Citation: | Ying Zhou, Yintao Zhang, Zhichao Zhang, Zhimeng Zhou, Feng Zhu. AI comes to the Nobel Prize and drug discovery[J]. Journal of Pharmaceutical Analysis, 2024, 14(11): 101160. doi: 10.1016/j.jpha.2024.101160 |
[1] |
M. Lu, J. Yin, Q. Zhu, et al. Artificial intelligence in pharmaceutical sciences, Engineering 27 (2023) 37-69.
|
[2] |
Y. Zhou, Y. Zhang, D. Zhao, et al., TTD: Therapeutic Target Database describing target druggability information, Nucleic Acids Res. 52 (2024) D1465-D1477.
|
[3] |
F. Li, M. Mou, X. Li, et al., DrugMAP 2.0: Molecular atlas and pharma-information of all drugs, Nucleic Acids Res. (2024), gkae791.
|
[4] |
F. Ren, A. Aliper, J. Chen, et al., A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models, Nat. Biotechnol. (2024) doi: 10.1038/s41587-024-02143-0.
|
[5] |
R.Luo, L. Sun, Y. Xia, et al., BioGPT: Generative pre-trained transformer for biomedical text generation and mining, Brief. Bioinform. 23 (2022), bbac409.
|
[6] |
Y. Li, L. Zhang, Y. Wang, et al., Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor, Nat. Commun. 13 (2022), 6891.
|
[7] |
H. He, B. He, L. Guan, et al., De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model, Nat Commun. 15 (2024), 6867.
|
[8] |
S.J. Gosai, R.I. Castro, N. Fuentes, et al., Machine-guided design of cell-type-targeting cis-regulatory elements, Nature 634 (2024) 1211-1220.
|
[9] |
H. Zhang, L. Zhang, A. Lin, et al., Algorithm for optimized mRNA design improves stability and immunogenicity, Nature 621 (2023) 396-403.
|
[10] |
J. Jimenez-Luna, F. Grisoni, G. Schneider, Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2 (2020) 573-584.
|