Citation: | Chao-Tao Tang, Yonghui Wu, Qing Tao, Chun-Yan Zeng, You-Xiang Chen. Thalidomide mitigates Crohn's disease colitis by modulating gut microbiota, metabolites, and regulatory T cell immunity[J]. Journal of Pharmaceutical Analysis, 2025, 15(4): 101121. doi: 10.1016/j.jpha.2024.101121 |
[1] |
C.C. Dias, M. Santiago, L. Correia, et al., Hospitalization trends of the inflammatory bowel disease landscape: A nationwide overview of 16 years, Dig. Liver Dis. 51 (2019) 952-960.
|
[2] |
A. Barbarossa, D. Iacopetta, M.S. Sinicropi, et al., Recent advances in the development of thalidomide-related compounds as anticancer drugs, Curr. Med. Chem. 29 (2022) 19-40.
|
[3] |
T. Qiu, H. Li, T. Sun, et al., Thalidomide as a treatment for inflammatory bowel disease in children and adolescents: A systematic review, J. Clin. Pharm. Ther. 45 (2020) 1134-1142.
|
[4] |
M.E. Gerich, J.L. Yoon, S.R. Targan, et al., Long-term outcomes of thalidomide in refractory Crohn’s disease, Aliment. Pharmacol. Ther. 41 (2015) 429-437.
|
[5] |
X. Peng, Z. Lin, M. Zhang, et al., The efficacy and safety of thalidomide in the treatment of refractory Crohn’s disease in adults: A double-center, double-blind, randomized-controlled trial, Gastroenterol. Rep. 10 (2022), goac052.
|
[6] |
S. Plamondon, S.C. Ng, M.A. Kamm, Thalidomide in luminal and fistulizing Crohn’s disease resistant to standard therapies, Aliment. Pharmacol. Ther. 25 (2007) 557-567.
|
[7] |
R. Duclaux-Loras, G. Boschetti, B. Flourie, et al., Relationships of circulating CD4+ T cell subsets and cytokines with the risk of relapse in patients with Crohn’s disease, Front. Immunol. 13 (2022), 864353.
|
[8] |
H. Zhao, Q. Wang, J. Zhao, et al., Ento-a alleviates DSS-induced experimental colitis in mice by remolding intestinal microbiota to regulate SCFAs metabolism and the Th17 signaling pathway, Biomed. Pharmacother. 170 (2024), 115985.
|
[9] |
A. Kitani, L. Xu, Regulatory T cells and the induction of IL-17, Mucosal Immunol. 1 (2008) S43-S46.
|
[10] |
L. Zhou, J.E. Lopes, M.M.W. Chong, et al., TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function, Nature 453 (2008) 236-240.
|
[11] |
E.J. Kim, J.G. Lee, J.Y. Kim, et al., Enhanced immune-modulatory effects of thalidomide and dexamethasone co-treatment on T cell subsets, Immunology 152 (2017) 628-637.
|
[12] |
J.L. Round, S.K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota, Proc. Natl. Acad. Sci. USA 107 (2010) 12204-12209.
|
[13] |
X. Wang, K. Xiong, F. Huang, et al., A metagenome-wide association study of the gut microbiota in recurrent aphthous ulcer and regulation by thalidomide, Front. Immunol. 13 (2022), 1018567.
|
[14] |
J. Han, Z. Tao, J. Wang, et al., Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer, Nat. Microbiol. 8 (2023) 919-933.
|
[15] |
C. Tang, J. Yang, Z. Liu, et al., Taraxasterol acetate targets RNF31 to inhibit RNF31/p53 axis-driven cell proliferation in colorectal cancer, Cell Death Discov. 7 (2021), 66.
|
[16] |
H. Zhang, Z. Cui, D. Cheng, et al., RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis, Autophagy 17 (2021) 3030-3047.
|
[17] |
S. Wan, Q. He, Y. Yang, et al., SPARC stabilizes ApoE to induce cholesterol-dependent invasion and sorafenib resistance in hepatocellular carcinoma, Cancer Res. 84 (2024) 1872-1888.
|
[18] |
Q. Yang, Y. Lu, J. Shangguan, et al., PSMA1 mediates tumor progression and poor prognosis of gastric carcinoma by deubiquitinating and stabilizing TAZ, Cell Death Dis. 13 (2022), 989.
|
[19] |
S. Wirtz, V. Popp, M. Kindermann, et al., Chemically induced mouse models of acute and chronic intestinal inflammation, Nat. Protoc. 12 (2017) 1295-1309.
|
[20] |
Q. Luo, L. Zeng, C. Tang, et al., TLR9 induces colitis-associated colorectal carcinogenesis by regulating NF-κB expression levels, Oncol. Lett. 20 (2020), 110.
|
[21] |
S.C. Truelove, W.C. Richards, Biopsy studies in ulcerative colitis, Br. Med. J. 1 (1956) 1315-1318.
|
[22] |
M. Zhao, C. Qiao, Z. Cui, et al., Moluodan promotes DSS-induced intestinal inflammation involving the reprogram of macrophage function and polarization, J. Ethnopharmacol. 320 (2024), 117393.
