Recd Date: Dec. 26, 2024
  • Available Online: Oct. 25, 2025
  • Publish Date: Sep. 30, 2025
  • Drug toxicity is closely related to both clinical drug safety and new drug development. Therefore, it is vital to understand the mechanisms of drug toxicity fully and to use appropriate research models with advanced technologies. Zebrafish has become an important vertebrate animal model for high-throughput drug screening and toxicity assessment. At the same time, zebrafish has an intact biological complexity, reflecting the whole organism's toxicity, which gives it an advantage over other high-throughput models in toxicity studies. Despite the gradual increase in toxicity studies utilizing zebrafish, a comprehensive and systematic review of the underlying mechanisms and new techniques is still lacking. This review aims to analyze common toxicity mechanisms in zebrafish models, such as oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis, and macroscopic changes in biological processes like lipid metabolism disorders and neurotransmitter expression abnormalities. It also introduces new technologies applied in toxicity assessment, such as gene editing, novel fluorescence imaging technology, 3D imaging technology, and novel automated technology for high-throughput screening, such as fish capsules. In addition, it also summarizes the advantages and disadvantages of the model. By doing so, it will provide new suggestions for the development and improvement of the model, make it better serve the toxicity study of clinical drugs and provide a more comprehensive perspective for drug toxicity study, thus promoting the development of the field of drug toxicity study.

  • loading
  • [1]
    W.S. Redfern, J. Valentin, Trends in safety pharmacology: Posters presented at the annual meetings of the safety pharmacology society 2001-2010, J. Pharmacol. Toxicol. Methods 64 (2011) 102-110.
    [2]
    R. Kavlock, K. Chandler, K. Houck, et al., Update on EPA's ToxCast program: Providing high throughput decision support tools for chemical risk management, Chem. Res. Toxicol. 25 (2012) 1287-1302.
    [3]
    K. Howe, M.D. Clark, C.F. Torroja, et al., The zebrafish reference genome sequence and its relationship to the human genome, Nature 496 (2013) 498-503.
    [4]
    A.V. Kalueff, D.J. Echevarria, A.M. Stewart, Gaining translational momentum: More zebrafish models for neuroscience research, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 55 (2014) 1-6.
    [5]
    S. Chowdhury, S.K. Saikia, Use of zebrafish as a model organism to study oxidative stress: A review, Zebrafish 19 (2022) 165-176.
    [6]
    A. Guru, G. Sudhakaran, M. Velayutham, et al., Daidzein normalized gentamicin-induced nephrotoxicity and associated pro-inflammatory cytokines in MDCK and zebrafish: Possible mechanism of nephroprotection, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 258 (2022), 109364.
    [7]
    J.M. Orozco-Hernandez, G.A. Elizalde-Velazquez, L.M. Gomez-Olivan, et al., Acute exposure to fluoxetine leads to oxidative stress and hematological disorder in Danio rerio adults, Sci. Total Environ. 905 (2023), 167391.
    [8]
    Z. Xia, E. Hao, Y. Wei, et al., Genipin induces developmental toxicity through oxidative stress and apoptosis in zebrafish, Comp. Biochem. Physiol. Toxicol. Pharmacol. 241 (2021), 108951.
    [9]
    D. di Paola, C. Iaria, F. Capparucci, et al., Aflatoxin B1 toxicity in zebrafish larva (Danio rerio): Protective role of Hericium erinaceus, Toxins 13 (2021), 710.
    [10]
    X. Liang, F. Wang, K. Li, et al., Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): Developmental toxicity, oxidative stress and immunotoxicity, Fish Shellfish Immunol. 96 (2020) 262-269.
    [11]
    L. Han, Q. Xia, L. Zhang, et al., Induction of developmental toxicity and cardiotoxicity in zebrafish embryos/larvae by acetyl-11-keto-β-boswellic acid (AKBA) through oxidative stress, Drug Chem. Toxicol. 45 (2022) 143-150.
    [12]
    D.B. Onofre-Camarena, G.A. Elizalde-Velazquez, L.M. Gomez-Olivan, et al., Assessing the impact of COVID-19 era drug combinations on hepatic functionality: A thorough investigation in adult Danio rerio, Environ. Pollut. Barking Essex 349 (2024), 123997.
    [13]
    L. Zhao, B. Zhong, Y. Zhu, et al., Nitrovin (difurazone), an antibacterial growth promoter, induces ROS-mediated paraptosis-like cell death by targeting thioredoxin reductase 1 (TrxR1), Biochem. Pharmacol. 210 (2023), 115487.
