Volume 15 Issue 5
Jun.  2025
Turn off MathJax
Article Contents
Peng Yan, Zhiyuan Hou, Jinsong Ding. A review of research methods for elucidating the microstructure of pharmaceutical preparations[J]. Journal of Pharmaceutical Analysis, 2025, 15(5): 101156. doi: 10.1016/j.jpha.2024.101156
Citation: Peng Yan, Zhiyuan Hou, Jinsong Ding. A review of research methods for elucidating the microstructure of pharmaceutical preparations[J]. Journal of Pharmaceutical Analysis, 2025, 15(5): 101156. doi: 10.1016/j.jpha.2024.101156

A review of research methods for elucidating the microstructure of pharmaceutical preparations

doi: 10.1016/j.jpha.2024.101156
  • Received Date: Jun. 29, 2024
  • Accepted Date: Nov. 20, 2024
  • Rev Recd Date: Oct. 07, 2024
  • Publish Date: Nov. 26, 2024
  • The microstructures of pharmaceutical preparations play a pivotal role in determining their critical quality attributes (CQAs), such as drug release, content uniformity, and stability, which greatly impact the safety and efficacy of drugs. Unlike the inherent molecular structures of active pharmaceutical ingredients (APIs) and excipients, the microstructures of pharmaceutical preparations are developed during the formulation process, presenting unique analytical challenges. In this review, we primarily focus on presenting the research methods used to elucidate the microstructures of pharmaceutical preparations, including X-ray imaging (XRI), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, infrared (IR) spectroscopy, and rheometer technology. Subsequently, we highlight the applications, advantages, and limitations of these methods. Finally, we discuss the current challenges and future perspectives in this field. This review aims to provide a comprehensive reference for understanding the microstructures of pharmaceutical preparations, offering new insights and potential advancements in their development.

  • loading
  • [1]
    A.A. Dahab, Drug Formulations. P. Hood, E. Khan, Understanding Pharmacology in Nursing Practice, Springer, Cham, 2020, pp. 57-88.
    [2]
    E.A. Klausner, K. Nagel, Aulton’s Pharmaceutics: The design and manufacture of medicines, Curr. Pharm. Teach. Learn. 14 (2022) 809-810.
    [3]
    A. Barik, A. Dhar, Introduction to different types of dosage forms and commonly used excipients. A.K. Nayak, K.K. Sen, Dosage Forms, Formulation Developments and Regulations, Elsevier, Amsterdam, 2024, pp. 67-82.
    [4]
    W. Li, J. Tang, D. Lee, et al., Clinical translation of long-acting drug delivery formulations, Nat. Rev. Mater. 7 (2022) 406-420.
    [5]
    H. Ahmed, W. Hassan, G. Murtaza, et al., Methods and protocols for drug stability studies. M.S.H. Akash, K. Rehman, Drug Stability and Chemical Kinetics, Springer, Singapore, 2020, pp. 43-55.
    [6]
    J.Y. Kim, M.H. Chun, D.H. Choi, Control strategy for process development of high-shear wet granulation and roller compaction to prepare a combination drug using integrated quality by design, Pharmaceutics 13 (2021), 80.
    [7]
    T. Comoglu, E.D. Ozyilmaz, Pharmaceutical product development: A “quality by design” (QbD) approach. A.K. Nayak, K.K. Sen, Dosage Forms, Formulation Developments and Regulations, Elsevier, Amsterdam, 2024, pp. 285-310.
    [8]
    Y. Zhao, C. Hu, S. Yao, et al., A strategy for population pharmaceutical quality assessment based on quality by design, J. Pharm. Anal. 11 (2021) 588-595.
    [9]
    I. Csoka, E. Pallagi, T.L. Paal, Extension of quality-by-design concept to the early development phase of pharmaceutical R&D processes, Drug Discov. Today 23 (2018) 1340-1343.
    [10]
    L.X. Yu, G. Amidon, M.A. Khan, et al., Understanding pharmaceutical quality by design, AAPS J. 16 (2014) 771-783.
    [11]
    N. Sun, L. Chang, Y. Lu, et al., Raman mapping-based reverse engineering facilitates development of sustained-release nifedipine tablet, Pharmaceutics 14 (2022), 1052.
