Citation: | Jingru Xie, Si Chen, Liang Zhao, Xin Dong. Application of artificial intelligence to quantitative structure-retention relationship calculations in chromatography[J]. Journal of Pharmaceutical Analysis, 2025, 15(1): 101155. doi: 10.1016/j.jpha.2024.101155 |
Quantitative structure-retention relationship (QSRR) is an important tool in chromatography. QSRR examines the correlation between molecular structures and their retention behaviors during chromatographic separation. This approach involves developing models for predicting the retention time (RT) of analytes, thereby accelerating method development and facilitating compound identification. In addition, QSRR can be used to study compound retention mechanisms and support drug screening efforts. This review provides a comprehensive analysis of QSRR workflows and applications, with a special focus on the role of artificial intelligence—an area not thoroughly explored in previous reviews. Moreover, we discuss current limitations in RT prediction and propose promising solutions. Overall, this review offers a fresh perspective on future QSRR research, encouraging the development of innovative strategies that enable the diverse applications of QSRR models in chromatographic analysis.
[1] |
C. Giaginis, A. Tsantili-Kakoulidou, Quantitative structure-retention relationships as useful tool to characterize chromatographic systems and their potential to simulate biological processes, Chromatographia 76 (2013) 211-226.
|
[2] |
C. Hansch, T. Fujita, p-σ-π analysis. A method for the correlation of biological activity and chemical structure, J. Am. Chem. Soc. 86 (1964) 1616-1626.
|
[3] |
R. Kaliszan, H. Foks, The relationship between the RM values and the connectivity indices for pyrazine carbothioamide derivatives, Chromatographia 10 (1977) 346-349.
|
[4] |
M. Talebi, S.H. Park, M. Taraji, et al., Retention time prediction based on molecular structure in pharmaceutical method development: A perspective, LCGC N. Am. 34 (2016) 550-558.
|
[5] |
G. Sagandykova, B. Buszewski, Perspectives and recent advances in quantitative structure-retention relationships for high performance liquid chromatography. How far are we?, TrAC Trends Anal. Chem. 141 (2021), 116294.
|
[6] |
A. Scalbert, L. Brennan, O. Fiehn, et al., Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research, Metabolomics 5 (2009) 435-458.
|
[7] |
S. Cubbon, C. Antonio, J. Wilson, et al., Metabolomic applications of HILIC-LC-MS, Mass Spectrom. Rev. 29 (2010) 671-684.
|
[8] |
J. Capellades, A. Junza, S. Samino, et al., Exploring the use of gas chromatography coupled to chemical ionization mass spectrometry (GC-CI-MS) for stable isotope labeling in metabolomics, Anal. Chem. 93 (2021) 1242-1248.
|
[9] |
X. Domingo-Almenara, J. Rafael Montenegro-Burke, J. Ivanisevic, et al., XCMS-MRM and METLIN-MRM: A cloud library and public resource for targeted analysis of small molecules, Nat. Methods 15 (2018) 681-684.
|
[10] |
W.B. Dunn, D.I. Broadhurst, H.J. Atherton, et al., Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy, Chem. Soc. Rev. 40 (2011) 387-426.
|
[11] |
Y.R. Singh, D.B. Shah, M. Kulkarni, et al., Current trends in chromatographic prediction using artificial intelligence and machine learning, Anal. Methods 15 (2023) 2785-2797.
|
[12] |
S. Agatonovic-Kustrin, M. Zecevic, L.J. Zivanovic, et al., Application of artificial neural networks in HPLC method development, J. Pharm. Biomed. Anal. 17 (1998) 69-76.
|
[13] |
Y. Pomyen, K. Wanichthanarak, P. Poungsombat, et al., Deep metabolome: Applications of deep learning in metabolomics, Comput. Struct. Biotechnol. J. 18 (2020) 2818-2825.
|
[14] |
X. Domingo-Almenara, C. Guijas, E. Billings, et al., The METLIN small molecule dataset for machine learning-based retention time prediction, Nat. Commun. 10 (2019), 5811.
