Volume 14 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
Heng Wei, Yingying Hao, Jin Zhang, Yue Qi, Chong Feng, Chen Zhang. Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics[J]. Journal of Pharmaceutical Analysis, 2024, 14(12): 101119. doi: 10.1016/j.jpha.2024.101119
Citation: Heng Wei, Yingying Hao, Jin Zhang, Yue Qi, Chong Feng, Chen Zhang. Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics[J]. Journal of Pharmaceutical Analysis, 2024, 14(12): 101119. doi: 10.1016/j.jpha.2024.101119

Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics

doi: 10.1016/j.jpha.2024.101119
  • Received Date: Mar. 31, 2024
  • Accepted Date: Oct. 10, 2024
  • Rev Recd Date: Sep. 01, 2024
  • Publish Date: Oct. 15, 2024
  • Gynecological cancers present significant treatment challenges due to drug resistance and adverse side effects. This review explores advancements in lysosomal escape mechanisms, essential for enhancing nano-therapeutic efficacy. Strategies such as pH-sensitive linkers and membrane fusion are examined, showcasing their potential to improve therapeutic outcomes in ovarian, cervical, and uterine cancers. We delve into novel materials and strategies developed to bypass the lysosomal barrier, including pH-sensitive linkers, fusogenic lipids, and nanoparticles (NPs) engineered for endosomal disruption. Mechanisms such as the proton sponge effect, where NPs induce osmotic swelling and rupture of the lysosomal membrane, and membrane fusion, which facilitates the release of therapeutic agents directly into the cytoplasm, are explored in detail. These innovations not only promise to improve therapeutic outcomes but also minimize side effects, marking a significant step forward in the treatment of ovarian, cervical, and uterine cancers. By providing a comprehensive analysis of current advancements and their implications for clinical applications, this review sheds light on the potential of lysosomal escape strategies to revolutionize gynecological cancer treatment, setting the stage for future research and development in this vital area.

  • loading
  • [1]
    L.B. Medhin, L.A. Tekle, O.O. Achila, et al., Incidence of cervical, ovarian and uterine cancer in Eritrea: Data from the national health laboratory, 2011-2017, Sci. Rep. 10 (2020), 9099.
    [2]
    J. Ventriglia, I. Paciolla, C. Pisano, et al., Immunotherapy in ovarian, endometrial and cervical cancer: State of the art and future perspectives, Cancer Treat. Rev. 59 (2017) 109-116.
    [3]
    A.N. Karnezis, K.R. Cho, C.B. Gilks, et al., The disparate origins of ovarian cancers: Pathogenesis and prevention strategies, Nat. Rev. Cancer 17 (2017) 65-74.
    [4]
    A.C. Veneziani, E. Gonzalez-Ochoa, H. Alqaisi, et al., Heterogeneity and treatment landscape of ovarian carcinoma, Nat. Rev. Clin. Oncol. 20 (2023) 820-842.
    [5]
    M. Buechel, T.J. Herzog, S.N. Westin, et al., Treatment of patients with recurrent epithelial ovarian cancer for whom platinum is still an option, Ann. Oncol. 30 (2019) 721-732.
    [6]
    L.A. Torre, B. Trabert, C.E. DeSantis, et al., Ovarian cancer statistics, 2018, CA Cancer J Clin. 68 (2018) 284-296.
    [7]
    Y. Xiao, M. Bi, H. Guo, et al., Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis, EBioMedicine 79 (2022), 104001.
    [8]
    J. Xiong, M. Wu, J. Chen, et al., Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer, ACS Nano 15 (2021) 19756-19770.
    [9]
    S. Yang, W. Fei, Y. Zhao, et al., Combat against gynecological cancers with blood vessels as entry point: Anti-angiogenic drugs, clinical trials and pre-clinical nano-delivery platforms, Int. J. Nanomedicine 18 (2023) 3035-3046.