    [14]
    C. Yanicostas, N. Soussi-Yanicostas, SDHI fungicide toxicity and associated adverse outcome pathways: What can zebrafish tell us? Int. J. Mol. Sci. 22 (2021), 12362.
    [15]
    J.S. Katanic Stankovic, D. Selakovic, G. Rosic, Oxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target? Int. J. Mol. Sci. 24 (2023), 14574.
    [16]
    G.A. Elizalde-Velazquez, L.M. Gomez-Olivan, S. Garcia-Medina, et al., Antidiabetic drug metformin disrupts the embryogenesis in zebrafish through an oxidative stress mechanism, Chemosphere 285 (2021), 131213.
    [17]
    L.M. Felix, A.M. Vidal, C. Serafim, et al., Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos, Chemosphere 201 (2018) 730-739.
    [18]
    D. Li, Z. Li, T. Zhang, et al., 2-Amino-3-Methylimidazo[4, 5-f]quinoline triggering liver damage by inhibiting autophagy and inducing endoplasmic reticulum stress in zebrafish (Danio rerio), Toxins 13 (2021), 826.
    [19]
    H. Sarkar, M. Lahne, N. Nair, et al., Oxidative and endoplasmic reticulum stress represent novel therapeutic targets for choroideremia, Antioxidants 12 (2023), 1694.
    [20]
    Y. Zhang, J. Cen, Z. Jia, et al., Hepatotoxicity induced by isoniazid-lipopolysaccharide through endoplasmic reticulum stress, autophagy, and apoptosis pathways in zebrafish, Antimicrob. Agents Chemother. 63 (2019) e01639-18.
    [21]
    Y. Zhang, Y. Cai, S. Zhang, et al., Mechanism of hepatotoxicity of first-line tyrosine kinase inhibitors: Gefitinib and afatinib, Toxicol. Lett. 343 (2021) 1-10.
    [22]
    C.L. Lin, C.I. Yu, T.H. Lee, et al., Plumbagin induces the apoptosis of drug-resistant oral cancer in vitro and in vivo through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction, Phytomedicine 111 (2023), 154655.
    [23]
    J. Li, Y. Zhang, K. Liu, et al., Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the Wnt pathway, Front. Pharmacol. 9 (2018), 1250.
    [24]
    Q. Luo, Y. Yang, C. Xian, et al., Nicotinamide riboside ameliorates survival time and motor dysfunction in an MPTP-Induced Parkinson's disease zebrafish model through effects on glucose metabolism and endoplasmic reticulum stress, Chem. Biol. Interact. 399 (2024), 111118.
    [25]
    C. D'Iglio, S. Famulari, F. Capparucci, et al., Toxic effects of gemcitabine and paclitaxel combination: Chemotherapy drugs exposure in zebrafish, Toxics 11 (2023), 544.
    [26]
    X. Fu, W. Zhao, K. Li, et al., Cryptotanshinone inhibits the growth of HCT116 colorectal cancer cells through endoplasmic reticulum stress-mediated autophagy, Front. Pharmacol. 12 (2021), 653232.
    [27]
    C.W. Feng, N. Chen, T. Chan, et al., Therapeutic role of protein tyrosine phosphatase 1B in Parkinson's disease via antineuroinflammation and neuroprotection in vitro and in vivo, Park. Dis. 2020 (2020), 8814236.
    [28]
    L. Wang, W. Li, Y. Li, et al., Dried tangerine peel polysaccharide (DTPP) alleviates hepatic steatosis by suppressing TLR4/MD-2-mediated inflammation and endoplasmic reticulum stress, Bioorg. Chem. 147 (2024), 107369.
    [29]
    W. Yan, T. Zhang, S. Li, et al., Oxidative stress and endoplasmic reticulum stress contributes to arecoline and its secondary metabolites-induced dyskinesia in zebrafish embryos, Int. J. Mol. Sci. 24 (2023), 6327.
    [30]
    Y. Ni, H. Deng, L. Zhou, et al., Ginsenoside Rb1 ameliorated bavachin-induced renal fibrosis via suppressing bip/eIF2α/CHOP signaling-mediated EMT, Front. Pharmacol. 13 (2022), 872474.
    [31]
    I. Obaidi, H. Cassidy, V.I. Gaspar, et al., Curcumin sensitizes kidney cancer cells to TRAIL-induced apoptosis via ROS mediated activation of JNK-CHOP pathway and upregulation of DR4, Biology 9 (2020), 92.
