Volume 15 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Ming-Yuan Liu, Meili Wang, Junjun Liu, An-Qiang Sun, Chang-Shun He, Xin Cong, Wei Kong, Wei Li. Hemodynamic disturbance and mTORC1 activation: Unveiling the biomechanical pathogenesis of thoracic aortic aneurysms in Marfan syndrome[J]. Journal of Pharmaceutical Analysis, 2025, 15(2): 101120. doi: 10.1016/j.jpha.2024.101120
Citation: Ming-Yuan Liu, Meili Wang, Junjun Liu, An-Qiang Sun, Chang-Shun He, Xin Cong, Wei Kong, Wei Li. Hemodynamic disturbance and mTORC1 activation: Unveiling the biomechanical pathogenesis of thoracic aortic aneurysms in Marfan syndrome[J]. Journal of Pharmaceutical Analysis, 2025, 15(2): 101120. doi: 10.1016/j.jpha.2024.101120

Hemodynamic disturbance and mTORC1 activation: Unveiling the biomechanical pathogenesis of thoracic aortic aneurysms in Marfan syndrome

doi: 10.1016/j.jpha.2024.101120
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 82000429 and 81470574), Young Elite Scientists Sponsorship Program by CAST, China (Program No.: YESS20230395/2023QNRC001), Beijing Nova Program, China (Program No.: 20230484308), Youth Elite Program of Beijing Friendship Hospital, China (Program No.: YYQCJH2022-9), Young Elite Scientists Sponsorship Program by BAST, China (Program No.: BYESS2024045), Capital's Funds for Health Improvement and Research, China (Grant No.: CFH2022-4-20217), and Chinese Institutes for Medical Research, Beijing (CIMR) Organized Research Project, China (Project No.: CX23YQ07).

  • Received Date: Mar. 27, 2024
  • Accepted Date: Oct. 10, 2024
  • Rev Recd Date: Sep. 19, 2024
  • Publish Date: Oct. 28, 2024
  • Thoracic aortic aneurysm (TAA) significantly endangers the lives of individuals with Marfan syndrome (MFS), yet the intricacies of their biomechanical origins remain elusive. Our investigation delves into the pivotal role of hemodynamic disturbance in the pathogenesis of TAA, with a particular emphasis on the mechanistic contributions of the mammalian target of rapamycin (mTOR) signaling cascade. We uncovered that activation of the mTOR complex 1 (mTORC1) within smooth muscle cells, instigated by the oscillatory wall shear stress (OSS) that stems from disturbed flow (DF), is a catalyst for TAA progression. This revelation was corroborated through both an MFS mouse model (Fbn1+/C1039G) and clinical MFS specimens. Crucially, our research demonstrates a direct linkage between the activation of the mTORC1 pathway and the intensity in OSS. Therapeutic administration of rapamycin suppresses mTORC1 activity, leading to the attenuation of aberrant SMC behavior, reduced inflammatory infiltration, and restoration of extracellular matrix integrity—collectively decelerating TAA advancement in our mouse model. These insights posit the mTORC1 axis as a strategic target for intervention, offering a novel approach to manage TAAs in MFS and potentially pave insights for current treatment paradigms.

  • loading
  • [1]
    M.J. Cho, M.R. Lee, J.G. Park, Aortic aneurysms: Current pathogenesis and therapeutic targets, Exp. Mol. Med. 55 (2023) 2519-2530.
    [2]
    R.V. Lacro, H.C. Dietz, L. Mahony, Atenolol versus losartan in Marfan's syndrome, N. Engl. J. Med. 372 (2015) 980-981.
    [3]
    A. Forteza, A. Evangelista, V. Sanchez, et al., Efficacy of losartan vs. atenolol for the prevention of aortic dilation in marfan syndrome: A randomized clinical trial, Eur. Heart J. 37 (2016) 978-985.
    [4]
    F. Ramirez, C. Caescu, E. Wondimu, et al., Marfan syndrome; A connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness, Matrix Biol. 71-72 (2018) 82-89.
    [5]
    E. Bossone, K.A. Eagle, Epidemiology and management of aortic disease: Aortic aneurysms and acute aortic syndromes, Nat. Rev. Cardiol. 18 (2021) 331-348.