    [10]
    J. Seaberg, H. Montazerian, M.N. Hossen, et al., Hybrid nanosystems for biomedical applications, ACS Nano. 15 (2021) 2099-2142.
    [11]
    Y. Pi, B. Xia, M. Jin, et al., Exosomes: Powerful weapon for cancer nano-immunoengineering, Biochem. Pharmacol. 186 (2021), 114487.
    [12]
    Q. Chen, J. Shi, D. Ruan, et al., The diagnostic and therapeutic prospects of exosomes in ovarian cancer, BJOG 130 (2023) 999-1006.
    [13]
    M. Nomura, M. Ohuchi, Y. Sakamoto, et al., Niacin restriction with NAMPT-inhibition is synthetic lethal to neuroendocrine carcinoma, Nat. Commun. 14 (2023), 8095.
    [14]
    A. Sharma, K. Vaghasiya, E. Ray, et al., Lysosomal targeting strategies for design and delivery of bioactive for therapeutic interventions, J. Drug Target. 26 (2018) 208-221.
    [15]
    X. Ma, N. Gong, L. Zhong, et al., Future of nanotherapeutics: Targeting the cellular sub-organelles, Biomaterials 97 (2016) 10-21.
    [16]
    S. Goodarzi, A. Prunet, F. Rossetti, et al., Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform, Lab Chip 21 (2021) 2495-2510.
    [17]
    H. Jia, J. Zhu, X. Wang, et al., A boronate-linked linear-hyperbranched polymeric nanovehicle for pH-dependent tumor-targeted drug delivery, Biomaterials 35 (2014) 5240-5249.
    [18]
    Y. Zhang, M. Li, X. Gao, et al., Nanotechnology in cancer diagnosis: Progress, challenges and opportunities, J. Hematol. Oncol. 12 (2019), 137.
    [19]
    X. Xu, C. Liu, Y. Wang, et al., Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment, Adv. Drug Deliv. Rev. 176 (2021), 113891.
    [20]
    F. Shams, A. Golchin, A. Azari, et al., Nanotechnology-based products for cancer immunotherapy, Mol. Biol. Rep. 49 (2022) 1389-1412.
    [21]
    B.E. Ferdows, D.N. Patel, W. Chen, et al., RNA cancer nanomedicine: Nanotechnology-mediated RNA therapy, Nanoscale 14 (2022) 4448-4455.
    [22]
    L.R. Avula, P. Grodzinski, Nanotechnology-aided advancement in the combating of cancer metastasis, Cancer Metastasis Rev. 41 (2022) 383-404.
    [23]
    E. Bockamp, S. Rosigkeit, D. Siegl, et al., Nano-enhanced cancer immunotherapy: Immunology encounters nanotechnology, Cells 9 (2020), 2102.
    [24]
    W. Tang, W. Fan, J. Lau, et al., Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics, Chem. Soc. Rev. 48 (2019) 2967-3014.
    [25]
    F.U. Rehman, Y. Liu, M. Zheng, et al., Exosomes based strategies for brain drug delivery, Biomaterials 293 (2023), 121949.
    [26]
    M. Sharma, C. Pandey, N. Sharma, et al., Cancer nanotechnology-an excursion on drug delivery systems, Anticancer Agents Med Chem. 18 (2018) 2078-2092.
    [27]
    S.N. Bhatia, X. Chen, M.A. Dobrovolskaia, et al., Cancer nanomedicine, Nat. Rev. Cancer 22 (2022) 550-556.
    [28]
    K. Rhoda, Y.E. Choonara, P. Kumar, et al., Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer, Expert Opin. Drug Deliv. 12 (2015) 613-634.
    [29]
    B. Gidwani, A. Vyas, The potentials of nanotechnology-based drug delivery system for treatment of ovarian cancer, Artif. Cells Nanomed. Biotechnol. 43 (2015) 291-297.
    [30]
    M. Barani, M. Bilal, F. Sabir, et al., Nanotechnology in ovarian cancer: Diagnosis and treatment, Life Sci. 266 (2021), 118914.