    [32]
    H.K. Lee, Y.H. Nam, S.W. Shin, et al., Erigeron annuus extract alleviates insulin resistance via regulating the expression of mitochondrial damage and endoplasmic reticulum stress-related genes, Nutrients 15 (2023), 2685.
    [33]
    W. Dai, K. Wang, X. Zhen, et al., Magnesium isoglycyrrhizinate attenuates acute alcohol-induced hepatic steatosis in a zebrafish model by regulating lipid metabolism and ER stress, Nutr. Metab. 19 (2022), 23.
    [34]
    K.H. Park, H.M.M. Makki, S.H. Kim, et al., Narirutin ameliorates alcohol-induced liver injury by targeting MAPK14 in zebrafish larvae, Biomed. Pharmacother. 166 (2023), 115350.
    [35]
    D. Li, Z. Li, L. Dong, et al., Coffee prevents IQ-induced liver damage by regulating oxidative stress, inflammation, endoplasmic reticulum stress, autophagy, apoptosis, and the MAPK/NF-κB signaling pathway in zebrafish, Food Res. Int. Ott. Ont. 169 (2023), 112946.
    [36]
    P. Arulselvan, M.T. Fard, W.S. Tan, et al., Role of antioxidants and natural products in inflammation, Oxid. Med. Cell. Longev. 2016 (2016), 5276130.
    [37]
    T. McGarry, M. Biniecka, D.J. Veale, et al., Hypoxia, oxidative stress and inflammation, Free Radic. Biol. Med. 125 (2018) 15-24.
    [38]
    D. Bertheloot, E. Latz, B.S. Franklin, Necroptosis, pyroptosis and apoptosis: An intricate game of cell death, Cell. Mol. Immunol. 18 (2021) 1106-1121.
    [39]
    J.Y. Fang, B.C. Richardson, The MAPK signalling pathways and colorectal cancer, Lancet Oncol. 6 (2005) 322-327.
    [40]
    S. Huang, Y. Zhang, H. Shu, et al., Advances of the MAPK pathway in the treatment of spinal cord injury, CNS Neurosci. Ther. 30 (2024), e14807.
    [41]
    T. Behl, T. Rana, G.H. Alotaibi, et al., Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression, Biomed. Pharmacother. 146 (2022), 112545.
    [42]
    J. Bai, Y. Zhang, C. Tang, et al., Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases, Biomed. Pharmacother. 133 (2021), 110985.
    [43]
    E. Beamer, S.A.L. Correa, The p38MAPK-MK2 signaling axis as a critical link between inflammation and synaptic transmission, Front. Cell Dev. Biol. 9 (2021), 635636.
    [44]
    H. Lee, G. An, J. Park, et al., Mevinphos induces developmental defects via inflammation, apoptosis, and altered MAPK and Akt signaling pathways in zebrafish, Comp. Biochem. Physiol. Toxicol. Pharmacol. 275 (2024), 109768.
    [45]
    J. Park, G. An, H. Park, et al., Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish, Environ. Int. 176 (2023), 107973.
    [46]
    G. An, J. Park, W. Lim, et al., Pyridaben impaired cell cycle progression through perturbation of calcium homeostasis and PI3K/Akt pathway in zebrafish hepatocytes, Comp. Biochem. Physiol. Toxicol. Pharmacol. 276 (2024), 109799.
    [47]
    J. Liu, Q. Xiao, J. Xiao, et al., Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities, Signal Transduct. Targeted Ther. 7 (2022), 3.
    [48]
    H. Zhao, T. Ming, S. Tang, et al., Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target, Mol. Cancer 21 (2022), 144.
    [49]
    Q. Guo, Y. Jin, X. Chen, et al., NF-κB in biology and targeted therapy: New insights and translational implications, Signal Transduct. Targeted Ther. 9 (2024), 53.
    [50]
    F. Duan, H. Li, H. Lu, In vivo and molecular docking studies of the pathological mechanism underlying adriamycin cardiotoxicity, Ecotoxicol. Environ. Saf. 256 (2023), 114778.
    [51]
    Y. Zuo, C. Chen, F. Liu, et al., Benzophenone induces cardiac developmental toxicity in zebrafish embryos by upregulating Wnt signaling, Chemosphere 344 (2023), 140283.
