Citation: | Lifan Lin, Shouzhang Yang, Xinmiao Li, Weizhi Zhang, Jianjian Zheng. Unveiling the role of Pafah1b3 in liver fibrosis: A novel mechanism revealed[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101158. doi: 10.1016/j.jpha.2024.101158 |
Liver fibrosis is a common outcome of various chronic hepatic insults, characterized by excessive extracellular matrix (ECM) deposition. The precise mechanisms, however, remain largely undefined. This study identified an elevated expression of platelet-activating factor acetylhydrolase 1B3 (Pafah1b3) in liver tissues from both carbon tetrachloride (CCl4)-treated mice and patients with cirrhosis. Deletion of Pafah1b3 significantly attenuated CCl4-induced fibrosis, hepatic stellate cell (HSC) activation, and activation of transforming growth factor-β (TGF-β) signaling. Mechanistically, PAFAH1B3 binds to mothers against decapentaplegic homolog 7 (SMAD7), disrupting SMAD7's interaction with TGF-β receptor 1 (TβR1), which subsequently decreases TβR1 ubiquitination and degradation. Pharmacological inhibition using 3-IN-P11, a specific Pafah1b3 inhibitor, conferred protective effects against CCl4-induced fibrosis in mice. Furthermore, Pafah1b3 deficiency reduced hepatic inflammation. Overall, these results establish a pivotal role for Pafah1b3 in modulating TGF-β signaling and driving HSC activation.
[1] |
V. Hernandez-Gea, S.L. Friedman, Pathogenesis of liver fibrosis, Annu. Rev. Pathol. 6 (2011) 425-456.
|
[2] |
J. Zhang, Y. Liu, H. Chen, et al., MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization, Cell Death Dis. 13 (2022), 411.
|
[3] |
T. Higashi, S.L. Friedman, Y. Hoshida, Hepatic stellate cells as key target in liver fibrosis, Adv. Drug Deliv. Rev. 121 (2017) 27-42.
|
[4] |
Y.E. Cho, D.K. Kim, W. Seo, et al., Fructose promotes leaky gut, otoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress, Hepatology 73 (2021) 2180-2195.
|
[5] |
N.C. Herson, J.P. Iredale, Liver fibrosis: Cellular mechanisms of progression and resolution, Clin. Sci. (Lond.) 112 (2007) 265-280.
|
[6] |
J.P. Iredale, Models of liver fibrosis: Exploring the dynamic nature of inflammation and repair in a solid organ, J. Clin. Invest. 117 (2007) 539-548.
|
[7] |
B. Dewidar, C. Meyer, S. Dooley, et al., TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019, Cells 8 (2019), 1419.
|
[8] |
D.M. Bissell, D. Roulot, J. George, Transforming growth factor beta and the liver, Hepatology 34 (2001) 859-867.
|
[9] |
K. Miyazawa, K. Miyazono, Regulation of TGF-β family signaling by inhibitory smads, Cold Spring Harbor Perspect. Biol. 9 (2017), a022095.
|
[10] |
P. Kavsak, R.K. Rasmussen, C.G. Causing, et al., Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation, Mol. Cell 6 (2000) 1365-1375.
|
[11] |
S.J. Wicks, T. Grocott, K. Haros, et al., Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway, Biochem. Soc. Trans. 34 (2006) 761-763.
|
[12] |
L. Zhang, F. Zhou, Y. Drabsch, et al., USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor, Nat. Cell Biol. 14 (2012) 717-726.
|
[13] |
H. He, J. Dai, J. Feng, et al., FBXO31 modulates activation of hepatic stellate cells and liver fibrogenesis by promoting ubiquitination of Smad7, J. Cell. Biochem. 121 (2020) 3711-3719.
|
[14] |
J. Liu, D. Kong, J. Qiu, et al., Praziquantel ameliorates CCl4-induced liver fibrosis in mice by inhibiting TGF-β/Smad signalling via up-regulating Smad7 in hepatic stellate cells, Br. J. Pharmacol. 176 (2019) 4666-4680.
|
[15] |
T.M. McIntyre, S.M. Prescott, D.M. Stafforini, The emerging roles of PAF acetylhydrolase, J. Lipid Res. 50 (2009) S255-S259.
|
[16] |
Y. Yuan, X. Jiang, L. Tang, et al., Comprehensive analysis of the prognostic and immunological role of PAFAH1B in pan-cancer, Front. Mol. Biosci. 8 (2022), 799497.
|
[17] |
J. Fan, Y. Yang, J.-K. Qian, et al., Aberrant expression of PAFAH1B3 affects proliferation and apoptosis in osteosarcoma, Front. Oncol. 11 (2021), 664478.
|
[18] |
T. Xie, X. Guo, D. Wu, et al., PAFAH1B3 expression is correlated with gastric cancer cell proliferation and immune infiltration, Front. Oncol. 11 (2021), 591545.