    [31]
    H. Ding, J. Zhang, F. Zhang, et al., Nanotechnological approaches for diagnosis and treatment of ovarian cancer: A review of recent trends, Drug Deliv. 29 (2022) 3218-3232.
    [32]
    B.K. Bhardwaj, S. Thankachan, P. Magesh, et al., Current update on nanotechnology-based approaches in ovarian cancer therapy, Reprod. Sci. 30 (2023) 335-349.
    [33]
    H. Jiang, J. Sun, F. Liu, et al., Bi2S3/Ti3C2-TPP nano-heterostructures induced by near-infrared for photodynamic therapy combined with photothermal therapy on hypoxic tumors, J. Nanobiotechnology 22 (2024), 123.
    [34]
    J. Zhao, L. Zhang, Y. Qi, et al., NIR laser responsive nanoparticles for ovarian cancer targeted combination therapy with dual-modal imaging guidance, Int. J. Nanomedicine 16 (2021) 4351-4369.
    [35]
    L.T.M. Phuc, A. Taniguchi, Epidermal growth factor enhances cellular uptake of polystyrene nanoparticles by clathrin-mediated endocytosis, Int. J. Mol. Sci. 18 (2017), 1301.
    [36]
    Y. Li, M. Zhang, Y. Zhang, et al., A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis, J. Mater. Chem. B 11 (2023) 6319-6334.
    [37]
    X. Wei, R. Wei, G. Jiang, et al., Mechanical cues modulate cellular uptake of nanoparticles in cancer via clathrin-mediated and caveolae-mediated endocytosis pathways, Nanomedicine (Lond) 14 (2019) 613-626.
    [38]
    W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles: Applications and hazards, Int. J. Nanomed. 3 (2008) 133-149.
    [39]
    J. Lopes, D. Lopes, M. Pereira-Silva, et al., Macrophage cell membrane-cloaked nanoplatforms for biomedical applications, Small Methdos 6 (2022), e2200289.
    [40]
    M.R. Mohammadi, C. Corbo, R. Molinaro, et al., Biohybrid nanoparticles to negotiate with biological barriers, Small 15 (2019), 1902333.
    [41]
    F. Oroojalian, M. Beygi, B. Baradaran, et al., Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy, Small Weinheim Der Bergstrasse Ger. 17 (2021), e2006484.
    [42]
    R.H. Fang, W. Gao, L. Zhang, Targeting drugs to tumours using cell membrane-coated nanoparticles, Nat. Rev. Clin. Oncol. 20 (2023) 33-48.
    [43]
    Q. Jiang, K. Wang, X. Zhang, et al., Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy, Small 16 (2020), 2001704.
    [44]
    H. Wang, L. Qin, X. Zhang, et al., Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery, J. Control. Release 352 (2022) 970-993.
    [45]
    E. Bielski, Q. Zhong, H. Mirza, et al., TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations, Int. J. Pharm. 527 (2017) 171-183.
    [46]
    J. Chen, J. Ding, Y. Wang, et al., Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors, Adv. Mater. 29 (2017), 1701170.
    [47]
    R. Mu, D. Zhu, S. Abdulmalik, et al., Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications, Bioact. Mater. 35 (2024) 181-207.
    [48]
    Q. Feng, J. Wilhelm, J. Gao, Transistor-like ultra-pH-sensitive polymeric nanoparticles, Acc. Chem. Res. 52 (2019) 1485-1495.
    [49]
    K. Zhou, H. Liu, S. Zhang, et al., Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli, J. Am. Chem. Soc. 134 (2012) 7803-7811.
    [50]
    E.K. Lim, B.H. Chung, S.J. Chung, Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy, Curr. Drug Targets 19 (2018) 300-317.
    [51]
    H. Ding, P. Tan, S. Fu, et al., Preparation and application of pH-responsive drug delivery systems, J. Control. Release 348 (2022) 206-238.