    [52]
    F. Liu, H. Hu, G. Chen, et al., Pexidartinib hydrochloride exposure induces developmental toxicity and immunotoxicity in zebrafish embryos via activation of Wnt signaling, Fish Shellfish Immunol. 138 (2023), 108849.
    [53]
    J. Wang, J. Zhang, J. Wang, et al., Small-molecule modulators targeting toll-like receptors for potential anticancer therapeutics, J. Med. Chem. 66 (2023) 6437-6462.
    [54]
    N. Fortingo, S. Melnyk, S.H. Sutton, et al., Innate immune system activation, inflammation and corneal wound healing, Int. J. Mol. Sci. 23 (2022), 14933.
    [55]
    T. Duan, Y. Du, C. Xing, et al., Toll-like receptor signaling and its role in cell-mediated immunity, Front. Immunol. 13 (2022), 812774.
    [56]
    G. Xiong, L. Zou, Y. Deng, et al., Clethodim exposure induces developmental immunotoxicity and neurobehavioral dysfunction in zebrafish embryos, Fish Shellfish Immunol. 86 (2019) 549-558.
    [57]
    B. Cheng, H. Zhang, K. Jia, et al., Effects of spinetoram on the developmental toxicity and immunotoxicity of zebrafish, Fish Shellfish Immunol. 96 (2020) 114-121.
    [58]
    K. Wang, Y. Huang, B. Cheng, et al., Sulfoxaflor induces immunotoxicity in zebrafish (Danio rerio) by activating TLR4/NF-κB signaling pathway, Fish Shellfish Immunol. 137 (2023), 108743.
    [59]
    A. Sarapultsev, E. Gusev, M. Komelkova, et al., JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions, Mol. Biomed. 4 (2023), 40.
    [60]
    L.S. Simon, P.C. Taylor, E.H. Choy, et al., The jak/STAT pathway: A focus on pain in rheumatoid arthritis, Semin. Arthritis Rheum. 51 (2021) 278-284.
    [61]
    R.P. Agashe, S.M. Lippman, R. Kurzrock, JAK: Not just another kinase, Mol. Cancer Therapeut. 21 (2022) 1757-1764.
    [62]
    B. Cheng, L. Zou, H. Zhang, et al., Effects of cyhalofop-butyl on the developmental toxicity and immunotoxicity in zebrafish (Danio rerio), Chemosphere 263 (2021), 127849.
    [63]
    E.S. Okeke, X. Qian, J. Che, et al., Transcriptomic sequencing reveals the potential molecular mechanism by which Tetrabromobisphenol A bis (2-hydroxyethyl ether) exposure exerts developmental neurotoxicity in developing zebrafish (Danio rerio), Comp. Biochem. Physiol. Toxicol. Pharmacol. 262 (2022), 109467.
    [64]
    F. Zhang, L. Han, J. Wang, et al., Clozapine induced developmental and cardiac toxicity on zebrafish embryos by elevating oxidative stress, Cardiovasc. Toxicol. 21 (2021) 399-409.
    [65]
    P. Schneider, J. Tschopp, Apoptosis induced by death receptors, Pharm. Acta Helv. 74 (2000) 281-286.
    [66]
    K. Schulze-Osthoff, D. Ferrari, M. Los, et al., Apoptosis signaling by death receptors, Eur. J. Biochem. 254 (1998) 439-459.
    [67]
    E. Szegezdi, P. Legembre, Editorial: Death receptors, non-apoptotic signaling pathways and inflammation, Front. Immunol. 11 (2020), 2162.
    [68]
    M. Muzio, Signalling by proteolysis: Death receptors induce apoptosis, Int. J. Clin. Lab. Res. 28 (1998) 141-147.
    [69]
    J.P. Pogmore, D. Uehling, D.W. Andrews, Pharmacological targeting of executioner proteins: Controlling life and death, J. Med. Chem. 64 (2021) 5276-5290.
    [70]
    J.M. Pemberton, J.P. Pogmore, D.W. Andrews, Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins, Cell Death Differ. 28 (2021) 108-122.
    [71]
    D. Tang, R. Kang, T. Vanden Berghe, et al., The molecular machinery of regulated cell death, Cell Res. 29 (2019) 347-364.
    [72]
    P. Vandenabeele, G. Bultynck, S.N. Savvides, Pore-forming proteins as drivers of membrane permeabilization in cell death pathways, Nat. Rev. Mol. Cell Biol. 24 (2023) 312-333.