|
[15] |
R. Kiralj, M.M.C. Ferreira, Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application, J. Braz. Chem. Soc. 20 (2009) 770-787.
|
[16] |
V.I. Babushok, P.J. Linstrom, J.J Reed, et al. NIST/EPA/NIH Mass Spectral Library. https://chemdata.nist.gov/mass-spc/ri/, 2007. (accessed 13 April 2024).
|
[17] |
Max Planck Society, Golm Metabolome Database. http://gmd.mpimp-golm.mpg.de/, 2021. (accessed 13 April 2024).
|
[18] |
P. Bonini, T. Kind, H. Tsugawa, et al., Retip: Retention time prediction for compound annotation in untargeted metabolomics, Anal. Chem. 92 (2020) 7515-7522.
|
[19] |
N.S. Wilson, J.W. Dolan, L.R. Snyder, et al., Column selectivity in reversed-phase liquid chromatography III. The physico-chemical basis of selectivity, J. Chromatogr. A 961 (2002) 217-236.
|
[20] |
N.S. Wilson, M.D. Nelson, J.W. Dolan, et al., Column selectivity in reversed-phase liquid chromatography I. A general quantitative relationship, J. Chromatogr. A 961 (2002) 171-193.
|
[21] |
L.C. Tan, P.W. Carr, Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships: II. The mobile phase, J. Chromatogr. A 799 (1998) 1-19.
|
[22] |
J. Stanstrup, S. Neumann, U. Vrhovsek, PredRet: Prediction of retention time by direct mapping between multiple chromatographic systems, Anal. Chem. 87 (2015) 9421-9428.
|
[23] |
I. Blazenovic, T. Kind, M.R. Sa, et al., Structure annotation of all mass spectra in untargeted metabolomics, Anal. Chem. 91 (2019) 2155-2162.
|
[24] |
L. Mark Hall, D.W. Hill, L.C. Menikarachchi, et al., Optimizing artificial neural network models for metabolomics and systems biology: An example using HPLC retention index data, Bioanalysis 7 (2015) 939-955.
|
[25] |
H. Tsugawa, R. Nakabayashi, T. Mori, et al., A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms, Nat. Methods 16 (2019) 295-298.
|
[26] |
P. Boswell, HPLC Retention Predictor. https://www.retentionprediction.org/hplc/database/, 2011. (accessed 15 March 2024).
|
[27] |
F. Aicheler, J. Li, M. Hoene, et al., Retention time prediction improves identification in nontargeted lipidomics approaches, Anal. Chem. 87 (2015) 7698-7704.
|
[28] |
H. Xu, J. Lin, D. Zhang, et al., Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network, Nat. Commun. 14 (2023), 3095.
|
[29] |
T. Van Laethem, P. Kumari, P. Hubert, et al., A pharmaceutical-related molecules dataset for reversed-phase chromatography retention time prediction built on combining pH and gradient time conditions, Data Brief 42 (2022), 108017.
|
[30] |
The International Association of Forensic Toxicologists, HighResNPS. https://highresnps.forensic.ku.dk/, 2024. (accessed 20 April 2024).
|
[31] |
T. Baczek, R. Kaliszan, K. Novotna, et al., Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model, J. Chromatogr. A 1075 (2005) 109-115.
|
[32] |
M. Ahmed Al-Haj, R. Kaliszan, B. Buszewski, Quantitative structure-retention relationships with model analytes as a means of an objective evaluation of chromatographic columns, J. Chromatogr. Sci. 39 (2001) 29-38.
|
[33] |
M. Randic, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
|
[34] |
D.D. Matyushin, A.Y. Sholokhova, A.K. Buryak, A deep convolutional neural network for the estimation of gas chromatographic retention indices, J. Chromatogr. A 1607 (2019), 460395.