    [52]
    M. Ariza-Saenz, M. Espina, A. Calpena, et al., Design, characterization, and biopharmaceutical behavior of nanoparticles loaded with an HIV-1 fusion inhibitor peptide, Mol. Pharm. 15 (2018) 5005-5018.
    [53]
    T. Zhang, L. Wang, X. He, et al., Cytocompatibility of pH-sensitive, chitosan-coated Fe3O4 nanoparticles in gynecological cells, Front. Med. 9 (2022), 799145.
    [54]
    A. Maharjan, W. Choi, H.T. Kim, et al., Catalytic hydrolysis of agar using magnetic nanoparticles: Optimization and characterization, Biotechnol. Biofuels Bioprod. 16 (2023), 193.
    [55]
    X. Guo, J. Mei, Y. Jing, et al., Curcumin-loaded nanoparticles with low-intensity focused ultrasound-induced phase transformation as tumor-targeted and pH-sensitive theranostic nanoplatform of ovarian cancer, Nanoscale Res. Lett. 15 (2020), 73.
    [56]
    E. Henderson, G. Huynh, K. Wilson, et al., The development of nanoparticles for the detection and imaging of ovarian cancers, Biomedicines 9 (2021), 1554.
    [57]
    E.R. Moghadam, H.L. Ang, S.E. Asnaf, et al., Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives, Biomolecules 10 (2020), 1374.
    [58]
    M.A.S. Abourehab, M.J. Ansari, A. Singh, et al., Cubosomes as an emerging platform for drug delivery: A review of the state of the art, J. Mater. Chem. B 10 (2022) 2781-2819.
    [59]
    H. Yu, B.P. Dyett, J. Zhai, et al., Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform, J. Colloid Interface Sci. 634 (2023) 279-289.
    [60]
    S.L. Yap, H. Yu, S. Li, et al., Cell interactions with lipid nanoparticles possessing different internal nanostructures: Liposomes, bicontinuous cubosomes, hexosomes, and discontinuous micellar cubosomes, J. Colloid Interface Sci. 656 (2024) 409-423.
    [61]
    Q. Zhang, Y. Gong, X. Guo, et al., Multifunctional gold nanoparticle-based fluorescence resonance energy-transfer probe for target drug delivery and cell fluorescence imaging, ACS Appl. Mater. Interfaces 10 (2018) 34840-34848.
    [62]
    D.U. Lee, J.Y. Park, S. Kwon, et al., Apoptotic lysosomal proton sponge effect in tumor tissue by cationic gold nanorods, Nanoscale 11 (2019) 19980-19993.
    [63]
    Z. Li, P. Huang, X. Zhang, et al., RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy, Mol. Pharm. 7 (2010) 94-104.
    [64]
    H. Devalapally, D. Shenoy, S. Little, et al., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 3. therapeutic efficacy and safety studies in ovarian cancer xenograft model, Cancer Chemother. Pharmacol. 59 (2007) 477-484.
    [65]
    M. Elmowafy, K. Shalaby, M.H. Elkomy, et al., Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges, Polymers 15 (2023), 1123.
    [66]
    X. Guo, N. Guo, J. Zhao, et al., Active targeting co-delivery system based on hollow mesoporous silica nanoparticles for antitumor therapy in ovarian cancer stem-like cells, Oncol. Rep. 38 (2017) 1442-1450.
    [67]
    K. AbouAitah, A.A.F. Soliman, A. Swiderska-Sroda, et al., Co-delivery system of curcumin and colchicine using functionalized mesoporous silica nanoparticles promotes anticancer and apoptosis effects, Pharmaceutics 14 (2022), 2770.
    [68]
    H. Duan, Y. Liu, Z. Gao, et al., Recent advances in drug delivery systems for targeting cancer stem cells, Acta Pharm. Sin. B 11 (2021) 55-70.
    [69]
    W. Guo, C. Sun, G. Jiang, et al., Recent developments of nanoparticles in the treatment of photodynamic therapy for cervical cancer, Anticancer Agents Med. Chem. 19 (2019) 1809-1819.