    [73]
    H. Flores-Romero, U. Ros, A.J. Garcia-Saez, Pore formation in regulated cell death, EMBO J. 39 (2020), e105753.
    [74]
    P. Mehrbod, S.R. Ande, J. Alizadeh, et al., The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections, Virulence 10 (2019) 376-413.
    [75]
    T.J. MacKey, A. Borkowski, P. Amin, et al., Bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer, Urology 52 (1998) 1085-1090.
    [76]
    Y. Shi, L. Li, C. Wang, et al., Developmental toxicity induced by chelerythrine in zebrafish embryos via activating oxidative stress and apoptosis pathways, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 273 (2023), 109719.
    [77]
    W. Xie, J. Chen, X. Cao, et al., Roxithromycin exposure induces motoneuron malformation and behavioral deficits of zebrafish by interfering with the differentiation of motor neuron progenitor cells, Ecotoxicol. Environ. Saf. 276 (2024), 116327.
    [78]
    L. Tan, M. Cheng, G.C.T. Auyeung, et al., Mechanistic action of the acute toxicity of Bajitian (Morinda officinalis) in zebrafish embryos, J. Tradit. Chin. Med. Sci. 7 (2020) 308-315.
    [79]
    Q. Fan, R. Liang, M. Chen, et al., Metabolic characteristics of evodiamine were associated with its hepatotoxicity via PPAR/PI3K/AKT/NF-кB/tight junction pathway-mediated apoptosis in zebrafish, Ecotoxicol. Environ. Saf. 279 (2024), 116448.
    [80]
    W. Yuan, Y. Xiao, Y. Zhang, et al., Apoptotic mechanism of development inhibition in zebrafish induced by esketamine, Toxicol. Appl. Pharmacol. 482 (2024), 116789.
    [81]
    H.J. Jeon, C. Kim, K. Kim, et al., Piperlongumine treatment impacts heart and liver development and causes developmental delay in zebrafish (Danio rerio) embryos, Ecotoxicol. Environ. Saf. 258 (2023), 114995.
    [82]
    M. Wan, J. Liu, D. Yang, et al., Dimethyl fumarate induces cardiac developmental toxicity in zebrafish via down-regulation of oxidative stress, Toxicology 503 (2024), 153735.
    [83]
    Y. Qin, Y. Huang, W. Lin, et al., Neurotoxic effects induced by flunitrazepam and its metabolites in zebrafish: Oxidative stress, apoptosis, and histone hypoacetylation, Sci. Total Environ. 917 (2024), 170521.
    [84]
    V. Petrenko, F. Sinturel, H. Riezman, et al., Lipid metabolism around the body clocks, Prog. Lipid Res. 91 (2023), 101235.
    [85]
    P. Agbu, R.W. Carthew, microRNA-mediated regulation of glucose and lipid metabolism, Nat. Rev. Mol. Cell Biol. 22 (2021) 425-438.
    [86]
    A.G. Mukherjee, K. Renu, A.V. Gopalakrishnan, et al., Epicardial adipose tissue and cardiac lipotoxicity: A review, Life Sci. 328 (2023), 121913.
    [87]
    E.D. Dixon, A.D. Nardo, T. Claudel, et al., The role of lipid sensing nuclear receptors (PPARs and LXR) and metabolic lipases in obesity, diabetes and NAFLD, Genes 12 (2021), 645.
    [88]
    J.Y.L. Chiang, J.M. Ferrell, Bile acid metabolism in liver pathobiology, Gene Expr. 18 (2018) 71-87.
    [89]
    B. Guan, J. Tong, H. Hao, et al., Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases, Acta Pharm. Sin. B 12 (2022) 2129-2149.
    [90]
    L. Yu, H. Lu, X. Yang, et al., Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats, Toxicol. Appl. Pharmacol. 412 (2021), 115388.
    [91]
    S. Gao, J. Zhao, Q. Xia, et al., Evaluation of the hepatotoxicity of Psoralea corylifolia L. based on a zebrafish model, Front. Pharmacol. 15 (2024), 1308655.
    [92]
    Y. Zheng, Y. Wang, M. Zheng, et al., Exposed to Sulfamethoxazole induced hepatic lipid metabolism disorder and intestinal microbiota changes on zebrafish (Danio rerio), Comp. Biochem. Physiol. Toxicol. Pharmacol. 253 (2022), 109245.