    [12]
    J. Axel Zeitler, T. Rades, Interdependence of dosage form microstructure and performance, Pharm. Res. 34 (2017) 887-889.
    [13]
    H. Xu, L. Wu, Y. Xue, et al., Advances in structure pharmaceutics from discovery to evaluation and design, Mol. Pharm. 20 (2023) 4404-4429.
    [14]
    C.C. Sun, Microstructure of tablet-pharmaceutical significance, assessment, and engineering, Pharm. Res. 34 (2017) 918-928.
    [15]
    P.J. Withers, C. Bouman, S. Carmignato, et al., X-ray computed tomography, Nat. Rev. Methods Primers 1 (2021), 18.
    [16]
    T. Faber, J.T. McConville, A. Lamprecht, Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena, J. Control. Release 366 (2024) 312-327.
    [17]
    U. Maver, T. Velnar, M. Gaberscek, et al., Recent progressive use of atomic force microscopy in biomedical applications, Trends Analyt. Chem. 80 (2016) 96-111.
    [18]
    K.C. Shah, M.B. Shah, S.J. Solanki, et al., Recent advancements and applications of Raman spectroscopy in pharmaceutical analysis, J. Mol. Struct. 1278 (2023), 134914.
    [19]
    M. Otsuka, Near-infrared spectroscopy application to the pharmaceutical industry, Encycl. Anal. Chem. 2020. https://doi.org/10.1002/9780470027318.a9701.
    [20]
    J. Aho, S. Hvidt, S. Baldursdottir, Rheology in pharmaceutical sciences. A. Mullertz, Y. Perrie, T. Rades, Analytical Techniques in the Pharmaceutical Sciences, Springer, New York, 2016, pp. 719-750.
    [21]
    A. Rawat, S.S. Gupta, H. Kalluri, et al., Rheological characterization in the development of topical drug products. N. Langley, B. Michniak-Kohn, D.W. Osborne, AAPS Advances in the Pharmaceutical Sciences Series, Springer, Cham, 2019, pp. 3-45.
    [22]
    S. Zhang, K. Nagapudi, M. Shen, et al., Release mechanisms and practical percolation threshold for long-acting biodegradable implants: An image to simulation study, J. Pharm. Sci. 111 (2022) 1896-1910.
    [23]
    L. Zhang, L. Wu, C. Wang, et al., Synchrotron radiation microcomputed tomography guided chromatographic analysis for displaying the material distribution in tablets, Anal. Chem. 90 (2018) 3238-3244.
    [24]
    American Association for the Advancement of Science, The scanning electron microscope a small world of huge possibilities. https://poster.sciencemag.org/sem/. (Accessed 20 July 2023).
    [25]
    S. Jaidka, R. Sharma, S. Kaur, et al., Scanning electron microscopy (SEM): Learning to generate and interpret the topographical aspects of materials. S.-K. Kamaraj, A. Thirumurugan, S.S. Dhanabalan, et al., Microscopic Techniques for the Non-Expert, Springer, Cham, 2022, pp. 165-185.
    [26]
    Z. Hou, Q. Wen, W. Zhou, et al., Topical delivery of ketorolac tromethamine via cataplasm for inflammatory pain therapy, Pharmaceutics 15 (2023), 1405.
    [27]
    K. de Haan, Z.S. Ballard, Y. Rivenson, et al., Resolution enhancement in scanning electron microscopy using deep learning, Sci. Rep. 9 (2019), 12050.
    [28]
    D.A. Lamprou, J.R. Smith, Applications of AFM in pharmaceutical sciences. A. Mullertz, Y. Perrie, T. Rades, Analytical Techniques in the Pharmaceutical Sciences, Springer, New York, 2016, pp. 649-674.
    [29]
    M. Farre, D. Barcelo, Introduction to the analysis and risk of nanomaterials in environmental and food samples. M. Farre, D. Barcelo, Comprehensive Analytical Chemistry, Elsevier, Amsterdam, 2012, pp. 1-32.
    [30]
    G. Fini, Applications of Raman spectroscopy to pharmacy, J. Raman Spectrosc. 35 (2004) 335-337.
    [31]
    R.R. Jones, D.C. Hooper, L. Zhang, et al., Raman techniques: Fundamentals and Frontiers, Nanoscale Res. Lett. 14 (2019), 231.