|
[35] |
A.K. Zhokhov, A.Y. Loskutov, I.V. Rybal’chenko, Methodological approaches to the calculation and prediction of retention indices in capillary gas chromatography, J. Anal. Chem. 73 (2018) 207-220.
|
[36] |
E.B. Ledesma, M.J. Wornat, QSRR prediction of chromatographic retention of ethynyl-substituted PAH from semiempirically computed solute descriptors, Anal. Chem. 72 (2000) 5437-5443.
|
[37] |
C. Wang, M.J. Skibic, R.E. Higgs, et al., Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions, J. Chromatogr. A 1216 (2009) 5030-5038.
|
[38] |
M.H. Fatemi, M.H. Abraham, C.F. Poole, Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography, J. Chromatogr. A 1190 (2008) 241-252.
|
[39] |
R. Leardi, A. Lupianez Gonzalez, Genetic algorithms applied to feature selection in PLS regression: How and when to use them, Chemom. Intell. Lab. Syst. 41 (1998) 195-207.
|
[40] |
T. Hancock, R. Put, D. Coomans, et al., A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies, Chemom. Intell. Lab. Syst. 76 (2005) 185-196.
|
[41] |
G. Vivo-Truyols, J.R. Torres-Lapasio, M.C. Garcıa-Alvarez-Coque, A hybrid genetic algorithm with local search: I. Discrete variables: Optimisation of complementary mobile phases, Chemom. Intell. Lab. Syst. 59 (2001) 89-106.
|
[42] |
F. Ruggieri, A. Biancolillo, A.A. D’Archivio, et al., Quantitative structure-retention relationship analysis of polycyclic aromatic compounds in ultra-high performance chromatography, Molecules 28 (2023), 3218.
|
[43] |
R. Aalizadeh, M.C. Nika, N.S. Thomaidis, Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants, J. Hazard. Mater. 363 (2019) 277-285.
|
[44] |
M. Acimovic, S. Ivanovic, K. Simic, et al., Chemical characterization of Marrubium vulgare volatiles from Serbia, Plants 10 (2021), 600.
|
[45] |
T. Liapikos, C. Zisi, D. Kodra, et al., Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1191 (2022), 123132.
|
[46] |
Z. Xu, H. Chughtai, L. Tian, et al., Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis, Talanta 253 (2023), 123861.
|
[47] |
M. Talebi, G. Schuster, R.A. Shellie, et al., Performance comparison of partial least squares-related variable selection methods for quantitative structure retention relationships modelling of retention times in reversed-phase liquid chromatography, J. Chromatogr. A 1424 (2015) 69-76.
|
[48] |
J. Thomas Leonard, K. Roy, On selection of training and test sets for the development of predictive QSAR models, QSAR Comb. Sci. 25 (2006) 235-251.
|
[49] |
J.P. Andries, H.A. Claessens, Y.V. Heyden, et al., Strategy for reduced calibration sets to develop quantitative structure-retention relationships in high-performance liquid chromatography, Anal. Chim. Acta 652 (2009) 180-188.
|
[50] |
P. Gramatica, P. Pilutti, E. Papa, Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling, J. Chem. Inf. Comput. Sci. 44 (2004) 1794-1802.
|
[51] |
E. Papa, F. Villa, P. Gramatica, Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow), J. Chem. Inf. Model. 45 (2005) 1256-1266.
|
[52] |
S.H. Park, P.R. Haddad, R.I.J. Amos, et al., Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography, J. Chromatogr. A 1520 (2017) 107-116.
|
[53] |
K. Muteki, J.E. Morgado, G.L. Reid, et al., Quantitative structure retention relationship models in an analytical quality by design framework: Simultaneously accounting for compound properties, mobile-phase conditions, and stationary-phase properties, Ind. Eng. Chem. Res. 52 (2013) 12269-12284.
|
[54] |
Y. Wen, M. Talebi, R.I.J. Amos, et al., Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model, J. Chromatogr. A 1541 (2018) 1-11.