    [6]
    J. Gao, H. Cao, G. Hu, et al., The mechanism and therapy of aortic aneurysms, Signal Transduct. Targeted Ther. 8 (2023) 55.
    [7]
    C. Lowis, A. Ramara Winaya, P. Kumari, et al., Mechanosignals in abdominal aortic aneurysms, Front. Cardiovasc. Med. 9 (2023), 1021934.
    [8]
    R.L. van der Palen, A.J. Barker, E. Bollache, et al., Altered aortic 3D hemodynamics and geometry in pediatric Marfan syndrome patients, J. Cardiovasc. Magn. Reson. 19 (2017) 30.
    [9]
    H.H. Wang, H.H. Chiu, W.Y. Tseng, et al., Does altered aortic flow in Marfan syndrome relate to aortic root dilatation? J. Magn. Reson. Imag. 44 (2016) 500-508.
    [10]
    J. Geiger, D. Hirtler, K. Gottfried, et al., Longitudinal evaluation of aortic hemodynamics in Marfan syndrome: New insights from a 4D flow cardiovascular magnetic resonance multi-year follow-up study, J. Cardiovasc. Magn. Reson. 19 (2017) 33.
    [11]
    H.L. Cebull, V.L. Rayz, C.J. Goergen, Recent advances in biomechanical characterization of thoracic aortic aneurysms, Front. Cardiovasc. Med. 7 (2020) 75.
    [12]
    L.H. Timmins, D.S. Molony, P. Eshtehardi, et al., Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease, J. R. Soc. Interface 14 (2017), 20160972.
    [13]
    Y. Takehara, H. Isoda, M. Takahashi, et al., Abnormal flow dynamics result in low wall shear stress and high oscillatory shear index in abdominal aortic dilatation: Initial in vivo assessment with 4D-flow MRI, Magn. Reson. Med. Sci. 19 (2020) 235-246.
    [14]
    A. Mieremet, M. van der Stoel, S. Li, et al., Endothelial dysfunction in Marfan syndrome mice is restored by resveratrol, Sci. Rep. 12 (2022), 22504.
    [15]
    J. Zhu, Y. Liu, Y. Zhang, et al., VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia, Proc. Natl. Acad. Sci. USA 114 (2017) 8271-8276.
    [16]
    J. Zhou, Y. Li, S. Chien, Shear stress-initiated signaling and its regulation of endothelial function, Arterioscler. Thromb. Vasc. Biol. 34 (2014) 2191-2198.
    [17]
    M. Zaradzki, F. Mohr, S. Lont, et al., Short-term rapamycin treatment increases life span and attenuates aortic aneurysm in a murine model of Marfan-Syndrome, Biochem. Pharmacol. 205 (2022), 115280.
    [18]
    C. He, B. Jiang, M. Wang, et al., mTOR inhibition prevents angiotensin II-induced aortic rupture and pseudoaneurysm but promotes dissection in Apoe-deficient mice, JCI Insight 7 (2022), e155815.
    [19]
    A.C. Estrada, L. Irons, B.V. Rego, et al., Roles of mTOR in thoracic aortopathy understood by complex intracellular signaling interactions, PLoS Comput. Biol. 17 (2021), e1009683.
    [20]
    D. Dai, P. Kang, H. Bai, The mTOR signaling pathway in cardiac aging, J. Cardiovasc. Aging 3 (2023) 24.
    [21]
    G. Li, M. Wang, A.W. Caulk, et al., Chronic mTOR activation induces a degradative smooth muscle cell phenotype, J. Clin. Invest. 130 (2020) 1233-1251.
    [22]
    M. Dabagh, P. Jalali, P.J. Butler, et al., Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow, J. R. Soc. Interface 14 (2017), 20170185.
    [23]
    D. Lee, Y.S.J. Li, S. Chang, et al., Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by alphavbeta3 and beta 1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway, J. Biol. Chem. 285 (2010) 30-42.
    [24]
    B.L. Loeys, H.C. Dietz, A.C. Braverman, et al., The revised Ghent nosology for the Marfan syndrome, J. Med. Genet. 47 (2010) 476-485.