    [32]
    S.E.J. Bell, Quantitative analysis of solid dosage formulations by Raman spectroscopy. S. Sasic, Pharmaceutical Applications of Raman Spectroscopy, Wiley, New Jersey, 2007, pp. 29-64.
    [33]
    B.H.Stuart, Experimental Methods. D.J. Ando, In Infrared Spectroscopy: Fundamentals and Applications, Wiley, New Jersey, 2004, pp. 15-44.
    [34]
    M. Jamrogiewicz, Application of the near-infrared spectroscopy in the pharmaceutical technology, J. Pharm. Biomed. Anal. 66 (2012) 1-10.
    [35]
    H. Hagerstrom, K. Edsman, Limitations of the rheological mucoadhesion method: The effect of the choice of conditions and the rheological synergism parameter, Eur. J. Pharm. Sci. 18 (2003) 349-357.
    [36]
    F. Del Giudice, A review of microfluidic devices for rheological characterisation, Micromachines (Basel) 13 (2022), 167.
    [37]
    J.C. Richardson, R.W. Bowtell, K. Mader, et al., Pharmaceutical applications of magnetic resonance imaging (MRI), Adv. Drug Deliv. Rev. 57 (2005) 1191-1209.
    [38]
    J. Kowalczuk, J. Tritt-Goc, A possible application of magnetic resonance imaging for pharmaceutical research, Eur. J. Pharm. Sci. 42 (2011) 354-364.
    [39]
    X. Yin, A. Maharjan, L. Fang, et al., Cavities spatial distribution confined by microcrystalline cellulose particles determines tablet disintegration patterns, Powder Technol. 339 (2018) 717-727.
    [40]
    F. Lusebrink, H. Mattern, R. Yakupov, et al., Comprehensive ultrahigh resolution whole brain in vivo MRI dataset as a human phantom, Sci. Data 8 (2021), 138.
    [41]
    X. Sun, L. Wu, A. Maharjan, et al., Static and dynamic structural features of single pellets determine the release behaviors of metoprolol succinate sustained-release tablets, Eur. J. Pharm. Sci. 149 (2020), 105324.
    [42]
    A.Y. Pawar, D.D. Sonawane, K.B. Erande, et al., Terahertz technology and its applications, Drug Invent. Today 5 (2013) 157-163.
    [43]
    P.F. Taday, Applications of terahertz spectroscopy to pharmaceutical sciences, Philos. Trans. A Math. Phys. Eng. Sci. 362 (2004) 351-363.
    [44]
    X. Lu, H. Sun, T. Chang, et al., Terahertz detection of porosity and porous microstructure in pharmaceutical tablets: A review, Int. J. Pharm. 591 (2020), 120006.
    [45]
    X. Li, J. Li, Y. Li, et al., High-throughput terahertz imaging: Progress and challenges, Light Sci. Appl. 12 (2023), 233.
    [46]
    S. Mattsson, C. Nystrom, The use of mercury porosimetry in assessing the effect of different binders on the pore structure and bonding properties of tablets, Eur. J. Pharm. Biopharm. 52 (2001) 237-247.
    [47]
    S. Zhang, P.A. Stroud, A. Zhu, et al., Characterizing the impact of spray dried particle morphology on tablet dissolution using quantitative X-ray microscopy, Eur. J. Pharm. Sci. 165 (2021), 105921.
    [48]
    K. Sing, The use of nitrogen adsorption for the characterisation of porous materials, Colloids Surf. A Physicochem. Eng. Aspects 187 (2001) 3-9.
    [49]
    T.H. Hoang Thi, S. Lhafidi, S.P. Carneiro, et al., Feasability of a new process to produce fast disintegrating pellets as novel multiparticulate dosage form for pediatric use, Int. J. Pharm. 496 (2015) 842-849.
    [50]
    J. Becher, T. Sheppard, J.-D. Grunwaldt, X-ray microscopy and tomography. I.E. Wachs, M.A. Banares, Springer Handbook of Advanced Catalyst Characterization, Springer, Cham, 2023, pp. 689-738.
