Turn off MathJax
Article Contents
Lidan Hu, Lili Yu, Zhongkai Cao, Yue Wang, Caifeng Zhu, Yayu Li, Jiazhen Yin, Zhichao Ma, Xuelin He, Ying Zhang, Wunan Huang, Yuelin Guan, Yue Chen, Xue Li, Xiangjun Chen. Integrating transcriptomics, metabolomics, and network pharmacology to investigate multi-target effects of Sporoderm-broken spores of Ganoderma lucidum on improving HFD-induced diabetic nephropathy rats[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.101105
Citation: Lidan Hu, Lili Yu, Zhongkai Cao, Yue Wang, Caifeng Zhu, Yayu Li, Jiazhen Yin, Zhichao Ma, Xuelin He, Ying Zhang, Wunan Huang, Yuelin Guan, Yue Chen, Xue Li, Xiangjun Chen. Integrating transcriptomics, metabolomics, and network pharmacology to investigate multi-target effects of Sporoderm-broken spores of Ganoderma lucidum on improving HFD-induced diabetic nephropathy rats[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.101105

Integrating transcriptomics, metabolomics, and network pharmacology to investigate multi-target effects of Sporoderm-broken spores of Ganoderma lucidum on improving HFD-induced diabetic nephropathy rats

doi: 10.1016/j.jpha.2024.101105
Funds:

The authors express great appreciation to all former and current members of Hu’s Lab and Chen’s Lab, for the insightful conversation and outstanding contributions of this research. We are also grateful to Yingping Xiao for professional expert in the experimental processes.

  • Received Date: Mar. 11, 2024
  • Accepted Date: Sep. 13, 2024
  • Rev Recd Date: Aug. 24, 2024
  • Available Online: Sep. 23, 2024
  • Diabetes mellitus (DM) is a major metabolic disease endangering global health, with diabetic nephropathy (DN) as a primary complication lacking curative therapy. Sporoderm-broken spores of Ganoderma lucidum (GLP), an herbal medicine, has been used for the treatment of metabolic disorders. In this study, DN was induced in Sprague-Dawley rats using streptozotocin (STZ) and a high-fat diet (HFD), and the protective mechanisms of GLP were investigated through transcriptomic, metabolomic, and network pharmacology analyses. Our results demonstrated that GLP intervention ameliorated renal damage and inflammation levels in DN rats. Integrative metabolomic and transcriptomic analysis revealed that GLP treatment modulated glucose and cellular energy metabolisms by regulating relevant genes. GLP significantly suppressed the inflammations by impacting glucose and energy metabolism- related gene expression (Igfbp1 and Angptl4) and enhanced metabolic biomarkers of 4- Aminocatechol. In addition, network pharmacology analysis further indicated that GLP may efficiently alleviate DN via immune-related pathways. In conclusion, this study provides supportive evidence of the anti-inflammatory effects of GLP supplements, highlighting their potential for promising clinical applications in treating diabetic nephropathy.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (77) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return