    [93]
    C. Chen, Y. Zuo, H. Hu, et al., Hepatic lipid metabolism disorders and immunotoxicity induced by cysteamine in early developmental stages of zebrafish, Toxicology 493 (2023), 153555.
    [94]
    K.L. Sylvers-Davie, B.S.J. Davies, Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8, Am. J. Physiol. Endocrinol. Metab. 321 (2021) E493-E508.
    [95]
    L. Huang, J. Liu, W. Li, et al., Lenvatinib exposure induces hepatotoxicity in zebrafish via inhibiting Wnt signaling, Toxicology 462 (2021), 152951.
    [96]
    R. Gerlai, A small fish with a big future: Zebrafish in behavioral neuroscience, Rev. Neurosci. 22 (2011) 3-4.
    [97]
    M. Faria, E. Prats, C. Gomez-Canela, et al., Therapeutic potential of N-acetylcysteine in acrylamide acute neurotoxicity in adult zebrafish, Sci. Rep. 9 (2019), 16467.
    [98]
    C. Xie, M. Tan, Y. Li, et al., Chronic exposure to environmentally relevant concentrations of carbamazepine interferes with anxiety response of adult female zebrafish through GABA/5-HT pathway and HPI axis, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 266 (2023), 109574.
    [99]
    M. Naderi, P. Puar, R. JavadiEsfahani, et al., Early developmental exposure to bisphenol A and bisphenol S disrupts socio-cognitive function, isotocin equilibrium, and excitation-inhibition balance in developing zebrafish, Neurotoxicology 88 (2022) 144-154.
    [100]
    X. Cai, J. Flores-Hernandez, J. Feng, et al., Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4) receptor-mediated signalling in rat prefrontal cortical pyramidal neurons, J. Physiol. 540 (2002) 743-759.
    [101]
    M. Wu, X. Qiu, C. Chen, et al., Short-term and persistent impacts of sublethal exposure to diazepam on behavioral traits and brain GABA levels in juvenile zebrafish (Danio rerio), Sci. Total Environ. 740 (2020), 140392.
    [102]
    H. Yang, X. Gu, H. Chen, et al., Omics techniques reveal the toxicity mechanisms of three antiepileptic drugs to juvenile zebrafish (Danio rerio) brain and liver, Aquat. Toxicol. Amsterdam Neth. 262 (2023), 106668.
    [103]
    J.L. Kim, S.S. Kim, K.S. Hwang, et al., Chronic exposure to butyl-paraben causes photosensitivity disruption and memory impairment in adult zebrafish, Aquat. Toxicol. Amsterdam Neth. 251 (2022), 106279.
    [104]
    Y. Geng, H. Zou, Y. Guo, et al., Chronic exposure to cortisone induces thyroid endocrine disruption and retinal dysfunction in adult female zebrafish (Danio rerio), Sci. Total Environ. 905 (2023), 167022.
    [105]
    D. Ma, W. Shi, S. Li, et al., Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish, Aquat. Toxicol. Amsterdam Neth. 265 (2023), 106765.
    [106]
    T. Ma, X. Wang, T. Yu, et al., Oxytetracycline changes the behavior of zebrafish larvae by inhibiting NMDA receptors, Ecotoxicol. Environ. Saf. 262 (2023), 115344.
    [107]
    R. Menon, I.D. Neumann, Detection, processing and reinforcement of social cues: Regulation by the oxytocin system, Nat. Rev. Neurosci. 24 (2023) 761-777.
    [108]
    S. Fan, H. Weinberg-Wolf, M. Piva, et al., Combinatorial oxytocin neuropharmacology in social cognition, Trends Cognit. Sci. 24 (2020) 8-12.
    [109]
    T. Nishida, C. Horita, M. Imagawa, et al., Glucosyl hesperidin exhibits more potent anxiolytic activity than hesperidin accompanied by the attenuation of noradrenaline induction in a zebrafish model, Front. Pharmacol. 14 (2023), 1213252.
    [110]
    G.M. Miller, B.A. Ogunnaike, J.S. Schwaber, et al., Robust dynamic balance of AP-1 transcription factors in a neuronal gene regulatory network, BMC Syst. Biol. 4 (2010), 171.
    [111]
    L. Liu, F. Wu, C. Zhu, et al., Involvement of dopamine signaling pathway in neurodevelopmental toxicity induced by isoniazid in zebrafish, Chemosphere 265 (2021), 129109.