    [51]
    K. Nagapudi, A. Zhu, D.P. Chang, et al., Microstructure, quality, and release performance characterization of long-acting polymer implant formulations with X-ray microscopy and quantitative AI analytics, J. Pharm. Sci. 110 (2021) 3418-3430.
    [52]
    J. Park, D. Hwang, K.Y. Kim, et al., Computed tomography super-resolution using deep convolutional neural network, Phys. Med. Biol. 63 (2018), 145011.
    [53]
    B.Y. Shekunov, P. Chattopadhyay, H.H.Y. Tong, et al., Particle size analysis in pharmaceutics: Principles, methods and applications, Pharm. Res. 24 (2007) 203-227.
    [54]
    A. Talevi, M.E. Ruiz, Drug Release. The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics, Springer, Cham, 2021, pp. 1-7.
    [55]
    M. Wang, S. Wang, C. Zhang, et al., Microstructure formation and characterization of long-acting injectable microspheres: The gateway to fully controlled drug release pattern, Int. J. Nanomedicine 19 (2024) 1571-1595.
    [56]
    K.S. Ogueri, S.L. Shamblin, Osmotic-controlled release oral tablets: Technology and functional insights, Trends Biotechnol. 40 (2022) 606-619.
    [57]
    A. Maharjan, H. Sun, Z. Cao, et al., Redefinition to bilayer osmotic pump tablets as subterranean river system within mini-earth via three-dimensional structure mechanism, Acta Pharm. Sin. B 12 (2022) 2568-2577.
    [58]
    E. Maskova, K. Kubova, B.T. Raimi-Abraham, et al., Hypromellose - A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery, J. Control. Release 324 (2020) 695-727.
    [59]
    C. Maderuelo, A. Zarzuelo, J.M. Lanao, Critical factors in the release of drugs from sustained release hydrophilic matrices, J. Control. Release 154 (2011) 2-19.
    [60]
    X. Yin, H. Li, Z. Guo, et al., Quantification of swelling and erosion in the controlled release of a poorly water-soluble drug using synchrotron X-ray computed microtomography, AAPS J. 15 (2013) 1025-1034.
    [61]
    X. Yin, L. Li, X. Gu, et al., Dynamic structure model of polyelectrolyte complex based controlled-release matrix tablets visualized by synchrotron radiation micro-computed tomography, Mater. Sci. Eng. C Mater. Biol. Appl. 116 (2020), 111137.
    [62]
    Y. Dong, H. Paukkonen, W. Fang, et al., Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release, Int. J. Pharm. 548 (2018) 113-119.
    [63]
    Y.-C. Chen, S. Shishikura, D.E. Moseson, et al., Control of drug release kinetics from hot-melt extruded drug-loaded polycaprolactone matrices, J. Control. Release 359 (2023) 373-383.
    [64]
    G.G.Z. Zhang, D. Law, E.A. Schmitt, et al., Phase transformation considerations during process development and manufacture of solid oral dosage forms, Adv. Drug Deliv. Rev. 56 (2004) 371-390.
    [65]
    D. Braga, L. Casali, F. Grepioni, The relevance of crystal forms in the pharmaceutical field: Sword of Damocles or innovation tools? Int. J. Mol. Sci. 23 (2022), 9013.
    [66]
    L. Chen, L. Wang, X. Yin, et al., Identification of the polymorphs of clopidogrel bisulfate based on the steric morphology parameters of crystals, Acta Pharm. Sin. 48(2013) 1459-1463.
    [67]
    S. Zhang, J. Neilly, A. Zhu, et al., Quantitative characterization of crystallization in amorphous solid dispersion drug tablets using X-ray micro-computed tomography, Microsc. Microanal. 24 (2018) 1400-1401.
    [68]
    J.C. Kasper, G. Winter, W. Friess, Recent advances and further challenges in lyophilization, Eur. J. Pharm. Biopharm. 85 (2013) 162-169.
    [69]
    Z. Li, X. Han, X. Hong, et al., Lyophilization serves as an effective strategy for drug development of the α9α10 nicotinic acetylcholine receptor antagonist α-conotoxin GeXIVA [1,2], Mar. Drugs 19 (2021), 121.