|
[55] |
E. Tyteca, M. Talebi, R. Amos, et al., Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: Use of retention factor ratio, J. Chromatogr. A 1486 (2017) 50-58.
|
[56] |
M. Taraji, P.R. Haddad, R.I.J. Amos, et al., Use of dual-filtering to create training sets leading to improved accuracy in quantitative structure-retention relationships modelling for hydrophilic interaction liquid chromatographic systems, J. Chromatogr. A 1507 (2017) 53-62.
|
[57] |
S.H. Park, M. De Pra, P.R. Haddad, et al., Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography, J. Chromatogr. A 1609 (2020), 460508.
|
[58] |
Y. Wen, R.I.J. Amos, M. Talebi, et al., Retention prediction using quantitative structure-retention relationships combined with the hydrophobic subtraction model in reversed-phase liquid chromatography, Electrophoresis 40 (2019) 2415-2419.
|
[59] |
Y. Wen, R.I.J. Amos, M. Talebi, et al., Retention index prediction using quantitative structure-retention relationships for improving structure identification in nontargeted metabolomics, Anal. Chem. 90 (2018) 9434-9440.
|
[60] |
S.H. Park, M. Talebi, R.I.J. Amos, et al., Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography, J. Chromatogr. A 1523 (2017) 173-182.
|
[61] |
R.P. Sheridan, B.P. Feuston, V.N. Maiorov, et al., Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR, J. Chem. Inf. Comput. Sci. 44 (2004) 1912-1928.
|
[62] |
S. Sun, B. Cui, F. Kong, et al., Construction and application of a QSRR approach for identifying flavonoids, J. Pharm. Biomed. Anal. 240 (2024), 115929.
|
[63] |
X. Yang, H. Peng, N. Han, et al., Quantitative structure-chromatographic retention relationship of synthesized peptides (HGRFG, NPNPT) and their derivatives, Anal. Biochem. 597 (2020), 113653.
|
[64] |
A.A. D’Archivio, M.A. Maggi, F. Ruggieri, Modelling of UPLC behaviour of acylcarnitines by quantitative structure-retention relationships, J. Pharm. Biomed. Anal. 96 (2014) 224-230.
|
[65] |
V.K. Gupta, H. Khani, B. Ahmadi-Roudi, et al., Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks, Talanta 83 (2011) 1014-1022.
|
[66] |
A.E. Hoerl, R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems,, Technometrics 12 (1970) 55-67.
|
[67] |
R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Series B Stat. Methodol. 58 (1996) 267-288.
|
[68] |
D.E. Booth, Chemometrics: Data analysis for the laboratory and chemical plant, Technometrics 46 (2004), 110.
|
[69] |
O. Farkas, I.G. Zenkevich, F. Stout, et al., Prediction of retention indices for identification of fatty acid methyl esters, J. Chromatogr. A 1198-1199 (2008) 188-195.
|
[70] |
K. Ciura, I. Fryca, M. Gromelski, Prediction of the retention factor in cetyltrimethylammonium bromide modified micellar electrokinetic chromatography using a machine learning approach, Microchem. J. 187 (2023), 108393.
|
[71] |
A. Mammone, M. Turchi, N. Cristianini, Support vector machines, Wiley Interdiscip. Rev. Comput. Stat. 1 (2009) 283-289.
|
[72] |
B. Svrkota, J. Krmar, A. Protic, et al., The secret of reversed-phase/weak cation exchange retention mechanisms in mixed-mode liquid chromatography applied for small drug molecule analysis, J. Chromatogr. A 1690 (2023), 463776.
|
[73] |
M. Dong, L. Yao, X. Wang, et al., Gradient boosted neural decision forest, IEEE Trans. Serv. Comput. 16 (2023) 330-342.
|
[74] |
L. Breiman, Random forests, Machine Learning 45 (2001) 5-32.
|
[75] |
A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Front. Neurorobot. 7 (2013), 21.