    [25]
    J.P. Habashi, D.P. Judge, T.M. Holm, et al., Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome, Science 312 (2006) 117-121.
    [26]
    W. Li, Q. Li, Y. Jiao, et al., Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis, J. Clin. Invest. 124 (2014) 755-767.
    [27]
    J.R. Cook, L. Carta, L. Benard, et al., Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome, J. Clin. Invest. 124 (2014) 1329-1339.
    [28]
    M. Liu, L. Li, J. Zhu, et al., Rapamycin attenuates a murine model of thoracic aortic aneurysm by downregulating the miR-126-3p mediated activation of MAPK/ERK signalling pathway, Biochem. Biophys. Res. Commun. 512 (2019) 498-504.
    [29]
    K. Yodoi, T. Yamashita, N. Sasaki, et al., Foxp3+ regulatory T cells play a protective role in angiotensin II-induced aortic aneurysm formation in mice, Hypertension 65 (2015) 889-895.
    [30]
    W. Xiao, T. Qi, S. He, et al., Low wall shear stress is associated with local aneurysm wall enhancement on high-resolution MR vessel wall imaging, AJNR Am. J. Neuroradiol. 39 (2018) 2082-2087.
    [31]
    B. Zhou, W. Li, G. Zhao, et al., Rapamycin prevents thoracic aortic aneurysm and dissection in mice, J. Vasc. Surg. 69 (2019) 921-932.e3.
    [32]
    A.J. Boyd, D.C.S. Kuhn, R.J. Lozowy, et al., Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture, J. Vasc. Surg. 63 (2016) 1613-1619.
    [33]
    Y. Isekame, S. Gati, J.A. Aragon-Martin, et al., Cardiovascular management of adults with Marfan syndrome, Eur. Cardiol. 11 (2016) 102-110.
    [34]
    J.D. Humphrey, D.M. Milewicz, G. Tellides, et al., Cell biology. Dysfunctional mechanosensing in aneurysms, Science 344 (2014) 477-479.
    [35]
    R.A. Quintana, W.R. Taylor, Cellular mechanisms of aortic aneurysm formation, Circ. Res. 124 (2019) 607-618.
    [36]
    K. Asano, A. Cantalupo, L. Sedes, et al., Pathophysiology and therapeutics of thoracic aortic aneurysm in Marfan syndrome, Biomolecules 12 (2022) 128.
    [37]
    I.A. Tamargo, K.I. Baek, Y. Kim, et al., Flow-induced reprogramming of endothelial cells in atherosclerosis, Nat. Rev. Cardiol. 20 (2023) 738-753.
    [38]
    H. Cheng, W. Zhong, L. Wang, et al., Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches, Biomed. Pharmacother. 158 (2023), 114198.
    [39]
    Q. Meng, L. Pu, M. Qi, et al., Laminar shear stress inhibits inflammation by activating autophagy in human aortic endothelial cells through HMGB1 nuclear translocation, Commun. Biol. 5 (2022) 425.
    [40]
    A. Pinard, G.T. Jones, D.M. Milewicz, Genetics of thoracic and abdominal aortic diseases, Circ. Res. 124 (2019) 588-606.
    [41]
    S.L. Sellers, N. Milad, R. Chan, et al., Inhibition of Marfan syndrome aortic root dilation by losartan role of angiotensin II receptor type 1-independent activation of endothelial function, Am. J. Pathol. 188 (2018) 574-585.
    [42]
    J. Galatioto, C.I. Caescu, J. Hansen, et al., Cell type-specific contributions of the angiotensin II type 1a receptor to aorta homeostasis and aneurysmal disease-brief report, Arterioscler. Thromb. Vasc. Biol. 38 (2018) 588-591.
    [43]
    T. Gou, M. Hu, M. Xu, et al., Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases, J Pharm Anal 13 (2023) 563-589.
    [44]
    D. Ash, M. Subramanian, A. Surolia, et al., Nitric oxide is the key mediator of death induced by fisetin in human acute monocytic leukemia cells, Am. J. Cancer Res. 5 (2015) 481-497.
    [45]
    Z. Zhang, Y. Dai, Y. Xiao, et al., Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review, J Pharm Anal 13 (2023) 1089-1101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (49) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return