    [70]
    Y.E. Pu, L. Ma, B. Dear, et al., Understanding the impact of microstructures on reconstitution and drying kinetics of lyophilized cake using X-ray microscopy and image-based simulation, J. Pharm. Sci. 112 (2023) 1625-1634.
    [71]
    M. Asachi, E. Nourafkan, A. Hassanpour, A review of current techniques for the evaluation of powder mixing, Adv. Powder Technol. 29 (2018) 1525-1549.
    [72]
    R. Ho, Y. Shin, S. Zhang, et al., Advanced image analytics to study powder mixing in a novel laboratory scale agitated filter dryer, Powder Technol. 417 (2023), 118273.
    [73]
    R. Liu, X. Yin, H. Li, et al., Visualization and quantitative profiling of mixing and segregation of granules using synchrotron radiation X-ray microtomography and three dimensional reconstruction, Int. J. Pharm. 445 (2013) 125-133.
    [74]
    T. Xiong, L. Wu, H. Peng, et al. In situ characterization of structural change and internal particle distributions of soft capsules based on synchrotron radiation X-ray micro computed tomography, Acta Pharm. Sin. 55(2020) 1030-1034.
    [75]
    U.S. Food and Drug Administration, Draft guidance on acyclovir. https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_021478.pdf. (Accessed 19 July 2023).
    [76]
    K.I. Tiffner, I. Kanfer, T. Augustin, et al., Comparative in vitro release testing (IVRT) of acyclovir products, Int. J. Pharm. 609 (2021), 121186.
    [77]
    M. Miranda, C. Veloso, M. Brown, et al., Topical bioequivalence: Experimental and regulatory considerations following formulation complexity, Int. J. Pharm. 620 (2022), 121705.
    [78]
    P. Gajjar, I.D. Styliari, V. Legh-Land, et al., Microstructural insight into inhalation powder blends through correlative multi-scale X-ray computed tomography, Eur. J. Pharm. Biopharm. 191 (2023) 265-275.
    [79]
    T. Yeoh, L. Ma, A.Z. Badruddoza, et al., Semisolid pharmaceutical product characterization using non-invasive X-ray microscopy and AI-based image analytics, AAPS J. 24 (2022), 46.
    [80]
    H. Sun, S. He, L. Wu, et al., Bridging the structure gap between pellets in artificial dissolution media and in gastro-intestinal tract in rats, Acta Pharm. Sin. B 12 (2022) 326-338.
    [81]
    M. Relucenti, O. Donfrancesco, L. Cristiano, et al., Variable pressure SEM and conventional high vacuum SEM protocols for biofilm imaging. S. Das, N.A. Kungwani, Understanding Microbial Biofilms, Elsevier, Amsterdam, 2023, pp. 81-89.
    [82]
    Y. Ominami, Environmental SEM (atmospheric SEM). The Surface Science Society of Japan, Compendium of Surface and Interface Analysis, Springer, Singapore, 2018, pp. 165-169.
    [83]
    A. Ul-Hamid, Imaging with the SEM. A. Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy, Springer, Cham, 2018, pp. 129-180.
    [84]
    S. Zhang, G. Byrne, Characterization of transport mechanisms for controlled release polymer membranes using focused ion beam scanning electron microscopy image-based modelling, J. Drug Deliv. Sci. Technol. 61 (2021), 102136.
    [85]
    W. Jia, P.D. Yawman, K.M. Pandya, et al., Assessing the interrelationship of microstructure, properties, drug release performance, and preparation process for amorphous solid dispersions via noninvasive imaging analytics and material characterization, Pharm. Res. 39 (2022) 3137-3154.
    [86]
    Y. Xue, L. Xu, A. Wang, et al., Studying spatial drug distribution in golf ball-shaped microspheres to understand drug release, J. Control. Release 357 (2023) 196-209.
    [87]
    H. Xi, A. Zhu, G.R. Klinzing, et al., Characterization of spray dried particles through microstructural imaging, J. Pharm. Sci. 109 (2020) 3404-3412.
    [88]
    I. Wunsch, J.H. Finke, E. John, et al., The influence of particle size on the application of compression and compaction models for tableting, Int. J. Pharm. 599 (2021), 120424.