|
[19] |
J. Xu, Y. Zang, S. Cao, et al., Aberrant expression of PAFAH1B3 associates with poor prognosis and affects proliferation and aggressiveness in hypopharyngeal squamous cell carcinoma, Onco. Targets Ther. 12 (2019) 2799-2808.
|
[20] |
G. Zhang, Platelet-related molecular subtype to predict prognosis in hepatocellular carcinoma, J. Hepatocell. Carcinoma 9 (2022) 423-436.
|
[21] |
W. Xu, X. Lu, J. Liu, et al., Identification of PAFAH1B3 as candidate prognosis marker and potential therapeutic target for hepatocellular carcinoma, Front. Oncol. 11 (2021), 700700.
|
[22] |
G. Zhang, Increased PAFAH1B3 was associated with poor prognosis and T-cell exhaustion microenvironment in hepatocellular carcinoma, Discov. Oncol. 14 (2023), 227.
|
[23] |
J.W. Chang, A.M. Zuhl, A.E. Speers, et al., Selective inhibitor of platelet-activating factor acetylhydrolases 1b2 and 1b3 that impairs cancer cell survival, ACS Chem. Biol. 10 (2015) 925-932.
|
[24] |
M. Chen, M.C. Menon, W. Wang, et al., HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy, Nat. Commun. 14 (2023), 4297.
|
[25] |
Q. Zhao, M. Dai, R. Huang, et al., Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice, Nat. Commun. 14 (2023), 1829.
|
[26] |
T. Tsuchida, S.L. Friedman, Mechanisms of hepatic stellate cell activation, Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 397-411.
|
[27] |
F. De Angelis Rigotti, L. Wiedmann, M.O. Hubert, et al., Semaphorin 3C exacerbates liver fibrosis, Hepatology 78 (2023) 1092-1105.
|
[28] |
M.-Y. Zhou, M.-L. Cheng, T. Huang, et al., Transforming growth factor beta-1 upregulates glucose transporter 1 and glycolysis through canonical and noncanonical pathways in hepatic stellate cells, World J. Gastroenterol. 27 (2021) 6908-6926.
|
[29] |
A. Hanyu, Y. Ishidou, T. Ebisawa, et al., The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling, J. Cell Biol. 155 (2001) 1017-1027.
|
[30] |
C. Fan, R. Gonzalez-Prieto, T.B. Kuipers, et al., The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism, Sci. Signal. 16 (2023), eadf1947.
|
[31] |
C. Hwangbo, N. Tae, S. Lee, et al., Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization, Oncogene 35 (2016) 389-401.
|
[32] |
L. Hammerich, F. Tacke, Hepatic inflammatory responses in liver fibrosis, Nat. Rev. Gastroenterol. Hepatol. 20 (2023) 633-646.
|
[33] |
B. He, L. Niu, S. Li, et al., Sustainable inflammatory activation following spinal cord injury is driven by thrombin-mediated dynamic expression of astrocytic chemokines, Brain Behav. Immun. 116 (2024) 85-100.
|
[34] |
Y. Ning, X. Dou, Z. Wang, et al., SIRT3: A potential therapeutic target for liver fibrosis, Pharmacol. Ther. 257 (2024), 108639.
|
[35] |
W. Jiang, R. Quan, A. Bhandari, et al., PAFAH1B3 regulates papillary thyroid carcinoma cell proliferation and metastasis by affecting the EMT, Curr. Med. Chem. 31 (2024) 1152-1164.
|
[36] |
M.M. Mulvihill, D.I. Benjamin, X. Ji, et al., Metabolic profiling reveals PAFAH1B3 as a critical driver of breast cancer pathogenicity, Chem. Biol. 21 (2014) 831-840.
|
[37] |
T. Meier, M. Timm, M. Montani, et al., Gene networks and transcriptional regulators associated with liver cancer development and progression, BMC Med. Genomics 14 (2021), 41.
|
[38] |
Z. Deng, T. Fan, C. Xiao, et al., TGF-β signaling in health, disease, and therapeutics, Signal Transduct. Targeted Ther. 9 (2024), 61.
|
[39] |
H.G. Nothwang, H.G. Kim, J. Aoki, et al., Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3-CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain, Hum. Mol. Genet. 10 (2001) 797-806.
|
[40] |
G. Zhang, A.H. Assadi, R.S. McNeil, et al., The Pafah1b complex interacts with the reelin receptor VLDLR, PLoS One 2 (2007), e252.
|
[41] |
Y. Inagaki, I. Okazaki, Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis, Gut 56 (2007) 284-292.
|
[42] |
G. Kuratomi, A. Komuro, K. Goto, et al., NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor, Biochem. J. 386 (2005) 461-470.
|
[43] |
D. Cheng, J. Chai, H. Wang, et al., Hepatic macrophages: Key players in the development and progression of liver fibrosis, Liver Int. 41 (2021) 2279-2294.
|