|
[23] |
J. Han, Z. Tao, Y. Qian, et al., ZFP90 drives the initiation of colitis-associated colorectal cancer via a microbiota-dependent strategy, Gut Microbes 13 (2021) 1-20.
|
[24] |
H. Takaishi, T. Matsuki, A. Nakazawa, et al., Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease, Int. J. Med. Microbiol. 298 (2008) 463-472.
|
[25] |
C. Ramakrishna, M. Kujawski, H. Chu, et al., Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis, Nat. Commun. 10 (2019), 2153.
|
[26] |
Q. He, M. Niu, J. Bi, et al., Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro, Sci. Rep. 13 (2023), 15842.
|
[27] |
Y.K. Lee, P. Mehrabian, S. Boyajian, et al., The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer, mSphere 3 (2018) e00587-18.
|
[28] |
Y. Zhuang, M. Ortega-Ribera, P. Thevkar Nagesh, et al., Bile acid-induced IRF3 phosphorylation mediates cell death, inflammatory responses, and fibrosis in cholestasis-induced liver and kidney injury via regulation of ZBP1, Hepatology 79 (2024) 752-767.
|
[29] |
C. Mazuy, A. Helleboid, B. Staels, et al., Nuclear bile acid signaling through the farnesoid X receptor, Cell. Mol. Life Sci. 72 (2015) 1631-1650.
|
[30] |
M. Bramuzzo, F. Giudici, S. Arrigo, et al., Efficacy and tolerance of thalidomide in patients with very early onset inflammatory bowel disease, Inflamm. Bowel Dis. 30 (2024) 20-28.
|
[31] |
L. Pugnetti, D. Curci, C. Bidoli, et al., Gene expression profiling in white blood cells reveals new insights into the molecular mechanisms of thalidomide in children with inflammatory bowel disease, Biomed. Pharmacother. 164 (2023), 114927.
|
[32] |
Z. Ye, L. Qian, W. Hu, et al., Clinical outcome of infantile-onset inflammatory bowel disease in 102 patients with interleukin-10 signalling deficiency, Aliment. Pharmacol. Ther. 55 (2022) 1414-1422.
|
[33] |
T.S. Sumida, N.T. Cheru, D.A. Hafler, The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases, Nat. Rev. Immunol. 24 (2024) 503-517.
|
[34] |
H. Chen, H. Xu, L. Luo, et al., Thalidomide prevented and ameliorated pathogenesis of Crohn’s disease in mice via regulation of inflammatory response and fibrosis, Front. Pharmacol. 10 (2019), 1486.
|
[35] |
S. Xiao, Y. Yan, M. Shao, et al., Kuijieling decoction regulates the Treg/Th17 cell balance in ulcerative colitis through the RA/RARα signaling pathway, J. Ethnopharmacol. 318 (2024), 116909.
|
[36] |
H. Chu, A. Khosravi, I.P. Kusumawardhani, et al., Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease, Science 352 (2016) 1116-1120.
|
[37] |
X. Shao, S. Sun, Y. Zhou, et al., Bacteroides fragilis restricts colitis-associated cancer via negative regulation of the NLRP3 axis, Cancer Lett. 523 (2021) 170-181.
|
[38] |
X. Su, X. Yin, Y. Liu, et al., Gut dysbiosis contributes to the imbalance of Treg and Th17 cells in Graves’ disease patients by propionic acid, J. Clin. Endocrinol. Metab. 105 (2020), dgaa511.
|
[39] |
L. Li, T. Liu, Y. Gu, et al., Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease, Front. Immunol. 13 (2022), 974305.
|
[40] |
T. Li, N. Ding, H. Guo, et al., A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage, Cell Host Microbe 32 (2024) 191-208.e9.
|
[41] |
L. Yao, S.C. Seaton, S. Ndousse-Fetter, et al., A selective gut bacterial bile salt hydrolase alters host metabolism, Elife 7 (2018), e37182.
|
[42] |
A.A. Adhikari, T.C.M. Seegar, S.B. Ficarro, et al., Development of a covalent inhibitor of gut bacterial bile salt hydrolases, Nat. Chem. Biol. 16 (2020) 318-326.
|
[43] |
K.C.P. Cheung, J. Ma, R.A. Loiola, et al., Bile acid-activated receptors in innate and adaptive immunity: Targeted drugs and biological agents, Eur. J. Immunol. 53 (2023), e2250299.
|
[44] |
T. Shi, A. Malik, A. Yang Vom Hofe, et al., Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis, Sci. Transl. Med. 14 (2022), eabi4354.
|
[45] |
S. Wang, J. Wu, J. Ren, et al., microRNA-125b interacts with Foxp3 to induce autophagy in thyroid cancer, Mol. Ther. 26 (2018) 2295-2303.
|
[46] |
S. Mandatori, I. Pacella, V. Marzolla, et al., Altered tregs differentiation and impaired autophagy correlate to atherosclerotic disease, Front. Immunol. 11 (2020), 350.
|