    [70]
    M. Bhandari, S. Raj, A. Kumar, et al., Bibliometric analysis on exploitation of biogenic gold and silver nanoparticles in breast, ovarian and cervical cancer therapy, Front. Pharmacol. 13 (2022), 1035769.
    [71]
    H. Yu, R. Zheng, F. Lei, et al., Antibody-conjugated silica-coated gold nanoparticles in targeted therapy of cervical cancer, Am. J. Transl. Res. 14 (2022) 1518-1534.
    [72]
    X. Guan, S. Xing, Y. Liu, Engineered cell membrane-camouflaged nanomaterials for biomedical applications, Nanomaterials (Basel) 14 (2024), 413.
    [73]
    C. Halbur, N. Choudhury, M. Chen, et al., siRNA-conjugated nanoparticles to treat ovarian cancer, SLAS Technol. 24 (2019) 137-150.
    [74]
    Z. Xia, W. Mu, S. Yuan, et al., Cell membrane biomimetic nano-delivery systems for cancer therapy, Pharmaceutics 15 (2023), 2770.
    [75]
    Y. Li, Y. Gao, X. Zhang, et al., Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy, Int. J. Pharm. 591 (2020), 119986.
    [76]
    X. Han, C. Gong, Q. Yang, et al., Biomimetic nano-drug delivery system: An emerging platform for promoting tumor treatment, Int. J. Nanomedicine 19 (2024) 571-608.
    [77]
    S. Wang, X. Meng, Y. Dong, Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction, Int. J. Oncol. 50 (2017) 1330-1340.
    [78]
    Q. Li, M. Zhu, Y. Li, et al., Estrone-targeted PEGylated liposomal nanoparticles for cisplatin (DDP) delivery in cervical cancer, Eur. J. Pharm. Sci. 174 (2022), 106187.
    [79]
    S. Gonzalez-Garcia, A. Hamdan-Partida, E.E. Ortiz Islas, et al., Cytotoxic activity of Cu/TiO2 nanoparticles on uterine-cervical cancer cells, J. Nanosci. Nanotechnol. 20 (2020) 7289-7298.
    [80]
    Y. Lu, Q. Wen, J. Luo, et al., Self-assembled dihydroartemisinin nanoparticles as a platform for cervical cancer chemotherapy, Drug Deliv. 27 (2020) 876-887.
    [81]
    J. Golenser, N.H. Hunt, I. Birman, et al., Applicability of redirecting artemisinins for new targets, Glob. Chall. 7 (2023), 2300030.
    [82]
    M. Ramezani Farani, M. Azarian, H. Heydari Sheikh Hossein, et al., Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer, ACS Appl. Bio Mater. 5 (2022) 1305-1318.
    [83]
    A. Egorova, A. Selutin, M. Maretina, et al., Peptide-based nanoparticles for αvβ3 integrin-targeted DNA delivery to cancer and uterine leiomyoma cells, Molecules 27 (2022), 8363.
    [84]
    J. Tang, T. Li, X. Xiong, et al., Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells, J. Nanobiotechnology 21 (2023), 460.
    [85]
    Y. Zhang, Y. Dong, H. Fu, et al., Multifunctional tumor-targeted PLGA nanoparticles delivering Pt(IV)/siBIRC5 for US/MRI imaging and overcoming ovarian cancer resistance, Biomaterials 269 (2021), 120478.
    [86]
    Q. Zhang, G. Kuang, S. He, et al., Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer, Nano Lett. 20 (2020) 3039-3049.
    [87]
    S. Zheng, G. Li, J. Shi, et al., Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy, J. Control. Release 361 (2023) 819-846.
    [88]
    T. Van de Vyver, B. Bogaert, L. De Backer, et al., Cationic amphiphilic drugs boost the lysosomal escape of small nucleic acid therapeutics in a nanocarrier-dependent manner, ACS Nano 14 (2020) 4774-4791.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (113) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return