    [112]
    Z. Su, Z. Dai, F. Qin, et al., Valbenazine promotes body growth via growth hormone signaling during zebrafish embryonic development, Toxicol. Appl. Pharmacol. 477 (2023), 116674.
    [113]
    Y. Tang, Z. Fan, M. Yang, et al., Low concentrations of the antidepressant venlafaxine affect courtship behaviour and alter serotonin and dopamine systems in zebrafish (Danio rerio), Aquat. Toxicol. Amsterdam Neth. 244 (2022), 106082.
    [114]
    D.D. Nabinger, S. Altenhofen, J.V. Peixoto, et al., Long-lasting behavioral effects of quinpirole exposure on zebrafish, Neurotoxicol. Teratol. 88 (2021), 107034.
    [115]
    C. Zhang, D. Qian, T. Yu, et al., Multi-parametric cellular imaging coupled with multi-component quantitative profiling for screening of hepatotoxic equivalent markers from Psoraleae Fructus, Phytomedicine 93 (2021), 153518.
    [116]
    Y. Gao, L. Guo, Y. Han, et al., A combination of in silico ADMET prediction, in vivo toxicity evaluation, and potential mechanism exploration of brucine and brucine N-oxide-a comparative study, Molecules 28 (2023), 1341.
    [117]
    T. Gao, L. Lin, Q. Yang, et al., The raw and vinegar-processed Curcuma phaeocaulis Val. ameliorate TAA-induced zebrafish liver injury by inhibiting TLR4/MyD88/NF-κB signaling pathway, J. Ethnopharmacol. 319 (2024), 117246.
    [118]
    J.J. Li, Y.X. Yue, S.J. Shi, et al., Investigation on toxicity mechanism of halogenated aromatic disinfection by-products to zebrafish based on molecular docking and QSAR model, Chemosphere 341 (2023), 139916.
    [119]
    C.D. English, K.J. Kazi, I. Konig, et al., Exposure to the antineoplastic ifosfamide alters molecular pathways related to cardiovascular function, increases heart rate, and induces hyperactivity in zebrafish (Danio rerio), Environ. Toxicol. Pharmacol. 107 (2024), 104427.
    [120]
    C. Morales Fenero, B.N. Padovani, M.A. do Amaral, et al., Acute kidney injury model induced by cisplatin in adult zebrafish, J. Vis. Exp. 171 (2021), e61575.
    [121]
    U. Nwagbo, S. Parvez, J.A. Maschek, et al., Elovl4b knockout zebrafish as a model for ocular very-long-chain PUFA deficiency, J. Lipid Res. 65 (2024), 100518.
    [122]
    S. Parvez, C. Herdman, M. Beerens, et al., MIC-Drop: A platform for large-scale in vivo CRISPR screens, Science 373 (2021) 1146-1151.
    [123]
    M.R. Kent, D. Calderon, K.M. Silvius, et al., Zebrafish her3 knockout impacts developmental and cancer-related gene signatures, Dev. Biol. 496 (2023) 1-14.
    [124]
    S. Xie, B. Yang, S. Li, et al., Generation and application of a novel transgenic zebrafish line tg(GAcyp1a: EGFP/luc) as an in vivo assay to sensitive and specific monitoring of DLCs in the environment, Ecotoxicol. Environ. Saf. 264 (2023), 115471.
    [125]
    K.J. Groh, M.J.F. Suter, Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns, Aquat. Toxicol. 159 (2015) 1-12.
    [126]
    H. Niu, Y. Zhang, F. Zhao, et al., Reductive stress imaging in the endoplasmic reticulum by using living cells and zebrafish, Chem. Commun. 55 (2019) 9629-9632.
    [127]
    J. Yan, L. Zhang, W. Wu, et al., A novel AIRE-based fluorescent ratiometric probe with endoplasmic reticulum-targeting ability for detection of hypochlorite and bioimaging, Bioorg. Chem. 131 (2023), 106319.
    [128]
    L. Gui, J. Yan, J. Zhao, et al., Hypochlorite activatable ratiometric fluorescent probe based on endoplasmic reticulum stress for imaging of atherosclerosis, Biosens. Bioelectron. 240 (2023), 115660.
    [129]
    K. Zhang, Y. Zhang, Y. Lan, et al., Hyperbranched polysiloxane-based probe with enhanced lipophilicity for visualizing ONOO- fluctuations in endoplasmic reticulum, Anal. Chim. Acta 1249 (2023), 340939.