    [89]
    A. Zhu, C. Mao, P.E. Luner, et al., Investigation of quantitative X-ray microscopy for assessment of API and excipient microstructure evolution in solid dosage processing, AAPS PharmSciTech 23 (2022), 117.
    [90]
    G. Thoorens, F. Krier, B. Leclercq, et al., Microcrystalline cellulose, a direct compression binder in a quality by design environment - A review, Int. J. Pharm. 473 (2014) 64-72.
    [91]
    A.G. Clark, R. Wang, Y. Qin, et al., Assessing microstructural critical quality attributes in PLGA microspheres by FIB-SEM analytics, J. Control. Release 349 (2022) 580-591.
    [92]
    S. Zhang, D. Wu, L. Zhou, Characterization of controlled release microspheres using FIB-SEM and image-based release prediction, AAPS PharmSciTech 21 (2020), 194.
    [93]
    A.G. Clark, R. Wang, J. Lomeo, et al., Investigating structural attributes of drug encapsulated microspheres with quantitative X-ray imaging, J. Control. Release 358 (2023) 626-635.
    [94]
    F.J. Giessibl, AFM’s path to atomic resolution, Mater. Today 8 (2005) 32-41.
    [95]
    H.W. Chan, S. Chow, X. Zhang, et al., Role of particle size in translational research of nanomedicines for successful drug delivery: Discrepancies and inadequacies, J. Pharm. Sci. 112 (2023) 2371-2384.
    [96]
    Y. Tian, D. Tian, X. Peng, et al., Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis, Int. J. Pharm. 656 (2024), 124097.
    [97]
    Y. Takechi-Haraya, A. Usui, K.I. Izutsu, et al., Atomic force microscopic imaging of mRNA-lipid nanoparticles in aqueous medium, J. Pharm. Sci. 112 (2023) 648-652.
    [98]
    A.V. Malm, J.C.W. Corbett, Improved dynamic light scattering using an adaptive and statistically driven time resolved treatment of correlation data, Sci. Rep. 9 (2019), 13519.
    [99]
    M.E. Lauer, O. Grassmann, M. Siam, et al., Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions, Pharm. Res. 28 (2011) 572-584.
    [100]
    L. Wu, X. Yin, Z. Guo, et al., Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR, Eur. J. Pharm. Sci. 84 (2016) 132-138.
    [101]
    G. Han, L. Lv, G. Yang, et al., Super-resolution AFM imaging based on compressive sensing, Appl. Surf. Sci. 508 (2020), 145231.
    [102]
    S. Kuiper, G. Schitter, Improving the imaging speed of AFM with modern control techniques. E. Eleftheriou, S.O.R. Moheimani, Control Technologies for Emerging Micro and Nanoscale Systems, Springer, Berlin, 2011, pp. 83-100.
    [103]
    S. Fukuda, T. Ando, Technical advances in high-speed atomic force microscopy, Biophys. Rev. 15 (2023) 2045-2058.
    [104]
    R. Pathak, V. Gaur, H. Sankrityayan, et al., Tackling counterfeit drugs: The challenges and possibilities, Pharmaceut. Med. 37 (2023) 281-290.
    [105]
    P.-Y. Sacre, E. Deconinck, L. Saerens, et al., Detection of counterfeit Viagra® by Raman microspectroscopy imaging and multivariate analysis, J. Pharm. Biomed. Anal. 56 (2011) 454-461.
    [106]
    A.P. Ayala, M.W.C. Caetano, S.B. Honorato, et al., Conformational polymorphism of the antidiabetic drug chlorpropamide, J. Raman Spectrosc. 43 (2012) 263-272.
    [107]
    M.E. Melian, A.B. Munguia, R. Faccio, et al., The impact of solid dispersion on formulation, using confocal micro Raman spectroscopy as tool to probe distribution of components, J. Pharm. Innov. 13 (2018) 58-68.
    [108]
    M. Inoue, O. Kiefer, B. Fischer, et al., Raman monitoring of semi-continuously manufactured orodispersible films for individualized dosing, J. Drug Deliv. Sci. Technol. 61 (2021), 102224.