|
[76] |
H. Noorizadeh, A. Farmani, Study of the retention time of nanoparticle compounds by quantitative structure retention relationship, Asian J. Chem. 24 (2012) 203-208.
|
[77] |
J. Shaw, F. Rudzicz, T. Jamieson, et al., Artificial intelligence and the implementation challenge, J. Med. Internet Res. 21 (2019), e13659.
|
[78] |
G.M. Randazzo, A. Bileck, A. Danani, et al., Steroid identification via deep learning retention time predictions and two-dimensional gas chromatography-high resolution mass spectrometry, J. Chromatogr. A 1612 (2020), 460661.
|
[79] |
F. Scarselli, M. Gori, A.C. Tsoi, et al., The graph neural network model, IEEE Trans. Neural Netw. 20 (2009) 61-80.
|
[80] |
Q. Yang, H. Ji, H. Lu, et al., Prediction of liquid chromatographic retention time with graph neural networks to assist in small molecule identification, Anal. Chem. 93 (2021) 2200-2206.
|
[81] |
M. Shahpar, S. Esmaeilpoor, Approach to chemometrics models by artificial neural network for structure: First applications for estimation retention time of doping agent, Chem. Method. 2 (2017) 105-127.
|
[82] |
Y. Wang, X. Zhang, X. Yao, et al., Prediction of log kw of disubstituted benzene derivatives in reversed-phase high-performance liquid chromatography using multiple linear regression and radial basis function neural network, Anal. Chim. Acta 463 (2002) 89-97.
|
[83] |
R. Bouwmeester, L. Martens, S. Degroeve, Comprehensive and empirical evaluation of machine learning algorithms for small molecule LC retention time prediction, Anal. Chem. 91 (2019) 3694-3703.
|
[84] |
K. Gorynski, B. Bojko, A. Nowaczyk, et al., Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: Endogenous metabolites and banned compounds, Anal. Chim. Acta 797 (2013) 13-19.
|
[85] |
R. Ju, X. Liu, F. Zheng, et al., Deep neural network pretrained by weighted autoencoders and transfer learning for retention time prediction of small molecules, Anal. Chem. 93 (2021) 15651-15658.
|
[86] |
C.A. Garcia, A. Gil-de-la-Fuente, C. Barbas, et al., Probabilistic metabolite annotation using retention time prediction and meta-learned projections, J. Cheminform. 14 (2022), 33.
|
[87] |
E.S. Fedorova, D.D. Matyushin, I.V. Plyushchenko, et al., Deep learning for retention time prediction in reversed-phase liquid chromatography, J. Chromatogr. A 1664 (2022), 462792.
|
[88] |
A. Golbraikh, A. Tropsha, Beware of Q2!, J. Mol. Graph. Model. 20 (2002) 269-276.
|
[89] |
U. Norinder, Single and domain mode variable selection in 3D QSAR applications, J. Chemom. 10 (1996) 95-105.
|
[90] |
H. Kubinyi, F.A. Hamprecht, T. Mietzner, Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices, J. Med. Chem. 41 (1998) 2553-2564.
|
[91] |
T. Le, V.C. Epa, F.R. Burden, et al., Quantitative structure-property relationship modeling of diverse materials properties, Chem. Rev. 112 (2012) 2889-2919.
|
[92] |
M. Taraji, P.R. Haddad, R.I.J. Amos, et al., Error measures in quantitative structure-retention relationships studies, J. Chromatogr. A 1524 (2017) 298-302.
|
[93] |
P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007) 694-701.
|
[94] |
A. Golbraikh, A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection, J. Comput. Aided Mol. Des. 16 (2002) 357-369.
|
[95] |
R.R. da Silva, P.C. Dorrestein, R.A. Quinn, Illuminating the dark matter in metabolomics, Proc. Natl. Acad. Sci. USA 112 (2015) 12549-12550.
|
[96] |
X. Domingo-Almenara, J.R. Montenegro-Burke, H.P. Benton, et al., Annotation: A computational solution for streamlining metabolomics analysis, Anal. Chem. 90 (2018) 480-489.