    [130]
    L. He, H. Liu, J. Wu, et al., Construction of a mitochondria-endoplasmic reticulum dual-targeted red-emitting fluorescent probe for imaging peroxynitrite in living cells and zebrafish, Chem. Asian J. 17 (2022), e202200388.
    [131]
    Y. Lu, R. Wang, Y. Sun, et al., Endoplasmic reticulum-specific fluorescent probe for the two-photon imaging of endogenous superoxide anion (O2•-) in live cells and zebrafishes, Talanta 225 (2021), 122020.
    [132]
    H.D. Marble, R. Huang, S.N. Dudgeon, et al., A regulatory science initiative to harmonize and standardize digital pathology and machine learning processes to speed up clinical innovation to patients, J. Pathol. Inf. 11 (2020), 22.
    [133]
    C. Chen, Y. Gu, J. Philippe, et al., Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae, Nat. Commun. 12 (2021), 1118.
    [134]
    J.H. Westhoff, S. Giselbrecht, M. Schmidts, et al., Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney, PLoS One 8 (2013), e82137.
    [135]
    S. Kotiyal, A. Fulbright, L.K. O'Brien, et al., Quantifying liver size in larval zebrafish using brightfield microscopy, J. Vis. Exp. 156 (2020), e60744.
    [136]
    G. Yang, L. Wang, X. Qin, et al., Heterogeneities of zebrafish vasculature development studied by a high throughput light-sheet flow imaging system, Biomed. Opt Express 13 (2022) 5344-5357.
    [137]
    J. Yin, G. Yang, X. Qin, et al., Optimized U-Net model for 3D light-sheet image segmentation of zebrafish trunk vessels, Biomed. Opt Express 13 (2022) 2896-2908.
    [138]
    A.M. Naderi, H. Bu, J. Su, et al., Deep learning-based framework for cardiac function assessment in embryonic zebrafish from heart beating videos, Comput. Biol. Med. 135 (2021), 104565.
    [139]
    C. Chen, Y. Tang, Y. Tan, et al., Three-dimensional cerebral vasculature topological parameter extraction of transgenic zebrafish embryos with a filling-enhancement deep learning network, Biomed. Opt Express 14 (2023) 971-984.
    [140]
    J.W. Kenney, P.E. Steadman, O. Young, et al., A 3D adult zebrafish brain atlas (AZBA) for the digital age, Elife 10 (2021), e69988.
    [141]
    A. Colon-Rodriguez, J.M. Uribe-Salazar, K.B. Weyenberg, et al., Assessment of autism zebrafish mutant models using a high-throughput larval phenotyping platform, Front. Cell Dev. Biol. 8 (2020), 586296.
    [142]
    A. Kaveh, F.A. Bruton, C. Buckley, et al., Live imaging of heart injury in larval zebrafish reveals a multi-stage model of neutrophil and macrophage migration, Front. Cell Dev. Biol. 8 (2020), 579943.
    [143]
    S.R. Katz, M.A. Yakovlev, D.J. Vanselow, et al., Whole-organism 3D quantitative characterization of zebrafish melanin by silver deposition micro-CT, Elife 10 (2021), e68920.
    [144]
    M. Tang, X. Duan, A. Yang, et al., Fish capsules: A system for high-throughput screening of combinatorial drugs, Adv. Sci. Weinheim Baden Wurttemberg Ger. 9 (2022), e2104449.
    [145]
    M.S. Griffin, A.R. Dahlgren, C. Nagaswami, et al., Composition of thrombi in zebrafish: Similarities and distinctions with mammals, J. Thromb. Haemostasis 22 (2024) 1056-1068.
    [146]
    D.L. Stenkamp, D.D. Viall, D.M. Mitchell, Evidence of regional specializations in regenerated zebrafish retina, Exp. Eye Res. 212 (2021), 108789.
    [147]
    S. Cassar, I. Adatto, J.L. Freeman, et al., Use of zebrafish in drug discovery toxicology, Chem. Res. Toxicol. 33 (2020) 95-118.
    [148]
    D.M. Hentschel, M. Mengel, L. Boehme, et al., Rapid screening of glomerular slit diaphragm integrity in larval zebrafish, Am. J. Physiol. Ren. Physiol. 293 (2007) F1746-F1750.
    [149]
    J. Hoyberghs, C. Bars, M. Ayuso, et al., DMSO concentrations up to 1% are safe to be used in the zebrafish embryo developmental toxicity assay, Front. Toxicol. 3 (2021), 804033.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (44) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return