    [109]
    R.S.K. Kishore, S. Kiese, S. Fischer, et al., The degradation of polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics, Pharm. Res. 28 (2011) 1194-1210.
    [110]
    B.A. Kerwin, Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: Structure and degradation pathways, J. Pharm. Sci. 97 (2008) 2924-2935.
    [111]
    M. Saggu, J. Liu, A. Patel, Identification of subvisible particles in biopharmaceutical formulations using Raman spectroscopy provides insight into polysorbate 20 degradation pathway, Pharm. Res. 32 (2015) 2877-2888.
    [112]
    W. Wang, H. Zhang, Y. Yuan, et al., Research progress of Raman spectroscopy in drug analysis, AAPS PharmSciTech 19 (2018) 2921-2928.
    [113]
    N. Jung, M. Windbergs, Raman spectroscopy in pharmaceutical research and industry, Phys. Sci. Rev. 3 (2018), 20170045.
    [114]
    T. Frosch, E. Wyrwich, D. Yan, et al., Fiber-array-based Raman hyperspectral imaging for simultaneous, chemically-selective monitoring of particle size and shape of active ingredients in analgesic tablets, Molecules 24 (2019), 4381.
    [115]
    F. Iliopoulos, D. Tu, I.J. Pence, et al., Determining topical product bioequivalence with stimulated Raman scattering microscopy, J. Control. Release 367 (2024) 864-876.
    [116]
    F. Erdő, N. Hashimoto, G. Karvaly, et al., Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review, J. Control. Release 233 (2016) 147-161.
    [117]
    A. Yacobi, V.P. Shah, E.D. Bashaw, et al., Current challenges in bioequivalence, quality, and novel assessment technologies for topical products, Pharm. Res. 31 (2014) 837-846.
    [118]
    M.A. Maciel Tabosa, P. Vitry, P. Zarmpi, et al., Quantification of chemical uptake into the skin by vibrational spectroscopies and stratum corneum sampling, Mol. Pharm. 20 (2023) 2527-2535.
    [119]
    P. Zarmpi, M.A.M. Tabosa, P. Vitry, et al., Confocal Raman spectroscopic characterization of dermatopharmacokinetics ex vivo, Mol. Pharm. 20 (2023) 5910-5920.
    [120]
    A. Feizpour, T. Marstrand, L. Bastholm, et al., Label-free quantification of pharmacokinetics in skin with stimulated Raman scattering microscopy and deep learning, J. Investig. Dermatol. 141 (2021) 395-403.
    [121]
    O. Chuchuen, J.R. Maher, M.H. Henderson, et al., Label-free analysis of tenofovir delivery to vaginal tissue using co-registered confocal Raman spectroscopy and optical coherence tomography, PLoS One 12 (2017), e0185633.
    [122]
    P. Zarmpi, D. Tsikritsis, J.L. Vorng, et al., Evaluation of chemical disposition in skin by stimulated Raman scattering microscopy, J. Control. Release 368 (2024) 797-807.
    [123]
    G. Ramer, B. Lendl, Attenuated total reflection Fourier transform infrared spectroscopy, Encycl. Anal. Chem. 2013. https://doi.org/10.1002/9780470027318.a9287.
    [124]
    Y. Hattori, Y. Hoshi, N. Hashimoto, et al., Algorithm and hyperparameter optimizations for hetero-device classification by near-infrared spectra of falsified and substandard amoxicillin capsules, Anal. Sci. 38 (2022) 1261-1268.
    [125]
    H. Arai, T. Nagato, T. Koide, et al., Tablet quality-prediction model using quality material attributes: Toward flexible switching between batch and continuous granulation, J. Pharm. Innov. 16 (2021) 588-602.
    [126]
    N. Jiwa, Y. Ozalp, G. Yegen, et al., Critical tools in tableting research: Using compaction simulator and quality by design (QbD) to evaluate lubricants’ effect in direct compressible formulation, AAPS PharmSciTech 22 (2021), 151.
    [127]
    M. Otsuka, T. Ogata, Y. Hattori, et al., Evaluation of the effect of granule size of raw tableting materials on critical quality attributes of tablets during the continuous tablet manufacturing process using near-infrared spectroscopy, Drug Dev. Ind. Pharm. 49 (2023) 692-702.