|
[97] |
Y. Wei, Y. Sun, S. Jia, et al., Identification of endogenous carbonyl steroids in human serum by chemical derivatization, hydrogen/deuterium exchange mass spectrometry and the quantitative structure-retention relationship, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1226 (2023), 123776.
|
[98] |
A.E. Polettini, J. Kutzler, C. Sauer, et al., LC-QTOF-MS presumptive identification of synthetic cannabinoids without reference chromatographic retention/mass spectral information. II. evaluation of a computational approach for predicting and identifying unknown high-resolution product ion mass spectra, J. Anal. Toxicol. 45 (2021) 440-461.
|
[99] |
Y.S. Ting, J.D. Egertson, J.G. Bollinger, et al., PECAN: Library-free peptide detection for data-independent acquisition tandem mass spectrometry data, Nat. Methods 14 (2017) 903-908.
|
[100] |
L. Moruz, L. Kall, Peptide retention time prediction, Mass Spectrom. Rev. 36 (2017) 615-623.
|
[101] |
C. Ma, Y. Ren, J. Yang, et al., Improved peptide retention time prediction in liquid chromatography through deep learning, Anal. Chem. 90 (2018) 10881-10888.
|
[102] |
R. Bouwmeester, R. Gabriels, N. Hulstaert, et al., DeepLC can predict retention times for peptides that carry as-yet unseen modifications, Nat. Methods 18 (2021) 1363-1369.
|
[103] |
P. Zuvela, M. Skoczylas, J. Jay Liu, et al., Column characterization and selection systems in reversed-phase high-performance liquid chromatography, Chem. Rev. 119 (2019) 3674-3729.
|
[104] |
C.F. Poole, Solvation parameter model: Tutorial on its application to separation systems for neutral compounds, J. Chromatogr. A 1645 (2021), 462108.
|
[105] |
L. Redon, M. Safar Beiranvand, X. Subirats, et al., Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham’s linear solvation energy relationships, Anal. Chim. Acta 1277 (2023), 341672.
|
[106] |
K. Kimata, K. Iwaguchi, S. Onishi, et al., Chromatographic characterization of silica C18 packing materials. correlation between a preparation method and retention behavior of stationary phase, J. Chromatogr. Sci. 27 (1989) 721-728.
|
[107] |
G. Schuster, W. Lindner, Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships, J. Chromatogr. A 1273 (2013) 73-94.
|
[108] |
R.I. Chirita, C. West, S. Zubrzycki, et al., Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography, J. Chromatogr. A 1218 (2011) 5939-5963.
|
[109] |
L.R. Snyder, J.W. Dolan, P.W. Carr, A new look at the selectivity of RPC columns. The hydrophobic subtraction model evaluates the selectivity of HPLC reversed-phased columns so that researchers can choose a suitable substitute or a sufficiently orthogonal second column, Anal. Chem. 79 (2007) 3254-3262.
|
[110] |
B. Dejaegher, D. Mangelings, Y. Vander Heyden, Method development for HILIC assays, J. Sep. Sci. 31 (2008) 1438-1448.
|
[111] |
L.V. Candioti, M.M. De Zan, M.S. Camara, et al., Experimental design and multiple response optimization. Using the desirability function in analytical methods development, Talanta 124 (2014) 123-138.
|
[112] |
I. Molnar, Computerized design of separation strategies by reversed-phase liquid chromatography: Development of DryLab software, J. Chromatogr. A 965 (2002) 175-194.
|
[113] |
P.R. Haddad, M. Taraji, R. Szucs, Prediction of analyte retention time in liquid chromatography, Anal. Chem. 93 (2021) 228-256.
|
[114] |
P. Wiczling, L. Kubik, R. Kaliszan, Maximum A posteriori Bayesian estimation of chromatographic parameters by limited number of experiments, Anal. Chem. 87 (2015) 7241-7249.