    [128]
    H. Tanabe, K. Otsuka, M. Otsuka, Theoretical analysis of tablet hardness prediction using chemoinformetric near-infrared spectroscopy, Anal. Sci. 23 (2007) 857-862.
    [129]
    M. Otsuka, H. Tanabe, K. Osaki, et al., Chemoinformetrical evaluation of dissolution property of indomethacin tablets by near-infrared spectroscopy, J. Pharm. Sci. 96 (2007) 788-801.
    [130]
    M. Otsuka, F. Kato, Y. Matsuda, Comparative evaluation of the degree of indomethacin crystallinity by chemoinfometrical Fourier-transformed near-infrared spectroscopy and conventional powder X-ray diffractometry, AAPS PharmSci 2 (2000), E9.
    [131]
    M. Otsuka, Y. Kanai, Y. Hattori, Real-time monitoring of changes of adsorbed and crystalline water contents in tablet formulation powder containing theophylline anhydrate at various temperatures during agitated granulation by near-infrared spectroscopy, J. Pharm. Sci. 103 (2014) 2924-2936.
    [132]
    K. Koyanagi, A. Ueno, T. Sasaki, et al., Real-time monitoring of critical quality attributes during high-shear wet granulation process by near-infrared spectroscopy effect of water addition and stirring speed on pharmaceutical properties of the granules, Pharmaceuticals (Basel) 15 (2022), 822.
    [133]
    N. Khalifa, T. El-Husseini, A. Morrah, et al., Use of ibuprofen sustained release for treating osteoarthritic pain: Findings from 15 general medical practices in Egypt, Open Access Rheumatol. 6 (2014) 49-56.
    [134]
    Z. Cao, N. Sun, H. Sun, et al., The structural diversity of ibuprofen sustained-release pellets on the same goal of bioequivalence consistency, Mater. Des. 217 (2022), 110583.
    [135]
    L. Budai, M. Budai, Z.E. Fulopne Papay, et al., Rheological considerations of pharmaceutical formulations: Focus on viscoelasticity, Gels 9 (2023), 469.
    [136]
    L. Gilbert, C. Picard, G. Savary, et al., Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data, Colloids Surf. A Physicochem. Eng. Aspects 421 (2013) 150-163.
    [137]
    A. Simoes, M. Miranda, C. Cardoso, et al., Rheology by design: A regulatory tutorial for analytical method validation, Pharmaceutics 12 (2020), 820.
    [138]
    L. Chiarentin, C. Cardoso, M. Miranda, et al., Rheology of complex topical formulations: An analytical quality by design approach to method optimization and validation, Pharmaceutics 15 (2023), 1810.
    [139]
    S. Singh, A.K. Dash, S. Agrawal, Semisolid dosage forms. A.K. Dash, S. Singh, Pharmaceutics (Second Edition), Academic Press, 2024, pp. 341-391.
    [140]
    T. Miyazaki, H. Kanno, E. Yamamoto, et al., Cold flow evaluation in transdermal drug delivery systems by measuring the width of the oozed adhesive, AAPS PharmSciTech 21 (2020), 120.
    [141]
    J. Wang, H. Zhang, D. An, et al., Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel, AAPS PharmSciTech 15 (2014) 1149-1154.
    [142]
    P.K. Qwist, C. Sander, F. Okkels, et al., On-line rheological characterization of semi-solid formulations, Eur. J. Pharm. Sci. 128 (2019) 36-42.
    [143]
    A.J. Fitzgerald, B.E. Cole, P.F. Taday, Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging, J. Pharm. Sci. 94 (2005) 177-183.
    [144]
    P. Timmins, S.R. Pygall, C.D. Melia, Hydrophilic matrix dosage forms: Definitions, general attributes, and the evolution of clinical utilization. P. Timmins, S.R. Pygall, C.D. Melia, Hydrophilic Matrix Tablets for Oral Controlled Release, Springer, New York, 2014, pp. 1-15.
    [145]
    U. Mikac, A. Sepe, J. Kristl, et al., A new approach combining different MRI methods to provide detailed view on swelling dynamics of xanthan tablets influencing drug release at different pH and ionic strength, J. Control. Release 145 (2010) 247-256.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (87) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return