|
[115] |
M. Taraji, P.R. Haddad, R.I.J. Amos, et al., Rapid method development in hydrophilic interaction liquid chromatography for pharmaceutical analysis using a combination of quantitative structure-retention relationships and design of experiments, Anal. Chem. 89 (2017) 1870-1878.
|
[116] |
S.H. Park, P.R. Haddad, M. Talebi, et al., Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model, J. Chromatogr. A 1486 (2017) 68-75.
|
[117] |
S.H. Park, R.A. Shellie, G.W. Dicinoski, et al., Enhanced methodology for porting ion chromatography retention data, J. Chromatogr. A 1436 (2016) 59-63.
|
[118] |
F. Tsopelas, C. Giaginis, A. Tsantili-Kakoulidou, Lipophilicity and biomimetic properties to support drug discovery, Expert Opin. Drug Discov. 12 (2017) 885-896.
|
[119] |
F. Barbato, M. La Rotonda, F. Quaglia, Chromatographic indices determined on an immobilized artificial membrane (IAM) column as descriptors of lipophilic and polar interactions of 4-phenyldihydropyridine calcium-channel blockers with biomembranes, Eur. J. Med. Chem. 31 (1996) 311-318.
|
[120] |
L. Grumetto, C. Carpentiero, F. Barbato, Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: Their role in membrane partition and their relationships with BBB passage data, Eur. J. Pharm. Sci. 45 (2012) 685-692.
|
[121] |
L. Grumetto, G. Russo, F. Barbato, Relationships between human intestinal absorption and polar interactions drug/phospholipids estimated by IAM-HPLC, Int. J. Pharm. 489 (2015) 186-194.
|
[122] |
C. Stergiopoulos, F. Tsopelas, K. Valko, Prediction of hERG inhibition of drug discovery compounds using biomimetic HPLC measurements, ADMET DMPK 9 (2021) 191-207.
|
[123] |
S. Teague, K. Valko, How to identify and eliminate compounds with a risk of high clinical dose during the early phase of lead optimisation in drug discovery, Eur. J. Pharm. Sci. 110 (2017) 37-50.
|
[124] |
K. Ciura, S. Kovacevic, M. Pastewska, et al., Prediction of the chromatographic hydrophobicity index with immobilized artificial membrane chromatography using simple molecular descriptors and artificial neural networks, J. Chromatogr. A 1660 (2021), 462666.
|
[125] |
K. Ciura, J. Fedorowicz, P. Zuvela, et al., Affinity of antifungal isoxazolo [3, 4- b] pyridine-3(1 H)-ones to phospholipids in immobilized artificial membrane (IAM) chromatography, Molecules 25 (2020), 4835.
|
[126] |
A.J. Martin, R.L. Synge, A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins, Biochem. J. 35 (1941) 1358-1368.
|
[127] |
V. Ganesh, P. Poorna Basuri, K. Sahini, et al., Retention behaviour of analytes in reversed-phase high-performance liquid chromatography-a review, Biomed. Chromatogr. 37 (2023), e5482.
|
[128] |
Y.L. Polyakova, K.H. Row, Quantitative structure-retention relationships applied to reversed-phase high-perfromance liquid chromatography, Med. Chem. Res. 14 (2005) 488-522.
|
[129] |
Z.P. Yali, M.H. Fatemi, Developing quantitative structure-retention relationship model to prediction of retention factors of some alkyl-benzenes in nano-LC, J. Iran. Chem. Soc. 16 (2019) 1545-1551.
|
[130] |
M.G. Kouskoura, D. Hadjipavlou-Litina, C.K. Markopoulou, Elucidation of the retention mechanism on a reverse-phase cyano column by modeling, J. Sep. Sci. 37 (2014) 1919-1929.
|
[131] |
M. Skoczylas, S. Bocian, B. Buszewski, Quantitative structure-retention relationships of amino acids on the amino acid- and peptide-silica stationary phases for liquid chromatography, J. Chromatogr. A 1609 (2020), 460514.
|
[132] |
M. Kaczmarek, A. Bucinski, M.P. Marszall, et al., Thermodynamic and QSRR modeling of HPLC retention on modern stationary phases, J. Liq. Chromatogr. Relat. Technol. 38 (2015) 62-67.
|
[133] |
S. Osipenko, E. Nikolaev, Y. Kostyukevich, Retention time prediction with message-passing neural networks, Separations 9 (2022), 291.
|
[134] |
R.A. Shellie, B.K. Ng, G.W. Dicinoski, et al., Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps, Anal. Chem. 80 (2008) 2474-2482.
|
[135] |
S. Osipenko, I. Bashkirova, S. Sosnin, et al., Machine learning to predict retention time of small molecules in nano-HPLC, Anal. Bioanal. Chem. 412 (2020) 7767-7776.
|
[136] |
P.G. Boswell, J.R. Schellenberg, P.W. Carr, et al., Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles, J. Chromatogr. A 1218 (2011) 6742-6749.
|
[137] |
P.G. Boswell, J.R. Schellenberg, P.W. Carr, et al., A study on retention “projection” as a supplementary means for compound identification by liquid chromatography-mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments, J. Chromatogr. A 1218 (2011) 6732-6741.
|
[138] |
B.K. Ng, R.A. Shellie, G.W. Dicinoski, et al., Methodology for porting retention prediction data from old to new columns and from conventional-scale to miniaturised ion chromatography systems, J. Chromatogr. A 1218 (2011) 5512-5519.
|
[139] |
S. Osipenko, K. Botashev, E. Nikolaev, et al., Transfer learning for small molecule retention predictions, J. Chromatogr. A 1644 (2021), 462119.
|
[140] |
K. Weiss, T.M. Khoshgoftaar, D. Wang, A survey of transfer learning, J. Big Data 3 (2016), 9.
|
[141] |
Q. Yang, H. Ji, X. Fan, et al., Retention time prediction in hydrophilic interaction liquid chromatography with graph neural network and transfer learning, J. Chromatogr. A 1656 (2021), 462536.
|
[142] |
X. Wang, F. Zheng, M. Sheng, et al., Retention time prediction for small samples based on integrating molecular representations and adaptive network, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1217 (2023), 123624.
|
[143] |
A. Langdon, M. Botvinick, H. Nakahara, et al., Meta-learning, social cognition and consciousness in brains and machines, Neural Netw. 145 (2022) 80-89.
|
[144] |
J. Kim, A.S. Rana, Y. Kim, et al., Chiroptical metasurfaces: Principles, classification, and applications, Sensors 21 (2021), 4381.
|
[145] |
F. Nitta, H. Kaneko, Two- and three-dimensional quantitative structure-activity relationship models based on conformer structures, Mol. Inform. 40 (2021), e2000123.
|
[146] |
M.S. Bahia, O. Kaspi, M. Touitou, et al., A comparison between 2D and 3D descriptors in QSAR modeling based on bio-active conformations, Mol. Inform. 42 (2023), e2200186.
|
[147] |
G.M. Randazzo, D. Tonoli, S. Hambye, et al., Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification, Anal. Chim. Acta 916 (2016) 8-16.
|
[148] |
H. Barfeii, Z. Garkani-Nejad, A comparative QSRR study on enantioseparation of ethanol ester enantiomers in HPLC using multivariate image analysis, quantum mechanical and structural descriptors, J. Chin. Chem. Soc. 64 (2017) 176-187.
|
[149] |
X. Fang, L. Liu, J. Lei, et al., Geometry-enhanced molecular representation learning for property prediction, Nat. Mach. Intell. 4 (2022) 127-134.
|
[150] |
W. Du, X. Yang, D. Wu, et al., Fusing 2D and 3D molecular graphs as unambiguous molecular descriptors for conformational and chiral stereoisomers, Brief. Bioinform. 24 (2023), bbac560.
|